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Abstract: Solar-wind hybrid systems have grown to become a pivotal option for powering membrane
desalination processes, especially because they have zero harmful emissions. In this work, solar
photovoltaic (PV) and horizontal wind turbine (HWT) systems were used to drive a reverse osmosis
(RO) desalination process to produce large-capacity fresh water. Moreover, an investigation into a
hybrid PV–HWT system combined with RO was also conducted. The proposed systems are compared
technically and economically with the solar organic Rankine cycle (SORC) for RO. Technical and
analytical optimization methods were performed to minimize the unit product cost (USD/m3).
The results revealed that photovoltaic-powered RO is recommended over wind energy operations.
However, for large capacities, both thermal and wind farms dominate.

Keywords: photovoltaic system; horizontal wind turbines; solar organic Rankine cycle; reverse osmosis

1. Introduction

The Middle East and North Africa (MENA) have the world’s lowest per capita avail-
ability of water resources [1]. Fortunately, most MENA countries have a renewable energy
potential that encourages the application of solar and wind to drive desalination units.
Renewable energy to drive the desalination units is a vital solution to water scarcity in
remote areas that lack conventional energy sources like heat and electricity grid [2]. Reverse
osmosis (RO) is a modern process to desalinate water for a wide range of applications [3].

For this technique, mechanical energy in the form of a high-pressure pump, not
thermal energy, is required. In recent decades RO has gone through a remarkable develop-
ment. The number of RO plants has increased and the capacity of the units has reached
3,000,000 m3/day [4]. The reliability and the availability of combining renewable energy
resources such as solar and wind power are reasons for using RO instead of thermal distil-
lation processes. Photovoltaic (PV) panels are the common form of solar energy generation
in RO units. Essam Mohamed et al. [5] investigated technically and economically a photo-
voltaic system to drive RO desalination. The productivity of that system was 0.35 m3/day
with a specific power consumption of about (4.6 kWh/m3). The cost of fresh water was
about (EUR 15–20/m3), which is high because of the need for a large number of batteries to
stabilize the pressure and flow rate for the membranes [5]. An economic feasibility study
of PV power on RO within low specific power consumption was established by Helal [6]. It
was conducted using three alternative configurations of an autonomous PV–RO unit in the
United Arab Emirates (UAE). In that study, a diesel generator was used during periods of
low sunlight. The productivity of PV-RO was not more than 20 m3/day (10 h). In Helal’s
study, the environmental impacts of diesel generator emissions were ignored. The technical
characteristics of PV-RO desalination systems and an economic comparison were presented
by Manolakos [7]. The total peak power of the PV system was 846 W and consisted of
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18 Arco-Solar mono-crystalline PV panels. The productivity of the system was 0.1 m3/h
and the specific energy consumption has been found to be in the range of 3.8–6 kWh/m3. It
is found that the cost of 1 m3 of fresh water was about EUR 7.77. Ahmed [8] found that the
cost of the productivity for a PV-powered small-scale RO water desalination system is USD
3.73/m3. In Morocco, Tzen [9] studied an autonomous PV–RO system for the potable and
other water needs of a rural community and found that the specific power consumption
(SPC) was 15 kWh/m3).

Wind energy is also used in this kind of operation, and some of the literature is
provided in this section. Liu et al. [10] studied a RO system driven by wind energy for
wastewater treatment without an economic study. An experimental RO plant connected
directly to a wind system without energy storage was presented by Pestana [11]. The system
was designed based on 21 kW of power, to produce 3.6 m3/h. Dehmas et al. [12] found
that wind energy can successfully power a desalination plant. Their studies included the
economic analysis of 5 Bonus 2 MW wind turbines. Garcia-Rodriguez et al. [13] presented
the influence of the climate, nominal power of the wind turbine, salt concentration, design
arrangement, operating conditions, and plant capacity on the cost of fresh water. Romero-
Ternero et al. [14] presented exergo-economic analysis for wind-powered seawater RO
system the unit cost of freshwater was EUR 0.76/m3. Wind RO plants have a wide range
capacity of 12–2500 m3/day with nominal power of 4–200 kW [15]. Dimitriou et al. [16], and
Ruiz-García and Nuezb [17], investigated the performance of RO under variable operating
conditions, and another study by Ruiz-García and Nuezb [18] investigated the long-term
intermittent performance of a brackish water RO desalination plant.

From the literature review, the hybrid wind–PV system for driving RO has shown ad-
vantages: a wide range of capacities, minimal energy loss, easy maintenance and reliability.
However, such systems were not investigated from a problem optimization or techno-
economic perspective. Optimization criteria are very important because they reduce the
total power consumption on the RO high-pressure pump (HPP), thereby, reducing the area
of the solar field and the total cost. It is obvious from the literature that the possibility of
producing a large water capacity (>3000 m3/day) is far away because of the cost limitations
of PV and wind technologies. Furthermore, electric storage for PV and wind power is still
unaffordable. In this study, under the steady regime, the design and optimization of the
various capacities of a PV-horizontal wind turbine (HWT)–RO system are investigated to
come to a clear decision about the feasibility of using PV and HWT regardless of location or
weather condition. Moreover, the comparison between the proposed systems and the solar
thermal power cycle of a RO operation is performed. The optimization of techno-economic
issues is the focus of this work to decrease power consumption and system costs. The work
proceeds as follows:

• Process configurations are presented, design limits are investigated, and the mathe-
matical model of the proposed systems is presented.

• The optimization method is performed to study the effect of cost minimization.
• A comparison of four cases (solar direct–three configurations vs. solar indirect–one

configuration) is performed.

2. The Process Configurations

The combination of solar power with RO was achieved by one of two methods. The
first is electrical (PV and HWT), and the second is via the thermal solar Rankine cycle. The
proposed configuration related to the electrical method was modeled using SDS software
and shown in Figure 1 [19]. SDS is a developed software library as a part of the REDS
program library developed by Sharaf et al. [16]. The model configuration contained a PV,
HWT, inverter unit, battery bank (storage unit) and a control room for power switching
between PV and HWT to operate the RO system.
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Figure 1. The proposed system model browser of the PV–HWT–RO using the SDS program. The system contains: 1, HWT;
PV system; 3, control room unit; 4, RO desalination plant block.

The RO unit was operated by HWT, PV or both (PV–HWT). Concentrated solar power
(CSP) is shown in Figure 2. This configuration is presented based on thermal power to
operate the organic Rankine cycle (ORC) to generate power to operate the RO system. This
configuration contained a parabolic trough collector (PTC) field for the thermal power, a
boiler heat-exchanger unit (BHX), pumps, ORC turbine, recuperator for regeneration and
energy recovery, a condenser unit for heat rejection and the pre-heating of salt water stream
and the RO system. Therminol-VP1 [20] was used as heat transfer oil (HTO) in the fourth
configuration. Toluene was used as the working substance through the ORC [2,20,21].
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3. Simulation Methodology

The calculated parameters were area, dimension, mass flow rate, and temperature.
For the desalination, the fresh water capacity was specified, after which the electrical load
was calculated for either PV or the HWT design specifications. The calculated parameters
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and design limits of the proposed units are illustrated in Table 1. The mathematical model
representing the process configurations and validity is listed in the Appendix A.

Table 1. The specified parameters based on the design technique of modeling concept.

RO Model

Specified Calculated

Fresh water productivity, m3/day Feed and brine mass flow rates, kg/s

Seawater temperature, ◦C Pressure on the HPP, bar

Seawater salinity, ppm Average pressure, bar

HPP efficiency, % Product and brine salinities, ppm

Booster pump efficiency, % Salt rejection percentage, %

Membrane fouling factor, % HPP power, kW

Number of elements/number of
pressure vessels SPC, kWh/m3

Element area, m2 Membrane area, m2

Recovery ratio, %

Pressure exchanger (PEX) efficiency, %

HWT Model

Specified Calculated

Power/set, kW Starting and average wind speeds, m/s, and
air mass flow, kg/s

System total power, kW Rotor diameter, m

Ambient temperature, ◦C Hub height, m

Ambient pressure, bar Rotor speed, rpm

Swept area, m2

Axial force, kN and Torque, kN

Power coefficient, %

Number of wind turbines

Spacing between turbines in winddirection, m

Spacing cross turbines in wind direction, m

Total farm area, km2

PV Module

Specified Calculated

Solar radiation, W/m2 The open circuit voltage, V and the short
circuit current, A

Power/panel, W The maximum voltage and current

Total system power, kW The cell and module efficiencies, %

The number of cells and modules of the system

The module and system weights, kg, and
areas, m2

The battery bank capacity, A
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Table 1. Cont.

S-ORC Model

Specified Calculated

Solar radiation, W/m2 Solar Fields, condenser, recuperator areas, m2

Parabolic trough collector (PTC) high
temperature, ◦C Solar field dimensions and design

Boiler heat exchanger (BHX) effectiveness, % Mass flow rates, kg/s

ORC turbine efficiency, % ORC mass flow rates, kg/s

Recuperator effectiveness, % Solar field mass flow rate, loop design, No.
of collectors

Condensation temperature, ◦C Heat rejected power, kW

Condenser effectiveness, % PTC pump power, kW

All thermo physical properties of all streams

4. Results and Comments
4.1. Non-Optimization Comparison Results

There are many ways to judge process performance results such as by field area, fresh
water production rate, salinity range or specific costs. The main performance indicator
studied in this work was the unit product cost (UPC) in USD/m3. This indicator is very
important, giving an early evaluation before the optimization procedures. In this section,
the process results are obtained at an RO production rate of 3500 m3/day as a pre-stage
before optimization. The costs of the system units are illustrated in the Appendix A. The
user has to specify total productivity and then all the required parameters will be calculated
relatively and iteratively.

Table 2 shows the data results for the HWT-RO system for 3500 m3/day. The results
revealed that to generate 1131 kWe, two 600-kWe HWTs were used. HWT-600 kW was used
because the expected wind speed in the Suez Gulf region is suitable. The average wind
speed is 11–12 m/s. Technical analyses showed that the hub height was about 41 m with a
43 m rotor diameter. The wind farm occupies about 0.063 km2 of land; the total annual cost
is about 6.31 × 105 USD/year; and the unit product cost (UPC) is about 0.5541 USD/m3.

Table 3 presents the results of the PV–RO system that produced the same amount
of fresh water (3500 m3/day). The expected power load was 1131 kWe for the RO plant,
and a 220 W module is chosen for the PV site. In addition, 350 W/m2 of solar radiation
was chosen as a known input parameter to calculate the PV site area based on the worst
winter conditions [22]. Excess power in summer could be stored in other facilities such
as the control room cabinet or lighting issues in the plant. Compared to the HWT–RO,
the PV–RO had a lower UPC (USD 0.53 vs. 0.55/m3) and a smaller solar field site (about
0.02 vs. 0.06 km2). Based on current results, the PV–RO system is considered to have a
lower UPC than the HWT–RO system.

Table 4 shows the results of the hybrid system in which the power demanded by the
RO plant is equally divided between the HWT farm and the PV site. The results revealed
that the hybrid took up a larger area (HWT farm and PV site area) and the UPC increased to
USD 0.5744/m3 due to the HWT number increase. It is obvious from the related tables that
the UPC could be optimized to a minimum value with respect to the site area by selecting
the right PV module power or the number of wind turbines. Moreover, the PV–RO system
was considered attractive against the remaining systems according to the minimum area
required and UPC in USD/m3. However, the 280 W module may consume a larger area
with a higher cost per site. Therefore, optimization should be implemented to identify the
greatest effect of each system on the UPC in USD/m3.
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Table 2. Preliminary data results for HWT–RO system for 3500 m3/day.

Environmental Conditions

Ambient temperature, ◦C 15 (winter)
Solar radiation, W/m2 350–400 (winter) [22]

Air pressure, bar 1.01
Seawater temperature, ◦C 20

RO Plant Results

Specific power consumption, kWh/m3 7.68
Power, kW 1131

Feed mass flow rate, m3/h 485.9
Production flow rate, m3/h 145.83

Brine flow rate, m3/h 340.1
Brine salinity, ppm 64180

Fresh water salinity, ppm 250
Salt rejection value 0.9944

RO high pressure, kPa 6850
HWT Farm Results

Total power for RO plant, kW 1131
Turbine power/wind power, kW 600/4762

Starting wind speed, m/s 4–11.95
Rated wind speed, m/s 17.62

Hub height, m 41.6
Rotor diameter, m 43.32

Swept area, m2 1474.08
Air mass flow rate, kg/s 3.173 × 106

Torque (Nm)/rpm 1.542 × 105/37.15
No. of wind turbines 2

Farm area, km2 0.06368
Cost Results

Plant life time/interest rate 25/5%
DCC of wind turbines, USD 1.174 × 106

DCC of RO plant, USD 3.5 × 106

Annual total costs, USD/year 6.31 × 105

Unit product costs, USD/m3 0.5541

Table 3. Preliminary data results for PV–RO system for 3500 m3/day.

Environmental Conditions

The environmental conditions Presented in Table 2
RO Plant Results

The RO results Presented in Table 2
PV Site Results

Open circuit voltage/short circuit current, V/A 58.6/8.49
Maximum voltage/maximum current, V/A 47.4/4.641

Module efficiency/cell efficiency, %/% 15.45/17.5
No. of cells per module/No. of total modules 96/5135

Module dimensions/width, m3/mm 0.095/45
Net weight, kg 21.5

Cell area/module area, cm2/m2 423.8/4.06
Total system area, km2 0.02089

Battery storage, Wh 3.766 × 106

Battery capacities, Ah 7.945 × 104

No. of batteries—12 volt system 4
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Table 3. Cont.

Cost Results

Plant life time/interest rate 25/5%
DCC of PV, USD 7.912 × 105

DCC of RO plant, USD 3.5 × 106

Annual total costs, USD/year 6.099 × 105

Unit product costs, USD/m3 0.5305

Table 4. Preliminary data results for HWT–PV-RO system for 3500 m3/day.

Environmental Conditions

The environmental conditions Presented in Table 2

RO Plant Results

The RO results Presented in Table 2

HWT Farm Results

Total power for RO plant, kW 1131
Turbine power/wind power, kW 100/596.2

Starting wind speed, m/s 5.6
Rated wind speed, m/s 14.77

Hub height, m 20.03
Rotor diameter, m 19.64

Swept area, m2 303.1
Air mass flow rate, kg/s 5467

Torque (Nm)/rpm 1.288 × 104/74.14
No. of wind turbines 6

Farm area, km2 0.03924

PV Site Results

Open circuit voltage/short circuit current, V/A 58.6/8.49
Maximum voltage/maximum current, V/A 47.4/4.641

Module efficiency/cell efficiency, %/% 15.45/17.5
No. of cells per module/No. of total modules 96/5135

Module dimensions/width, m3/mm 0.095/45
Net weight, kg 21.5

Cell area/module area, cm2/m2 423.8/4.06
Total system area, km2 0.01045

Battery storage, Wh 1.88 × 106

Battery capacities, Ah 3.97 × 104

No. of batteries (12 volt system) 4

Cost Results

Plant life time/interest rate 25/5%
DCC of HWT, USD 1.1 × 106

DCC of PV, USD 3.958 × 105

DCC of RO plant, USD 3.5 × 106

Annual total costs, USD/year 6.604 × 105

Unit product costs, USD/m3 0.5744

4.2. Comparison Results Based on Optimization

It was becoming very hard to recognize the main cause for the UPC. Previous results
indicated that the PV–RO system had the lowest UPC; however, such a result needs more
investigation based on many factors such as the number of wind turbines, modules of watts
of PV, and RO operating conditions. For that purpose, technical and analytical optimization
techniques were implemented. The technical method was implemented for the RO part,
but the analytical method was implemented for the RO, HWT, and PV systems.
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4.2.1. Technical Optimization Results

In this section, the solution to minimize the objective function (UPC, USD/m3) was
implemented for the RO part. Optimizing it influenced the HWT and PV. To minimize the
UPC, it was necessary to reduce the HPP power load and maintain the same fresh water
production rate. Increasing the number of stages decreased the HPP power load. For the
same case study (3500 m3/day), the number of stages was increased to nine. Table 5 shows
that the increased number of stages decreased the power from 1131 to 917.47 kW (18–20%).
Then the calculated SPC became 6.3 vs. 7.7 kWh/m3 in the basic case. Based on a previous
study [3,21], increasing the number of stages decreased the HPP power load and the PEX
device dominated operations in RO plants, reducing power consumption by 60–65% [22].
Table 5 shows the data results of the RO plant for 3500 m3/day based on the different
technical devices. Therefore, the PEX device is recommended in this study.

Table 5. Results comparison for different energy recovery devices.

Parameter: Power, kW SPC, kWh/m3 RO ∆P, bar Power Reduction, %

Basic 1131 7.7 68.66 –
Stages = 9 917.47 6.3 35.8 18–20%

PEX 380–394 2.704 68.74 60–65%

4.2.2. The Analytical Optimization Results

Based on the technical results in the previous section, the RO-PEX technique is rec-
ommended for the analytical method. Figure 3 shows the effect of the RO-PEX inlet
feed/splitter ratio and the total system productivity on the UPC. The figure addressed
the case of HWT-RO-PEX without the operation of the PV solar field. Decreasing the inlet
feed splitter ratio to 10% increased the demanded power by the HPP by more than three
times (390 to 1532 kW). The UPC was directly proportional to this effect, increasing to
0.683 USD/m3 at 3500 m3/day. Furthermore, the effect on total productivity was also
notable with respect to the feed/splitter ratio. The number of HWTs in the wind farm was
a very important parameter that affected the UPC (Figure 3b). Increasing the number of
wind turbines (low power per unit) increased the UPC. Therefore, fewer than two units are
recommended for this operation.
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Decreasing the quantity of total fresh water from 3500 to 1000 m3/day would also
increase the UPC for the same operating conditions. At 3500 m3/day and a feed/splitter
ratio of 70%, the UPC is about 0.548 USD/m3. Figure 4a,b represents the effect of the
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inlet feed splitter, PV module power, and total productivity on the UPC. Figure 4a,b
demonstrates the effect on the UPC without the operation of the HWT farm. In Figure 4a,
results are obtained at total productivity of 3500 m3/day. The figure shows that it was
important to increase the feed/splitter ratio related to the RO-PEX part because it decreased
the HPP power demand and hence lowered the UPC. At the same time, selecting a module
with a higher rate of power increased the UPC. The results revealed that the PV 35 W
module was the best choice with a feed/splitting ratio of more than 70%. However, the
PV 280 W module increased the UPC. For a ratio of 70% and PV 35 W, it was about
0.517 USD/m3.

Figure 4b shows the effect of various system production rates from 1000 to 3500 m3/day
on the UPC. The optimized point is obvious at 0.31 against 0.557 USD/m3. Decreasing
total productivity while increasing the inlet feed/splitter ratio led to a decrease in the UPC.
For the operation of the PV field, the 35 W module is effective because of the individual
unit price. Moreover, increasing rather than decreasing the inlet feed/splitter ratio is
recommended for the following reasons:

• It decreases the electrical load on the HPP unit;
• The operation proceeds without any need for more pressure vessels or membranes;
• The gain power is fully loaded on the PEX unit without any excess power from the

brine loss.

Suppose that the investor or the designer had to choose between the PV solar field or
the HWT farm or both with respect to the control room load (CRL) distribution. From the
results, the operation of the PV is recommended over the HWT operation based on the UPC.
For both operations, increasing the load percentage meant increasing the dependent load
on the HWT farm. Figure 5 shows the variations in the electric load distribution between
the PV and the HWT. It is evident that the UPC was minimized by a load percentage of
less than 5%; i.e., fully operated by the PV solar field. Decreasing the load on the HWT
farm lowered the UPC. The operation with less than a 5% load on the HWT farm was
remarkable and cost about USD 0.518/m3. Criteria to consider when selecting the type of
operation are

• The PV module power and number of HWTs,
• The total productivity with respect to the inlet feed/splitter ratio, and
• The site operating conditions, which decide the number of HWTs in the farm based

on the power of each turbine.
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Figure 5. The effect of control room load distribution and the UPC, USD/m3 (PV = 35 We module
and HWT No. = 1 turbine).

According to Equations (A1) and (A14) in the Appendix A, increasing the power load
depends on system productivity, and the feed mass flow rate and the HPP pressure depend
on the design parameters of the RO modules. Therefore, the power is a multidimensional
functional of parameters:

Power = f


∆P = f (Ae, ne, NV , kw, FF, TCF)

M
f= f {

Md
RR

(1)

where Ae, ne, NV are the design parameters for the RO, and their effect is notable on the
RO pressure.

In this optimization, the constraints of the algorithm are FF = 0.85; TCF = f(Tf);
Ae = 35.5 m2; ne = 8 elements, and the limits of the system are changed around the Md, NV,
and the ∆P. The results revealed that more productivity meant more power at the same
recovery ratio (RR) of 0.3. It was obvious that by increasing system productivity up to
200,000 m3/day the NV would directly affect the UPC at the same pressure category (e.g.,
40 bar). The UPC increased from 0.47 to 7.33 USD/m3 by the use of 20,000 NV. Increasing
the NV decreased the UPC by increasing the ∆P, thereby decreasing the power and the load
on the PV site. For moderate production (10,000 m3/day), about 1450 pressure vessels at
40 bar were proposed; however, 750 pressure vessels to produce 100,000 m3/day at 80 bar
were used. It is clear now that the choice should have been made according to the lower
cost for each pressure category. Therefore, 40 bar should be used, but the massive number
of pressure vessels is considered a hindrance to maintenance and system control. For less
control and fewer maintenance issues 80 bar is preferred; moreover, maximum production
could reach 200,000 m3/day with 1500 pressure vessels compared with 20,000 pressure
vessels for 40 bar. According to the PV site, the operation of 200,000 m3/day is considered
a massive challenge because of the relation of the site area to the PV site, which would have
to generate about 24 MWe. Therefore, because of cost, the 40-bar category was favored in
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this study. Figure 6 shows the data results of the effect of pressure and productivity on the
system pressure vessel numbers and UPC.

Sustainability 2021, 13, x FOR PEER REVIEW 11 of 21 
 

where Ae, ne, NV are the design parameters for the RO, and their effect is notable on the RO 

pressure.  

In this optimization, the constraints of the algorithm are FF = 0.85; TCF = f(Tf); Ae = 

35.5 m2; ne = 8 elements, and the limits of the system are changed around the Md, NV, and 

the ∆𝑃. The results revealed that more productivity meant more power at the same recov-

ery ratio (RR) of 0.3. It was obvious that by increasing system productivity up to 200,000 

m3/d the NV would directly affect the UPC at the same pressure category (e.g., 40 bar). The 

UPC increased from 0.47 to 7.33 USD/m3 by the use of 20,000 NV. Increasing the NV de-

creased the UPC by increasing the ∆𝑃, thereby decreasing the power and the load on the 

PV site. For moderate production (10,000 m3/d), about 1450 pressure vessels at 40 bar were 

proposed; however, 750 pressure vessels to produce 100,000 m3/d at 80 bar were used. It 

is clear now that the choice should have been made according to the lower cost for each 

pressure category. Therefore, 40 bar should be used, but the massive number of pressure 

vessels is considered a hindrance to maintenance and system control. For less control and 

fewer maintenance issues 80 bar is preferred; moreover, maximum production could 

reach 200,000 m3/d with 1500 pressure vessels compared with 20,000 pressure vessels for 

40 bar. According to the PV site, the operation of 200,000 m3/d is considered a massive 

challenge because of the relation of the site area to the PV site, which would have to gen-

erate about 24 MWe. Therefore, because of cost, the 40-bar category was favored in this 

study. Figure 6 shows the data results of the effect of pressure and productivity on the 

system pressure vessel numbers and UPC.  

 

Figure 6. Effect of HPP pressure and system productivity on (a) No. of pressure vessels, and (b) 

UPC in USD/m3. 

4.3. Data Results Compared with Solar-ORC 

The PV-RO is compared with the S-ORC-RO system under the same operating con-

ditions based on the 3500 m3/d capacity. For HPPRO = 40 bar category, the solar thermal 

cycle (PTC) consumed a larger area (4475 vs. 3243 m2) and a larger UPC (1.365 vs. 0.4705 

USD/m3). Increasing the number of pressure vessels increased the indirect costs for both 

systems. Moreover, the power load on the thermal units was synchronized with more 

thermal units, mass flow rates and pumps comparing with direct contact in the case of 

PV-RO. Even though the HPPRO = 80 bar category harvested more area, the UPC was lower 

for thermal system; however, it increased a little in the electric one. The HPPRO = 80 bar 

category required more power, i.e., more area was needed. Figure 7 shows the data com-

parison between both systems according to the area and UPC at 3500 m3/d. Increasing the 

pressure on the RO reduced the number of pressure vessels (26 at 80 bar vs. 450 at 40 bar). 

Therefore, the power increase to harvest more solar area caused an increase in the UPC. 

Figure 8 shows variations in the solar field area for both sites (thermal and electrical) ac-

cording to the variations of HPP power. Increasing the power demand by the RO pump 

Figure 6. Effect of HPP pressure and system productivity on (a) No. of pressure vessels, and (b) UPC
in USD/m3.

4.3. Data Results Compared with Solar-ORC

The PV-RO is compared with the S-ORC-RO system under the same operating
conditions based on the 3500 m3/day capacity. For HPPRO = 40 bar category, the so-
lar thermal cycle (PTC) consumed a larger area (4475 vs. 3243 m2) and a larger UPC
(1.365 vs. 0.4705 USD/m3). Increasing the number of pressure vessels increased the in-
direct costs for both systems. Moreover, the power load on the thermal units was syn-
chronized with more thermal units, mass flow rates and pumps comparing with direct
contact in the case of PV-RO. Even though the HPPRO = 80 bar category harvested more
area, the UPC was lower for thermal system; however, it increased a little in the electric
one. The HPPRO = 80 bar category required more power, i.e., more area was needed.
Figure 7 shows the data comparison between both systems according to the area and UPC
at 3500 m3/day. Increasing the pressure on the RO reduced the number of pressure vessels
(26 at 80 bar vs. 450 at 40 bar). Therefore, the power increase to harvest more solar area
caused an increase in the UPC. Figure 8 shows variations in the solar field area for both
sites (thermal and electrical) according to the variations of HPP power. Increasing the
power demand by the RO pump required more area to cover the load. The competition of
PV with solar thermal for power generation is still far away from implementation because
of limitations to the PV operation. Table 6 illustrates the comparison between the PV and
the CSP thermal power.

It is clear that the UPC of the PV–RO system was lower than that of the CSP–RO;
however, it may increase during operation for high rates of power (over than 10 MWe).
because of the high price of the PV panels. Reducing the capital costs of the PV panels may
reduce the UPC making it competitive with thermal systems. One possible way to reduce
the UPC is to increase the construction rate by building many PV–RO systems with higher
rates of productivity for larger remote areas. It may be noted that a PV-powered RO system
is suitable for remote regions. Generally, CSP is favorable for larger categories of power
generation up to 600 MW.

Figure 9 shows the UPC comparison between Toh et al. [23] and the present work
with different feed pressures. Increasing the pressure on the RO caused an increase in the
UPC, and the results showed compatibility and convergence.
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Table 6. CSP vs. PV solar power generation.

Parameter CSP (Thermal) PV (Electric)

Resource quality 2400 kWh/m2/year 2445 kWh/m2/year

Power type Thermal (indirect) Electrical (direct)

Desalination system to
combine with

All types (MSF, MED,
MED–TVC, MED-MVC, RO, ED RO, MED-MVC

Levelised cost of energy
USD/MWh 60–350 (USD 214 in 2030) 100–450 (USD 303 in 2030)

Construction period/life time 2/30 years 1/30 years

Capacity factor 23–50% 20%

Power production 600 MW 10 MW

Heat engines Stirling, Rankine, gas turbines,
steam turbines N/A
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5. Conclusions

This work was concerned with powering a reverse osmosis (RO) desalination system
by using renewable energy sources such as solar photovoltaic and wind energy. Three
configurations for powering the RO were compared analytically by the use of SDS-REDS
software. The first was HWT-RO; the second was PV-RO, while the third was the hybrid
system HWT-PV-RO. To select the most cost-efficient one to be compared with the solar
thermal Rankine cycle (S-ORC-RO), a technical and analytical optimization had to be
implemented. The technical optimization recommended the use of the PEX technique,
which reduced power consumption by 65%.

For analytical optimization, the following items are recommended:

• Reducing the inlet feed/splitter ratio to 10% to more than triple the demanded power
by the HPP (390 to 1532 kW).

• Using fewer than two HWTs for this kind of an operation because increasing the
number of wind turbines (low power per unit) increases the UPC.

• Selecting a PV module that minimizes UPC. The results revealed that the PV 35 W
module was the best choice with a feed/splitter ratio of more than 70%, whereas the
PV 280 W module increased the UPC. The PV 35 W UPC was about 0.517 USD/m3.

• Maintaining less than a 5% load on the HWT farm to minimize UPC. For both oper-
ations, increasing the load percentage meant increasing the dependent load on the
farm, and this work confirmed that was UPC is minimized when the load percentage
was less than 5%; i.e., fully operational by the PV solar field. This operation gave a
remarkable UPC of about 0.518 USD/m3.

• Reducing the capital costs of PV panels to reduce the UPC so that it can compete with
thermal systems. In a comparison with S-ORC-RO, the UPC of the PV-RO system
was lower than that of the CSP-RO system; however, it may increase if the operation
generates power over 10 MWe.

Generally, the CSP was favorable for larger categories of power generation up to
600 MW. The PV-RO and HWT-RO were proven promising for producing sustainable fresh
water. PV-RO can compete against the HWT-RO or the S-ORC-RO for lower rates of fresh
water production. HWT-RO and S-ORC-RO consume larger areas; however, they could be
used for higher rates of power and fresh water production.

6. Recommendations

A wide range of varied operating conditions should be examined, and system perfor-
mance should be studied using more design parameter variation.
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Nomenclature

A Area: m2

Ac Cell area, m2

Ae Element area, m2

AH Battery capacity, Ah
Am Module area, m2

Ar Rotor swept area m2

At Total area, m2

BS Battery storage, Wh
Cb Battery cost, USD
Ct Total cost, USD
CP Turbine power coefficent
DCC Direct capital cost, USD
DOD Depth of discharge
Dr Rotor diameter, m
FF Fouling factor
FOBc Full over board cost, USD
Gb Solar flux, W/m2

HPP High pressure pump
Hh Hub height, m
HWT Horizontal wind turbine
k Permeability
M Mass flow rate, m3/h, kg/s
n Number, #
ne Element number
NV Number of pressure vessels
NOB Number of batteries, #
NOC Number of cells, #
NOM Number of modules, #
NWT Number of wind turbines, #
OH Operating hours, h
P Power, Permeator, or Pressure, bar
Pm Module power, W
Pt Total power, W
Pw Wind power, kW
PV Photovoltaic
∆P Pressure, bar
RR Recovery ratio
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RPMr Rotor speed, rpm
SPC Specific power consumption, kWh/m3

SR Salt rejection
T Temperature, ◦C
Tor Torque, Nm
TCF Temperature correction factor
UPC Unit product cost, USD/m3

V Volt
Vws Start wind speed, m/s
Vwa Average wind speed, m/s
X Salinity, ppm
Subscripts
air Ambient
b Brine, battery
c Cell
d Distillate product
e Element
f Feed
m Module
ORC Organic rankine cycle
RO Reverse osmosis
t Turbine, total
v Vessel
w Water
Greek
η Efficiency, %
Π Osmotic pressure, kPa
ρ Density, kg/mr

ω Rad/s

Appendix A

A: The RO Model
The mathematical model for the proposed RO unit is written as follows [2,24]:
The feed flow rate Mf based on recovery ratio RR and distillate flow rate Md is

M f =
Md
RR

(A1)

The distillate product salt concentration Xd is

Xd = X f × (1− SR) (A2)

where Xf is the feed flow rate salt concentration, and SR is the salt rejection percentage.
The rejected brine is found from

Mb = M f −Md (A3)

The rejected salt concentration kg/m3 is estimated by

Xb =
M f × X f −Md × Xd

Mb
(A4)

The average salt concentration kg/m3 is estimated as

Xav =
M f × X f + Mb × Xb

M f + Mb
(A5)
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The temperature correction factor TCF is found by

TCF = exp
(

2700×
(

1
273 + t

− 1
298

))
(A6)

Membrane water permeability kW is

kw = 6.84× 10−8 × (18.6865− (0.177× Xb))/(t + 273)) (A7)

The salt permeability ks is

ks = FF× TCF× 4.72× 10−7 ×
(

0.06201−
(

5.31× 10−5 × (t + 273)
))

(A8)

where FF is the membrane fouling factor. The calculations of osmotic pressure for the feed,
brine, and distillate product are found as

Π f = 75.84× X f (A9)

Πb = 75.84× Xb (A10)

Πd = 75.84× Xd (A11)

The average osmotic pressure on the feed side is

Πav = 0.5×
(

Π f + Πb

)
(A12)

The net osmotic pressure across the membrane is

∆Π = Πav −Πd (A13)

The net pressure difference across the membrane is

∆P =

(
Md

3600× TCF× FF× Ae × ne × Nv × kw

)
+ ∆Π (A14)

where Ae is the element area in m2; ne is number of membrane elements; and Nv is the
number of pressure vessels. The required power input in kW for the RO high pressure
pump (HPP) is estimated as

HPPpower =
1000×M f × ∆P
3600× ρ f × ηp

(A15)

where ρf is the feed flow rate density, and ηp is the driving pump mechanical efficiency.
The specific power consumption in kWh/m3 is estimated as

SPC =
HPPpower

Md
(A16)

B: The HWT Model
The Horizontal Wind Turbine (HWT) as a part of wind desalination library (REDS [25])

was modeled according to the specification data obtained from the manufacture manual
for many watt points, which vary from 0.5 to 8000 kW according to many companies. The
data were obtained from more than 50 companies involved in wind turbine manufacturing.
A developed model by Sharaf [26–29] was presented and correlated as a function of wind
turbine power (P) as follows:

The starting wind speed m/s as a function of turbine power (kW):

Vws = 13.37× ε(1.698−5×P) − 10.72× ε(−0.003214×P) (A17)
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The average wind speed m/s:

Vwa = 9.378×
(

P0.09862
)

(A18)

The rotor diameter m:
Dr = 2.573×

(
P0.4414

)
(A19)

The tower (Hub) height m:

Hh = 1.437×
(

P0.5046
)
+ 5.354 (A20)

Air density kg/m3 is calculated based on air and pressure temperature:

ρair =
Pair × 100

0.287× (Tair + 273.15)
(A21)

where Pair is in bar and Tair is in ◦C.
The rotor swept area m2 is then calculated based on the rotor diameter Dr:

Ar = π × (Dr/2)2 (A22)

The air mass flow rate kg/s is then calculated based on the density, rotor swept area
and average wind speed:

Mair = ρair × Ar×Vwa (A23)

The required wind power kW:

Pw =
( 1

2 × ρair × Ar×
(
Vwa

3)
1000

(A24)

The power coefficient is calculated from the assigned power P and the aerodynamic
power Pw:

CP =
P

Pw
(A25)

The rotor speed in rpm:

rpmr = 347.6×
(

P−0.2909
)
− 16.91 (A26)

The rotor torque Tor in Nm based on the power of the turbine and the angular velocity (ω):

ω =
(2× π × RPMr)

60
(A27)

Tor =
(1000× P)

ω
(A28)

The number of wind turbines can be calculated related to the total demanded power
(TP kW) from the wind farm:

NWT =
TP
P

(A29)

C: The PV Model
PV system was considered a very important power source in this work. It was

modeled according to the actual data presented through more than 150 data points from
the manufacturing manuals. The range of the operating modules type was from 5 to 280 W.
Each module watt type can calculate the module specification based on the data fed in the
table. Table A1 illustrates the inputs and outputs of the developed lookup table model
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block. SDS program [16,26] library is used to model and visualize the PV system program.
The developed code is introduced to calculate the following:

Table A1. PV input and calculated parameters by the use of SDS program [25].

Inputs: Outputs:

1—Operating hours (OH), h
2—Solar flux (Gb), W/m2

3—Number of cloudy days factor
4—System total power (Pt), kW

5—Module power (Pm) (5–280 W)
6—Battery depth of discharge (DOD)

7—Battery voltage (Vb), Volt
8—Battery efficiency, %

9—Battery unit price (Cb), USD

1—Open circuit voltage (Voc), Volt
2—Short circuit current (Isc), A

3—Maximum voltage (Vm), Volt
4—Maximum current (Im), A

5—Cell and Module efficiencies, %
6—Net weight, kg

7—The dimensions, m2

8—Module price, USD/W
9—Number of cells and modules (NOC)

10—Cell area (Ac), cm2

11—Module area (Am), m2

12—Total system area (At), m2

13—Battery storage, Wh
14—Battery capacity, Ah

15—Number of batteries (NOB)
16—Full over board cost (FOBc), USD.

When calculating the main specifications (Table A1, parameters from 1 to 9) based
on the module power, the following code was easily calculated. The number of modules
(NOM) based on total power and module power:

NOM =
Pt

Pm
(A30)

The module area in m2 is then calculated based on module power Pm and efficiency ηm:

Am = 100× Pm

Gb × ηm
(A31)

Then the total area in m2 was calculated:

At = Am × NOM (A32)

The cell area in cm2 based on the number of cells (NOC) that been calculated from the
lookup table.

Ac =
Am × 103

NOC
(A33)

The battery storage in Wh based on the operating hours (OH), number of cells (NOC),
the total power (Pt), battery efficiency and depth of discharge (DOD):

BS =
OH × NOC× Pt

DOD× ηb
(A34)

If a 24 V system were chosen, the required (AH) of batteries would be 16,585/24,700.

AH =
BS
Vm

(A35)

Number of batteries can be calculated as follows based on the maximum voltage and
the battery voltage:

NOB =
Vm

Vb
(A36)
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The system total costs in (Ct, USD) are then calculated based on the full over board
costs of the modules (FOBc) and the batteries costs (Cb):

Ct = (Pt × FOBc) + (Cb × NOB) (A37)

where the FOBc includes cables, connections, worker time, inverter unit, and maintenance costs.
D: Monthly average irradiation and wind speed
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