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Abstract: Previous studies have highlighted inequalities and gender differences in the transport
system. Some factors or fairness characteristics (FCs) strongly influence gender fairness in the
transport system. The difference with previous studies, which focus on general concepts, is the
incorporation of level 3 FCs, which are more detailed aspects or measures that can be implemented
by companies or infrastructure managers and operators in order to increase fairness and inclusion
in each use case. The aim of this paper is to find computational solutions, Bayesian networks, and
analytic hierarchy processes capable of hierarchizing level 3 FCs and to predict by simulation their
values in the case of applying some improvements. This methodology was applied to data from
women in four use cases: railway transport, autonomous vehicles, bicycle sharing stations, and
transport employment. The results showed that fairer railway transport requires increased personal
space, hospitality rooms, help points, and helpline numbers. For autonomous vehicles, the perception
of safety, security, and sustainability should be increased. The priorities for bicycle sharing stations
are safer cycling paths avoiding hilly terrains and introducing electric bicycles, child seats, or trailers
to carry cargo. In transport employment, the priorities are fair recruitment and promotion processes
and the development of family-friendly policies.

Keywords: fairness; transport; gender; railway stations; bicycle sharing; autonomous vehicles;
transport employment; Bayesian networks

1. Introduction

The transport sector cannot evolve without including a gendered perspective. A
sustainable society cannot be reached without improving the understanding of the relation-
ships between gender and mobility and developing measures to achieve a fair transport
system. Extensive work has been developed analyzing barriers and factors affecting the
safe and secure use of the transport system by women [1-5], as well as on the gender gap
and the need of equal employment opportunities and conditions, and on improving these
employment conditions to better adjust them to women'’s needs [1,6-12].

Within this paper, we wanted to go further than a qualitative analysis of the inclusion
of women in the transport sector. We aimed to gather real data and to analyze it using
probabilistic methods, such as Bayesian networks (BNs), to achieve a more complete picture
of the current situation of society.

BN learning methods can be divided into parametric learning and structural learning.
Parametric learning consists of obtaining the conditional probabilities given by the structure
of the network using the observed frequencies of a database, while structural learning tries
to find the graph that best represents the probability distribution of a given database. Struc-
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tural learning methods can be divided into independence-based or constraint-based meth-
ods and search and score methods. On the one hand, independence-based or constraint-
based methods involve detecting the probabilistic conditional independences present in
the database; one of the most famous algorithms pertaining to this type is the PC (Peter
and Clark) algorithm [13]. On the other hand, search and score methods, also known as
methods based on a heuristic search, involves performing a heuristic search through the
space of possible structures using a metric that measures how well each structure can
represent the probability distribution of the variables in the database. Several metrics
have been used in the literature: Bayesian (which include K2, the Bayesian information
criterion [BIC], the Bayesian Dirichlet equivalent uniform [BDe], and others), cross-entropy,
the Akaike information criterion (AIC), or minimum description length (MDL) [14-16],
among others.

1.1. Bayesian Networks Applied to Public Transport

Many studies have indicated different aspects that affect women when using the
public transport system. One of the main differing aspects of the use of the public transport
by men and women is the fact that women suffer more episodes of harassment than
men [17]. Some studies have indicated that stations with poor lightning conditions or
sidewalk maintenance have more probability of harassment or aggression episodes [17].
Other aspects have been studied, such as the differing travel purposes between men and
women, where studies have shown that women tend to do more trip chaining while men
tend to go from point A to point B. This might be due a higher percentage of women being
in charge of caring responsibilities and everyday household tasks or other errands.

Harvey et al. [18] indicated that some of the factors that show differences between
genders were: women are more concerned with travel security than men, women perceive
less than men the importance of high-speed rail prestige, and women also value their use
of travelling time more (it is important for them to do something when travelling).

There are not many studies using Bayesian networks applied to public transport.
Nguyen et al. [19] analyzed the ride comfort of bus passengers, because comfort is a
critical factor when attracting users to a specific mode of public transport. They used as
inputs vehicle-related parameters, passenger-related features (including posture, location,
direction faced, gender, age, weight, and height), and ride comfort index based on ISO
2631-1997; they used the passenger rating (collected from a mobile application) as the
output. They built an artificial neural network model and found that passenger-related
factors contribute slightly higher than vehicle-related factors to the ride comfort estimation.
The analysis between gender showed that the average comfort ratings are similar; however,
there are some variations in the rating distribution, where it is more symmetric for men
and skews toward lower values for women. The development of machine learning models
is becoming an important tool in guiding an autonomous bus.

1.2. Bayesian Networks Applied to Autonomous Vehicles-Driver Interaction

Previous studies have highlighted some differences between men and women and
their use and interaction with private and public transport; differences in driving behavior,
gender-specific use (women tend to trip-chain more), economic level, technology accep-
tance, safety concerns, or the willingness to buy a new car are some of the aspects that
have been mentioned as those influencing the interaction and willingness of women and
men to buy or use a vehicle [2,20,21]. New technologies used in vehicles should focus on
meeting the real needs of citizens and then consider the different needs of society and men
and women.

There has been limited quantitative analysis using BNs related to the analysis of
gender differences in transport. Febres et al. [22] analyzed how the sex and age of the
driver could impact the probability of having a road traffic accident when driving a vehicle.
They showed that men have a greater probability of suffering a serious and/or fatal injury.
Regarding age, they found that male drivers <18 years of age are particularly affected on
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business trips, with a 20.1% probability of sustaining an injury, while the probability of
young women drivers sustaining an injury is 18.7%. They also found that people >60 years
of age have a lower risk of experiencing a serious accident. Catalina et al. [23] analyzed the
effect of music while driving in young men and women by using BN analysis. They found
that when there is no music while driving, women drive at a more appropriate speed than
men, while in the presence of music women have a greater chance of committing either a
minor or a major speed violation, with music acting as a factor of distraction. Ji et al. [24]
used different tools including factor analysis, structural equation modeling (SEM), and BNs
to evaluate factors influencing the willingness to use parking guidance and information
(PGI) systems and the different perceptions of men and women. They found that female
drivers are more likely to use PGI to get help when they realized that it is hard to find a
parking space, with a level of willingness of 63.6% compared with 10.9% for male drivers.

1.3. Bayesian Networks Applied to Bicycle Sharing Services

The main differences between men and women in barriers to cycling that have been
reported in the literature, including individual mobility patterns, convenience, harassment,
or abuse by other road users; traveling with children or goods; cost, access, and logistics;
and knowledge and experience.

Some studies using computational methods, such as Bayesian networks, can be found
to be applied to shared mobility. Aman et al. [25] analyzed e-scooter mobility of two
micromobility companies using machine learning techniques to identify the factors that
influence rider satisfaction. They used the latent Dirichl et al. location model to identify
the topics discussed in 12,000 reviews of driver and logistic regression to identify the
most significant factors. The factors with greater influence on the overall rider satisfaction
for both men and women were refund, payment, battery, and customer service. When
analyzing only men, the factors with greater influence on their satisfaction were refund,
ease of use, payment, and pricing. For women, the factors with greater influence on their
satisfaction were refund, payment, and pricing. They also found that safety (speed and
riding lane) was not significant for male and female models. In general, women were more
satisfied with the services and exhibited more positive sentiment than men, although the
percentage of women using the service (29%) was less than the percentage of men (71%).

Le et al. [26] analyzed the attitudes and perceptions of female cyclists from Canada
and the United States. They used as input data an online survey and analyzed it through
tree-based machine learning methods (e.g., bagging, random forests, and boosting) to select
the most common motivations and concerns of these cyclists, and then they applied chi-
squared and non-parametric tests to analyze differences between groups. The survey asked
about aspects that could affect the decision of using a bicycle for transport or recreation such
as cycling skills, attitude, perceptions of safety, and surrounding environment. Their results
indicated that the most important factors for women to cycle for transport or recreation are
the lack of bicycle facilities, cycling culture, the practicality of cycling, sustainability, and
health. They also found that very few cyclists cycled by necessity, and that most cyclists
preferred cycling in facilities that were separated from vehicular traffic (e.g., separated
bicycle lanes or trails). Based on their results, they suggested that to enhance cycling
rates, women's safety should be improved by tailoring policy prescriptions for cyclists
of different skill groups, investing in bicycle facilities, and building a cycling culture in
communities and at the workplace.

1.4. Bayesian Networks Applied to Transport Employment

The involvement of women in transport-related jobs is much lower than the involve-
ment of men. In 2020, only 22% of transport workers were women in the EU-27 [27]. The
barriers underlying this low involvement have been analyzed in other studies [1,11,28] and
include, among others, (i) sociocultural aspects related to the historical roles established for
men and women in societies in which men have traditionally been seen as in charge of the
family economy, and women have been viewed as in charge of taking care of the family;
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(ii) the increase in the percentage of women employed, a phenomenon that has produced
new needs in the employment sector; and (iii) the fact that women tend to experience more
harassment and feel more unsafe and unsecure than men when using public or private
transport, and in their workplace. Society is progressing from this old perspective, but
additional efforts should be made to change from this “antique organization of society”
to an egalitarian society in which every person can have the same opportunities, without
barriers, with the ability to feel free to make their own decisions, to work in what sector
they want in a comfortable environment, with an employment system that can cover family
needs related to care responsibilities, and to feel safe when developing their mobility needs.

Some computational methods can be found analyzing aspects influencing employment
in the transport sector. Chen et al. [29] analyzed inter-city commuting decisions in Germany
using machine learning techniques (i.e., linear regression, decision trees, and random
forest). They analyzed the influence of gross domestic product (GDP), housing, and
the labor market on the decision to commute, and reached the conclusion that access to
employment opportunities, housing prices, income, and the distribution of the location’s
industry sectors are important factors in commuting decisions. Moreover, different age,
gender, and income groups have different commuting patterns.

Other machine learning methods have been used to analyze the role of gender in the
transport sector. Luo et al. [30] analyzed the effects of transport infrastructure connectivity
(TIC) on conflict resolution through dual machine learning using global conflict data from
2010 to 2017. Their results indicated that TIC, in addition to being a trade facilitator, could
improve conflict resolution, gender employment, and income growth [30].

Regarding employment, Esser et al. [31] examined the impact of technological in-
novations (information and communication technology [ICT] and automation) on future
professions and specializations in maritime and non-maritime jobs in the port of Antwerp,
and identified the skills that need to be developed by education. They conducted a litera-
ture review, analyzed quantitative data on the characteristics of employment in the port,
and performed a qualitative analysis through interviews. Regarding gender issues, they
found that ICT introduction and automation would lead to the disappearance of a lot of
middle-paying paperwork jobs, management jobs will become more and more complex
with multi-skilling becoming a key, and there is a need to motivate and to host females and
non-natives in the port job market.

Our objective in this paper is to hierarchize the different factors that influence a fair
transport system in four different transport scenarios or use cases (UCs): railway stations,
autonomous vehicles (AVs), bicycle sharing systems, and employment in the transport
sector. The novelty with previous work is that we do not focus the analysis in general
aspects but rather go a step forward and define specific aspects that service providers
or employers of transport companies can understand and develop measures to improve
them, in fact some level 3 FCs are themselves a fairness measure to be implement in order
to increase the fairness and inclusion in each use case from a gendered perspective. The
hierarchization of these detailed aspects allows the development of actionable knowledge.
To develop this study, we have gathered quantitative data and analyzed it through BNs.
Hail and McQuaid [32] defined fairness for each of these transport scenarios. We previously
defined a list of fairness characteristics (FCs) and prepared a hierarchical model with two
levels of these FCs [1]. In this previous work, we analyzed general concepts as service
availability, travel purpose, facilities, harassment, vehicle behaviour, job segregation, etc. In
this paper, we analyzed more specific aspects that sometimes are by themselves measures
to implement and what we call in this paper level 3 fairness characteristics, characteristics
that further develop the level 2 FCs defined in [1]. We weighed level 1 and level 2 FCs using
a multi-criteria decision-making method, the analytic hierarchy process (AHP) [33,34], used
in a previous publication [35]. Levels 1 and 2 FCs are qualitative factors. In the case of level
3 FCs, each has been defined using one or more quantitative variables obtained by user
satisfaction questionnaires, observations in railway stations and bicycle sharing docking
stations, through simulation in an AV simulator, and through structured data sets from
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companies (railway and bicycle sharing companies involved in the DIAMOND project).
We have analyzed the quantitative data obtained through these data collection tools by
using BNs [36-38].

2. Materials and Methods
2.1. Hierarchy of Factors Influencing Gender Fairness

To hierarchize the different factors that influence a fair transport system in four
different transport scenarios or UCs, we examined the AHP weights of level 1 and level 2
FCs [35] and combined them with those obtained through BN analysis for level 3 FCs. The
combination of results from the AHP and BN analyses has been reported previously [38].

Figure 1 shows a scheme of the process we followed. The four UCs analyzed were:
railway stations (UC 1), AVs (UC 2), bicycle sharing systems (UC 3), and employment in
the transport sector (UC 4).

FC level -

Data source Analysis method Final result

Level 3 FCs
hierarchy
- Open Structured
Data T T
- Proprietary Bayesian Bellman
Level 3 FC Structured Data networks shortest path
- Observations ~

- UESI questionnaires

Figure 1. General scheme of the methodology followed to hierarchize level 3 fairness characteristics (FCs). In green

are highlighted those aspects that will be addressed within this paper. The other steps were developed in our previous

publication [35].

Level 3 FC weights were obtained through BN analysis. For that, each level 3 FC was
assigned one or more variables that influence it (see Tables S1-54, which show the level 3
FCs, their corresponding level 1 and level 2 FCs, and the variables included within each
level 3 FC to be evaluated through BNs). Data for these variables were obtained from
proprietary structured data, observations, and the Users and Employees Satisfaction Index
(UESI) [39], and analyzed together through BNs to rank and to weigh all of the level 3 FCs.
A total of 522 responses were analyzed for UC 1, 20 for UC 2, 201 for UC 3, and 165 for
ucC4.

2.1.1. Building the Bayesian Network Model

A BN analysis was carried out, by using the free Julia programming language (version
1.0; https:/ /julialang.org/ (accessed on 1 October 2021)) and by using the K2 algorithm
and the Bellman-Ford algorithm.

The limitations of the method were overcome as follows: (i) to avoid the influence of
the topological order of the variables in the K2 procedure, programming involved a random
initial ordering in a high number of iterations (until the convergence of the likelihood of
the network or the score was obtained); and (ii) to minimize the limitations of reaching
local maximums, five hierarchies achieved after a sufficient number of iterations according
to the convergence criterion were executed and averaged.

This computational solution allows the automation of the process to perform the
analysis for different polyhedral individual (PI) profiles [40,41]. PI refer to the different
characteristics of a person (i.e., age, gender, culture, family, religion, disability, economic
level, sexuality, and appearance) that can influence their relation with the transport system
as users or as workers of the sector [40-42].
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We used the K2 metric (see Equation (1)) for the BN analysis to determine the depen-
dencies among the different level 3 FCs for each UC for women. This algorithm analyzes
the different combinations of responses among parent and child nodes to determine the
network that provides the best results.

L =P(Bs,D P(Bs) Hnm HNz]k @

11]1

e  P(Bg) is the probability to obtain the network Bg (initially all Bs are considered to

have the same probability, so P(Bg) is 1/number of possible networks).

n is the number of variables.

r; is the number of possible values for each variable x;.

g; is the number of possible configurations of the parents (given the network Bg) of the
variable x;. Parents are configured based on the following: If we consider a network
Bs where variable i has two parents, a configuration is the adoption of a specific value
for each parent (e.g., 1 and 5).

e  Nj;is the number of times that parents of variable i adopt a specific configuration j.
For example, if we consider a network Bs where the variable i has two parents, Nj;
will be the number of times that these parents have the configuration j or specific
values (e.g., 1 and 5).

®  Nijj is the number of times that variable i adopts a specific value (e.g., 2) when the
parent variables adopt the configuration j (e.g., 1 and 5). For example, when the
two parent variables adopt values 1 and 5, variable i adopts 2 times the value 2. In
this case, Njj = 2.

Using the logarithmic expression in Equation (1), we obtained what we called the
Bayes score or K2 score (see Equation (2)). The use of logarithmic expression and of
addition and subtraction operations results in computational run time savings.

Bayes score = log[L] = log(P(Bs)) + 2 Z <108<(+__1 + Z log( ijk* ))) @

Bayes score = log(P

i=1j=1

The Bayes score or K2 score can also be defined by using the logarithmic gamma
function (lgamma; see Equation (3)), which is easier to use in computation.

Ti
(Bs)) + Z Z <(lgamma r;) — Igamma(Njj +1;)) + Y _ Igamma (Nijk + 1)) (3)
i=1j= k=1

The main weakness of this K2 algorithm is the sensitivity to the initial order of nodes
established by the user, a factor that can be reduced if the order is established by an
expert [43]. We introduced a random high number of iterations with different node orders
to overcome this drawback.

Algorithms developed to automate this process were based on the Bayesian learning
of belief networks (BLN) method presented by Cooper and Herskovits [36], which includes
the K2 learning algorithm with the K2 score. The K2 algorithm used can be found in a
previous publication [44]. Table S5 includes a schematic of the computational solution
in Julia for the K2 algorithm functions. The outputs obtained after this process were the
directed acyclic graph (DAG), which shows the interdependencies between the probability
distribution of different variables or nodes considered in the analysis, and the Bayes score
of the obtained DAG, which is a metric that measures the fitness of each structure Bg to
represent these interdependencies based on the database (the graphical models obtained
can be seen in Supplementary Materials, Figures S1-54).

To learn the BN structure, the algorithm starts randomly from one variable, estab-
lishing it as main parent, and starts calculating probabilities following the K2 algorithm
and calculating its Bayes score. This process is repeated for the number of iterations that
the user introduces in the algorithm. For each UC, the number of iterations needed was
identified by performing different tests and determining the number of iterations by which
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the Bayes score obtained varied by <0.10%. Figure 2 shows an example of the values
obtained for UC 2, where the Bayes score reaches its maximum value with 5000 iterations.

-2,250

2,255 % ___________ %

Bayes score
.
~
[
[l
o
~

0 2,000 4,000 6,000 8,000 10,000 12,000
Number of iterations

Figure 2. Bayes or K2 scores of the networks obtained for each number of iterations and for
five different tests for use case 2 data. The error bars indicate the standard deviation.

2.1.2. Obtaining the Local Weights of Variables through Bayesian Networks and the
Bellman-Ford Algorithm

To obtain the weights of each UC, the analysis was repeated five times with the number
of iterations according to the method described above, obtaining five DAGs with their
corresponding Bayes score. For each DAG, the Bellman-Ford algorithm was used to obtain
the hierarchy of variables through the automatic identification of the shortest path to the
main parent for each node [45,46]. The Bellman-Ford algorithm we used can be found in
a previous publication [47]. The Bellman—Ford algorithm is a graph search algorithm to
find the shortest route. Given a graph G(V, E) (directed or undirected), where V is the set
of vertexes and E C (V x V) is the set of edges, a source vertex S and a weight function
w: E — R, the Bellman-Ford algorithm visits G and finds the shortest path to reach the
source vertex S by a vertex V, taking into account the weight function of edges from V to S.
In our case, the weight function of each edge connecting the different nodes of the DAG is
the K2 score, which is used to find the shortest paths from all vertexes V (nodes in Bg) to a
single source vertex S (main parent in Bg).

The pseudocode of the sequential algorithm in Julia can be seen in Figure S5.
Figures S6 and S7 show the code used to obtain the shortest path for each variable. The
addition of all K2 scores to reach the main parent of Bg following the shortest path accord-
ing to this Bellman—-Ford algorithm for a specific variable in Bg is a distance associated
with the importance of this BN variable. This distance indicates whether the probability
distribution of this variable is influencing strongly or weakly the probability distribution of
other variables. Specifically, the greater the distance, the lower the influence of this variable
in the network. Figure 3 shows as an example of a simple graphical representation of
four nodes, made by the main parent and three other vertexes, and the K2 scores associated
with each of the arrows connecting the nodes. The distance of Vertex 3 according to the
Bellman-Ford algorithm would be:

e  Option A: Distance = K2 Score 4 + K2 Score 3, if K2 Score 3 is < K2 Score 1 + K2 Score 2;
e  Option B: Distance = K2 Score 4 + K2 Score 1 + K2 Score 2, if K2 Score 3 > K2 Score 1 + K2
Score 2.

An importance of 10 is assigned to the BN variable with the minimum distance and
an importance of 1 to the BN variable with the maximum distance. The importance for
the rest of variables is assigned by a linear interpolation (see Figure S8). The weight of
each variable is obtained by normalizing the importance assigned to each one in a way that
the addition is 1 (see Figure S9). Because the process is repeated five times, five different
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weights are obtained for each BN variable. These weights are averaged to obtain the final
weight of each variable.

K2 score 1

K2 score 2

K2 score 3

K2 score 4

A
1 Vertex 3 )

Figure 3. Graphical example of a graph with the K2 scores of each arrow connecting the different

nodes (main parent and other vertexes).

2.1.3. Combination of Bayesian Network Variables into Level 3 Fairness Characteristics

Some level 3 FCs are composed of several BN variables. Tables S1-54 show the level 3
FCs and the BN variables included within each to be evaluated through BNs. Each FC has
been codified in a way so that the first digit corresponds to the level 1 FC, the second digit
corresponds to the level 2 FC, and the third and fourth digits correspond to the number of
the level three FC within the level two FC; for those level three FCs with more than one
variable, a letter (a, b, ¢, etc.) has been added at the end of the code. Therefore, the FC
local weight of a level 3 FC with only one variable in the BN is the weight of that variable.
However, the local weight of a level 3 FC with more than one variable is calculated by
using the arithmetic mean of the variables. After completing this transformation between
variable or node of the BN and the level 3 FC, the weights were normalized again so that
the sum of all the weights was 1. Supplementary Word S1 shows the scripts used.

2.1.4. Combination of Bayesian Networks and Analytic Hierarchy Process Weights

Finally, the global weights of level 3 FCs were obtained by multiplying the local weight
obtained by BNs and their corresponding level 1 and level 2 FC weights obtained in the
AHP analysis, and normalizing the results. Level 1 and level 2 FC weights were obtained
from a previous publication [35]. This combination of BN and AHP weights was automated
by applying MATLAB R2020b to allow an intersectional analysis according to the different
possible profiles defined in the PI [40,41].

2.2. Simulation through Inferences to Make Predictions

Transport service providers and employers could be interested in improving these
most relevant factors to increase fairness in their organizations and in knowing how these
improvements are affecting other factors (level 3 FCs). BNs were used to simulate by
inferences the impact of a change in a BN variable on the others.
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Inferences for each UC were made by sampling with the Bayesian model that best fit
the data [48,49]; the best model was determined by calculating the AIC of each network [50]
(see Equation (4) and Figure 510).

AIC =2k —2In(L) 4)

In Equation (4), k is the number of BN variables in the model and L is the maximum
likelihood function, which measures the goodness of fit of the BN model to a sample of
data of the variables. It is formed from the joint probability distribution of the sample, but
viewed and used only as a function of the parameters, thus treating the random variables
as fixed at the observed values [50].

After selecting the Bayesian model with the lowest AIC, the development of the
simulations allowed us to analyze how changes in one variable (e.g., instantiating the
selected BN variable with the best score) influence on probabilities of the values of others.
The code used to develop these simulations is shown in Figure S11. As an example, a change

in a meaningful variable selected from the top 10 factors obtained after the application of
BN and AHP is described for each of the UCs.

3. Results and Discussion

The results have been obtained by considering the data restricted to women as a
homogeneous group. Further analysis could apply the same methodology and algorithms
to different profiles of women according to the different characteristics shown in the PI
approach [40,41].

3.1. Use Case 1: Railway Stations
3.1.1. Hierarchy of Factors to Improve Fairness in Public Railway Transport

Table 1 shows the top 10 factors or FCs from a total of 67 considered as most important
for women after combining the results obtained for qualitative and quantitative informa-
tion through AHP and BN, respectively (see Figure 1). The results were obtained after
performing five tests of 20 iterations each, calculating the weights using the Bellman-Ford
algorithm and obtaining the average of the five tests. No more iterations could be done due
to computer memory limitations when learning the structured network from the dataset
through BNs. The computer used was an Intel Corei5 10th generation with 8 GB of RAM.
The full list of weights for all level 3 FCs can be seen in Table S1.

Table 1. The top 10 level 3 fairness characteristics (FCs) for use case 1: Public railway transport.

No Characteristic Code Normalized FC Weight
1 Improved layout of seating (lor.lgitudinal seating with less social interaction FC323 0.03545
compared with transverse seating)
2 Availability of on-demand transport services including taxi and paratransit FC118 0.03217
3 .Integra.ltion With alternative shared mobil.ity service for last-mile connections, FC117 0.03152
including bicycles, scooters, and car sharing
4 Availability of hospitality rooms to ask for help in case of aggression or need FC317 0.02948
5 Number and typology of incidents FC311 0.02943
6 Display advertisements for public awareness campaigns and to publicize helpline FC318 0.02913
numbers
7 Offer adequate personal space FC321 0.02903
8 Reliability of the available service modes FC112 0.02808
9 Number of services available within the transport infrastructure FC115 0.02778
10 Improved ventilation and air-conditioning FC322 0.02752

In the first position (see Table 1), it appears that people prefer that the seating layout
is implemented so that there is less social interaction. This is a safety and security factor
within the level two FC of overcrowding and emergency situations. The modified seating
would allow fewer interactions with people to increase comfort and the feeling of safety.
However, being with many people could increase the probability that someone could help
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you in the case of an emergency situation, and this factor is also something to consider. The
factor in the seventh position is also in line with this result. Offering adequate personal
space would help women feel more comfortable and safer because there would be less
harassment and undesired contact by other users of the transport system.

The second most important factor for using a railway service, and then to increase
its usage by women in a fair way;, is the provision by the station of on-demand transport
services such as taxis and paratransit services that allow customers to reach destinations
that do not have a predefined route using public transport services, or that allow them
to reach the railway station from their origin. A good multimodal connection is also
highlighted in the third most important factor. Integration of the railway station with
alternative shared mobility services such as bicycle, scooter, and car sharing is seen as
a very good option to connect the needs for last-mile connection with the medium to
long distances covered by the railway service [51-53]. The more multimodal options and
on-demand services are available, the higher the probability of connection with other areas,
and then the higher the probability of using the station. In addition to the number of modes
available and areas that are connected with the station, it is also crucial that the service
modes are reliable.

Accessibility of the service and safety are the two most important main criteria that
influence a fair rail transport system; both of them have a very similar weight. The analysis
revealed that women consider building a fair rail transport system and increasing its use
requires the availability of hospitality rooms where they can ask for help in case of any
aggression or other help needed when using the rail transport system. This type of action
would make women feel that someone can support them in case any problem arises, help
them in the case of any problem, and it would also make aggressors and pickpockets
think twice before acting. Consistently, the sixth factor on the list also indicates that the
availability of helpline numbers and their advertisement would improve and help in
building a fair rail transport system.

The number and typologies of incidents influence the use of a station by women and
the development of a fair transport system. If there is a station with more episodes of
harassment of women, they would tend to not use that station.

Finally, comfort and safety conditions within the station are also critical for its use.
Improved ventilation and air-conditioning would help users feel comfortable in the station.
Moreover, in an emergency situation such as a fire, good ventilation could help eliminate
harmful gases and reduce stress and hot conditions when there are a large number of
people using the facility at the same time.

3.1.2. Simulation of Improvements in Public Railway Transport

From the five tests developed with 20 iterations, the Bayesian model with the low-
est AIC (40207), and consequently the best fit to predict values from the dataset, was
selected to carry out the simulation. The Bayesian model with this AIC can be seen in the
Supplementary Materials.

From the top 10 FCs for UC 1, the first two fairness characteristics (FC323 and FC118)
could not be simulated because the most probable values are the maximum possible. For
FC117, the maximum satisfaction is represented by an improvement in the walking time
from the points of interest to the public transport access points from a most probable value
of 2 to 3. This outcome is because the most probable value for the variable FC117 does
not belong to maximum satisfaction. This improvement in the satisfaction score could
be achieved, for example, by adding information indicating how to access key points,
improving station surroundings to be more comfortable, or engaging with local transport
services to provide maps and additional information to travelers. This improvement
would impact the probabilities of the other top 10 FCs, related to the UESI, as shown
in Table 2. This table includes the probabilities of getting low values (from 1 to 4, on a
scale up to 8) and high values (from 5 to 8) on the UESI considering the most probable
value for FC117 according to the current database (a score of 2 in this case), as well as
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the probabilities after setting FC117 to the maximum satisfaction score registered in the
database (3). An increase in the satisfaction with the walking time from the points of
interest to the public transport access points seems to be related to greater satisfaction with
the number of services available within the transport infrastructure (with a 0.116 increase
in the probability of getting a high score), with greater reliability in the service modes
available (with a 0.047 increase in the probability of getting a high score), and with the
level of service at the public transport access points (with a 0.088 increase in the probability
of getting a high score). In addition, when increasing the maximum value of FC117 from 2
to 3, people with the greatest satisfaction with the walking time to points of interest also
evaluate higher their satisfaction with improving the seating layout so there is less social
interaction (with a 0.140 increase in the probability of getting a high score).

Table 2. Simulation of an improvement in FC117—walking time from the points of interest to the public transport access

points—to fully satisfied, showing the probabilities to get low (1-4) and high scores (5-8) before (PLow_g and Pyjgp,_p) and

after (Ppy, 4 and Phigh_a) simulation of the improvement. UESI: users and employees satisfaction index.

FC321: Number of Services Available Within the Transport Infrastructure—UESI

Prow_B Prow_a ALow Phign_p Phign_a AHigh
0.27586 0.16026 —0.11561 0.72414 0.83974 0.11561
FC112: Reliability of the Service Modes Available—UESI
PLow_B PLow_A ALow PHigh_B PHigh_A AHigh
0.15709 0.11000 —0.04709 0.84291 0.89000 0.04709

FC115: Improved Layout of Seating (Longitudinal Seating with Less Social Interaction Compared with Transverse

Seating)—UESI

Prow_B Prow_a ALow Prign_p Phign_a AHigh
0.24713 0.10687 —0.14026 0.75287 0.89313 0.14026
FC322: Level of Service at the Public Transport Access Point—UESI
Prow B Prow_a ALow Phien B Phigh_a AHigh
0.27203 0.18433 —0.08770 0.72797 0.81567 0.08770

3.2. Use Case 2: Autonomous Vehicles
3.2.1. Hierarchy of Factors to Improve Fairness in Autonomous Vehicles

From a total of 103 level 3 FCs identified, Table 3 presents the top 10 most important
factors identified as most influential in the acceptance of AVs by women. The results
were obtained after performing five tests of 5000 iterations each, which was the number of
iterations at which the Bayes scores obtained vary by <0.10%. At this point a convergence
has been reached, and the weights were calculated using the Bellman-Ford algorithm to
obtain the average of the five tests.

The top factor is the perception that an AV is safer than the use of a conventional car.
People answering the UESI rated this factor higher than the others, and the BN model
combined with the AHP results showed that this perception has a strong influence on the
other factors. Specifically, if people do not feel AVs are a safer transport system, then the
change from conventional cars to AVs would not happen or would be much more difficult.
The second factor is the perception of reduced safety of AVs, which, as the opposite of the
top factor, appears to be contradictory. However, it just marks the fact that the population is
unsure whether AVs are safer than conventional cars; this uncertainty has a strong impact
on the other factors influencing the use of AVs and, ultimately, on their acceptance.

The third to sixth factors show a very small difference in weight, so they can be
considered to have similar importance. This group of factors includes a perception of
reducing the ecological impact of the use of cars due, for example, to higher efficiency in
accelerations and decelerations and thus optimized driving [35,54]. Other safety factors
included in the top 10 list are a perception of a reduction in accidents; feeling comfortable
and trusting the system when sharing data with others, including other users of the
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transport system and the infrastructure; a reduction in accidents thanks to the use of
AVs; and the perception of safety in any conditions. The seventh factor refers to feeling
happy when traveling in AVs without a steering wheel. For this point, 62.5% of the
responses showed people do not place special importance on the steering wheel while
22.5% rated it high, indicating that they would be happy in an AV without a steering wheel,
and 15% indicated that they would not feel good in a vehicle without a steering wheel.
Other advantages that can increase the acceptance of AVs by women are improved traffic
management due to their use, easier training needs and then easier access and use of the
vehicle, and the fact that they would be able to perform additional tasks while driving, a
phenomenon termed simultaneity.

Table 3. Top 10 level 3 fairness characteristics (FCs) for use case 2: Autonomous vehicles (AVs).

No Characteristic FC Code Normalized FC Weight
1 Perception of increased safety of AVs FC121 0.03787
2 Perception of reduced safety of AVs FC122 0.03439
3 Perception of reduction in ecological impact FC521 0.02716
4 Perception of comfort in sharing data with others FC141 0.02697
5 Perception of reduction in accidents thanks to AVs FC111 0.02697
6 Perception of safety in any conditions FC112 0.02584
7 Perception of driving without a steering wheel FC531 0.02369
8 Perception of improved traffic management with AVs FC142 0.02352
9 Perception of the need of less training FC131 0.02240
10 Perception of the degree of simultaneity FC222 0.01929

3.2.2. Simulation of Improvements in Autonomous Vehicles

Of the five tests developed with 5000 iterations, the BN model with the lowest AIC (1410)
was used for the simulation (the graphical model can be found in Supplementary Materials).
From the top 10 FCs for this UC, the first five could not be improved because the most
probable values are the maximum possible. For FC112, related to the perception of safety
in any driving conditions, considering that AVs are safer than conventional cars, the
most probable value was changed from 4 to 8, which represents the maximum level of
satisfaction. This improvement would impact the probabilities of the other top 10 FCs,
related to the UESI, as shown in Table 4. An increase in the agreement to this statement
would produce, as expected, an increase in the perception of the safety of AVs, with an
increase of 0.05, a corresponding decrease of 0.25 in the perception of reduced safety of
AVs, and an increase of 0.04 in the comfort of sharing data with others. In the latter case,
potential users would understand that sharing data is a way to increase their safety, and
they would see this sharing as a positive factor. In addition, those people who evaluated
higher the perception of safety of AVs would also feel better and would be more satisfied
with the fact that the car does not have a steering wheel, with an increase of 0.09. On
the other hand, if people evaluated higher the perception of safety, they would evaluate
lower the perception of reducing the ecological impact of cars when comparing AVs with
conventional cars. More surprisingly, even if they considered AVs safer compared with
conventional cars, this would not translate into an increase in the perception of reduction
in accidents when using AVs. On the contrary, the scores obtained for the statement “AVs
will reduce the accident rate” are lower, with a 0.25 increase in the probability of lower
scores. Something similar happens with perception of improved traffic management; there
is a 0.08 increase in the probability of lower values. Finally, the changes in probabilities are
very low when evaluating easier training needs and simultaneity.
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Table 4. Simulation of an improvement in FC112—perception of safety in any driving conditions—to fully satisfied, showing
the probabilities to get low (1-4) and high scores (5-8) before (Pr,;,_g and Pyign_p) and after (PLy,y 4 and Pyign_a) simulation
of the improvement. AVs: autonomous vehicles; UESI: users and employees satisfaction index.

FC121: Perception of Increased Safety of AVs—UESI

PLow_B PLow_A ALow PHigh_B PHigh_A AHigh
0.0526316 0 —0.0526316 0.947368 1 0.0526316
FC122: Perception of Reduced Safety of AVs—UESI
Prow_B Prow_a ALow Phien_B PHigh_a AHigh
0.578947 0.828 0.249053 0.421053 0.172 —0.249053
FC521: Perception of Reduction of Ecological Impact—UESI
Prow_B Prow_a ALow Prign_p Phigh_a AHigh
0.0526316 0.115385 0.062753 0.947368 0.884615 —0.062753
FC141: Perception of Comfort Sharing Data to Others—UESI
Prow_B Prow_a ALow Phien_B Phigh_a AHigh
0.315789 0.275748 —0.040042 0.684211 0.724252 0.040042
FC111: Perception of Reduction of Accidents Thanks to AVs—UESI
Prow_B Prow_a ALow Phien_B PHigh_a AHigh

0.0526316 0.302632 0.25 0.947368 0.697368 —0.25
FC531: Perception of Driving Without Steering Wheel—UESI
Prow_B Prow_a ALow Prign_p Phigh_a AHigh
0.473684 0.378182 —0.0955024 0.526316 0.621818 0.0955024
FC142: Perception of Improved Traffic Management with AVs—UESI
Prow_B PLow_A ALow PHig}LB PHigth AHigh
0 0.0808511 0.0808511 1 0.919149 —0.0808511
FC131: Perception of the Need of Less Training—UESI
Prow_B Prow_a ALow Phigh_B Phigh_a AHigh
0.368421 0.365957 —0.00246361 0.631579 0.634043 0.00246361
FC222: Perception of the Degree of Simultaneity—UESI
PLow_B PLow_A ALow PHigh_B PHigh_A AHigh
0 0.00352113 0.00352113 1 0.996479 —0.00352113

3.3. Use Case 3: Bicycle Sharing Stations
3.3.1. Hierarchy of Factors to Improve Fairness in Bicycle Sharing Stations

Table 5 shows the top 10 factors or FCs from a total of 69 considered as most important
for women after combining the results obtained for qualitative and quantitative information
through AHP and BN, respectively. The results were obtained after performing five tests
of 500 iterations each, which was the number of iterations at which the Bayes scores vary
by <0.10%. At this point a convergence has been reached, and the weights were calculated
using the Bellman—Ford algorithm to obtain the average of the five tests.

The top four most important factors or FCs that influence women regarding the use
of a bicycle sharing station depend on the weather and topography of the area and how
to deal with it. First, when possible, it is better to develop cycling networks by avoiding
hilly terrain. In addition, more people would consider the use of electric bicycles if there is
hilly terrain when this type of bicycle is included in the shared fleet. The development of
weather-friendly infrastructure when possible would improve cycling conditions and the
willingness of women to use bicycle sharing schemes. This could be improved through the
development of, for example, sheltered paths that could help in the case of rainy and very
sunny conditions as well as making rain ponchos available for use when raining, perhaps
through the incorporation of vending machines selling ponchos in the stations.
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Table 5. Top 10 level 3 fairness characteristics (FCs) for use case 3: Bicycle sharing stations.

No Characteristic Code Normalized FC Weight
1 Where possible, avoid hilly terrain in the development of cycling networks FC412 0.06102
2 Electric bicycles in bicycle-sharing fleet FC411 0.05049
3 Cycling infrastructure that is friendly for all weather conditions FC421 0.04934

4 Availability of rain ponchos FC422 0.04643
5 Bicycles with child seats and trailers for carrying kids and carting cargo FC333 0.04627
6 Education on practical cycling (cycling with children and cargo) FC331 0.04509
7 Safe routes for cycling with children FC332 0.03692
8 Availability of end-of-trip cycling facilities FC321 0.03044
9 Sheltered docking station FC143 0.02960

10 Better and safer cycling facilities to encourage cycling with children FC312 0.02885

The fifth through eighth factors refer to social and personal constraints. Three of
them consider the need to make modifications to allow traveling with children. These
include having bicycles with child seats and trailers that allow carrying kids as well as
carting cargo; availability of educational courses on cycling with children and cargo; and
the development and/or identification of safe cycling routes when cycling with children.
Another measure that could help increase of the use of the bicycle sharing system by
women would be the availability of end-of-trip cycling facilities (e.g., toilets, changing
rooms). These facilities would allow users to, for example, tidy themselves up before
reaching their final destination or attending a meeting on a very hot day.

The ninth factor includes the presence of sheltered docking stations. Currently, most
docking stations are not sheltered because the user would only spend a short time in the
station. However, mainly in rainy countries, a sheltered station would keep the seats of the
bicycles drier. Finally, the tenth most important factor is the need to develop better and
safer cycling facilities to encourage cycling with children, so that the use of bicycles is seen
as a safe transport option.

3.3.2. Simulation of Improvements of Bicycle Sharing Stations

From the five tests developed with 500 iterations, the BN model with the lowest AIC
(22175) can be found in Supplementary Materials. In this case, we evaluated as an example
FC412 because it is the top-ranked FC. In this case, people in the questionnaire evaluated
the statement “Hilly terrains along cycling routes significantly deter me from cycling”;
lower values of this statement would mean a positive evaluation of the statement and
thus the need of an improvement. In this case, the average value before the investment
was 4; therefore, the improvement was analyzed by instantiating the value 2. Table 6
lists the changes in the probabilities considering the current situation and the simulation
improvement so that hilly terrains would not be a barrier to using the bicycle sharing
system. The results showed that improving this FC does not lead to a higher presence of
electric bicycles in the bicycle sharing fleet or the availability of accessories for cycling with
children or goods, because in most cases ponchos or electric bicycles were not available in
the bicycle sharing system used. FC422 was evaluated with the statement “Weather such
as rain and extreme cold significantly affect my rate of cycling and bike share use”; low
values are desirable in this case. When simulating that all people considered hilly terrain
does not affect whether they cycling, there was an improvement of 0.11 in their perception
that weather does not affect whether they use the bicycle sharing system. Therefore, people
not affected by the hilly terrain tend to evaluate better the use of bicycles with bad weather.

FC332 was evaluated through the statement “The existing cycle infrastructure is
socially accepted to provide a safe environment for cycling with children”. A decrease in
the FC412 score and then an increase in feeling comfortable when cycling in hilly terrain
increased FC332 by 0.04. As expected, the model indicates that if the routes do not have
hilly terrain or if there are measures to make it more comfortable, it would be more suitable
for cycling with children. In addition, those evaluating better cycling in hilly terrain



Sustainability 2021, 13, 11372

15 of 22

evaluated higher the availability of end-of-trip cycling facilities (FC321), with an increase
of 0.04. However, this improvement in FC412 did not produce significant improvement in
FC312, which evaluated whether cycling facilities are sufficient, safe, and adjusted to the
needs of cycling with children.

Table 6. Simulation of an improvement in FC412—avoid hilly terrain in the development of cycle networks where possible—
to the lowest value (2), showing the probabilities to get low (1-4) and high scores (5-8) before (Pry, p and PHigh_B) and after
(PLow_a and Pyjgp_a) simulation of the improvement. UESI: users and employees satisfaction index.

FC411: Electric Bicycles in Bicycle-Sharing Fleet—UESI

Prow_B Prow_a ALow Prign_p Phigh_a AHigh
1 1 0 0 0 0
FC422: Availability of Rain Ponchos—UESI
Prow_B Prow_a ALow Phign_B Phigh_a AHigh
0.845771 0.958472 0.112701 0.154229 0.0415279 —0.112701
FC333: Bicycles with Child Seats and Trailers for Carrying Kids and Carting Cargo—UESI
Prow_s Prow_a ALow Prign_p Prjgh_a AHigh
1 1 0 0 0 0
FC331: Education on Practical Cycling (Cycling with Children and Cargo)—UESI
Prow_B Prow_a ALow Prign_p Phign_a AHigh
1 1 0 0 0 0
FC332: Safe Routes for Cycling with Children—UESI
Prow_B PLow_A ALow PHigth PHigth AHigh
0.233831 0.196074 —0.0377572 0.766169 0.803926 0.0377572
FC321: Availability of End-of-Trip Cycling Facilities—UESI
Prow B Prow A ALow Phign_B PHigh_a AHigh
0.268657 0.230351 —0.0383059 0.731343 0.769649 0.0383059
FC312: Better and Safer Cycling Facilities to Encourage Cycling—UESI
PLow_B PLow_A ALow PHigh_B PHigh_A AHigh
0.283582 0.27854 —0.00504239 0.716418 0.72146 0.00504239

3.4. Use Case 4: Employment in the Transport Sector
3.4.1. Hierarchy of Factors to Improve Fairness in Transport Employment

Table 7 shows the top 10 factors or FCs from a total of 71 considered as most important
for women after combining the results obtained for qualitative and quantitative information
through AHP and BN, respectively. The results were obtained after performing five tests
of 1000 iterations each, which was the number of iterations at which the Bayes scores
obtained vary by <0.10%. At this point a convergence has been reached, and the weights
were calculated using the Bellman—Ford algorithm to obtain the average of the five tests.

The top two factors are related to socioeconomic conditions. To increase the participa-
tion of women in transport-related jobs, first, employment opportunities should be widely
advertised and all the applications must be welcomed without bias, in a fair way—for
example, using blind curriculum vitae. This issue has also been highlighted in previous
research. Keinert-Kisin [55] analyzed the impact of stereotypes in the organizational context
and conducted a personnel selection experiment for a “masculine”-type profession. In her
study, women and men who asserted themselves as highly qualified for the position were
evaluated in two ways: without knowing their gender and knowing it. When recruiters
were unaware of the applicant’s gender, women were accurately identified as qualified
talent and selected for a job interview. However, once recruiters recognized applicants by
gender, women faced significantly worse chances to be selected compared with a gender-
blind setting. In addition, selection arguments of recruiters made it clear that women’s
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personal and functional qualities were overlooked once they were identified as women,
and also some highly qualified women were considered worse than less qualified male
competitors. Hence, women's talent and suitability for some job positions are overlooked
due to gender bias. This unconscious bias or stereotypical thinking needs to be solved
through fairer selection processes to develop fair employment in the transport sector as
well as other types of positions that have been traditionally considered for men. In line
with this view is the FC in the fifth position. Companies should ensure in the human
resources (HR) procedures that all the employment decisions are based on objective issues
related to the job and not based on prejudices. In addition, because this is a social aspect
and many times discrimination is done unconsciously, training at work for both men and
women should be implemented, with the aim of dealing with these cultural stereotypes
associated with women and specific roles and tasks in the transport sector.

Table 7. Top 10 level 3 fairness characteristics (FCs) for use case 4: Employment in the transport sector.

No Characteristic Code Normalized FCs Weight
1 Employment opportunities should be advertised widely and all applications FC123 0.05264
should be welcomed
2 Family friendly policies—maternity and paternity leave FC133 0.05155
3 Those with sma.ll Childr.en should be given the opportunity to change shifts FC313 0.04745
or to reduce their working time
All jobs are available and suitable for both men and women (and there is a
4 more equal balance between genders across all occupations, levels, and jobs FC111 0.03985
in transport)
5 Ensure employment decisions are based on objective issues related to thejob ~ FC125 0.03628
6 Security staff available to intervene in case of need FC255 0.03337
7 Ensure gender pay equality for equivalent positions FC115 0.03253
8 Part-time work, flexible working hours, and work-from-home options FC316 0.03103
9 Leave for caring responsibilities FC444 0.03071
10 On-the-job training for men and women to negate cultural stereotypes FC112 0.03033

associated with women and specific roles and tasks in the transport sector

The second factor, although with a weight very similar to the first factor, is the
development of family-friendly policies, including aspects of maternity and paternity leave,
more adjusted to family needs. The third FC is also related to family needs. Transport
companies should give the opportunity to change shifts or to reduce the working time of
those with small children so they can balance work and family life. Related to having a
balance between work and family, human resources policies and job conditions should
offer the possibility of part-time work, flexible working hours, or working from home.
They should also consider procedures to allow some leave for caring responsibilities.

Another factor to develop a fair transport sector that is more attractive for women is
to consider and make all jobs suitable for men and women as well as fomenting an equal
balance between genders across all occupations and at all levels in the company. Indeed,
within the top 10 FCs to have a fair transport system is to ensure gender pay equality for
equivalent positions.

Another factor is related to safety and security of women in some transport-related
jobs were they could experience harassment or any other undesired action. To make these
type of positions more attractive for women, there should be security staff that could
intervene in the case of need (for example, in the public transport system, or in rest areas
or parking for truck drivers).

3.4.2. Simulation of Improvements in Transport Employment

From the five tests developed for 1000 iterations, a graphical representation of the
BN model with the lowest AIC (18073) is shown in Supplementary material. From the
top 10 FCs for UC 4, the top three do not have room for improvement because the most
probable values are the maximum possible. For FC111, related to the availability, suitability,
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and gender balance at all levels of transport jobs, the average value was a 5. It could
be improved, for example, through the inclusion in HR policies and Corporate Social
Responsibility (CSR) protocols of blind recruitment processes, the availability of suitable
personal equipment for both genders, and fostering an equal balance of men and women
in all occupations. For the simulation, it was instantiating as 8. This improvement would
impact the probabilities of the other top 10 FCs as shown in Table 8.

Table 8. Simulation of an improvement in FC111—all jobs are available and suitable for both men and women (and there is
a more equal balance between genders across all occupations, levels and jobs in transport)—to fully satisfied, showing the
probabilities to get low (1-4) and high scores (5-8) before (Pr,y p and PHigh_B) and after (Pryy, 4 and Phign_ 4) simulation of

the improvement.

FC123: Employment Opportunities Should be Advertised Widely and All Applications Welcomed—Proprietary Data

Prow B Prow_a ALow Phien B Phigh_a AHigh
1 1 0 0 0 0
FC133: Family Friendly Policies—Maternity and Paternity Leave—Proprietary Data
Prow_B Prow_a ALow Phien_B PHigh A AHigh
1 1 0 0 0 0

FC313: Those with Small Children Should be Given the Opportunity to Change Shifts or to Reduce Their Working
Time—Proprietary Data

Prow_B Prow_a ALow Phien_B Phigh_a AHigh
1 1 0 0 0 0
FC125: Ensure Employment Decisions are Based on Objective Issues Related to the Job—UESI
Prow_B Prow_a ALow Phien_B PHigh_a AHigh
0.214724 0.16966 —0.0450635 0.785276 0.83034 0.0450635
FC255: Security Staff Available to Intervene in Case of Need—Proprietary Data
Prow_B Prow_a ALow Prign_p Phigh_a AHigh
1 1 0 0 0 0
FC115: Ensuring Gender Pay Equality for Equivalent Positions—Proprietary Data
Prow_B PLow_A ALow PHig}LB PHigth AHigh
1 1 0 0 0 0
FC316: Part-Time Work, Flexible Working Hours, and Work-From-Home Options—UESI
Prow_B Prow_a ALow Phigh_B Phigh_a AHigh
0.374233 0.347641 —0.0265918 0.625767 0.652359 0.0265918
FC444: Leave for Caring Responsibilities—Proprietary Data
PLow_B PLow_A ALow PHigh_B PHigh_A AHigh
1 1 0 0 0 0

FC112: On-the-Job Training for Men and Women to Negate Cultural Stereotypes Associated with Women and Specific Roles
and Tasks in the Transport Sector—UESI

Prow B Prow_a ALow Phien_B Phigh_a AHigh
0.0674847 0.060491 —0.00699369 0.932515 0.939509 0.00699369

The results showed an improvement in gender equality and work conditions trans-
lated by a 0.04 increase in the probability of satisfaction with the fact that employment
decisions are based on objective issues related to the job (FC125) and a 0.03 increase in the
probability of satisfaction with the possibility of working part-time work, flexible working
hours, or working from home (FC316). This result is expected because both recruitment
and promotion based only on objective decisions and flexible working conditions con-
tribute toward building an egalitarian and suitable employment environment considering
personal needs. FC112 is related to how much workers agree with the need of having
specific training that allows changing cultural stereotypes associated with women and
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specific roles and tasks in the transport sector. The results showed that a more egalitarian
and suitable working environment in transport does not influence directly the perception
that specific training is needed to avoid unconscious bias and predefined ideas about the
roles or work positions of women in the transport sector.

4. Conclusions

We have presented a methodology to hierarchize and to predict factors influencing
gender fairness in the transport system by applying BNs.

In addition, we have also presented computational solutions to automate algorithms
underlying the methodology in this work. These solutions would allow additional analysis
for specific profiles of women according to the PI approach [43,44].

For UC 1, to develop fairer railway transport in which women would feel more
comfortable and safer and increase the use of railways, efforts should focus on improving
the layout of seating to reduce social interaction and increase personal space, increasing the
availability of on-demand services as well as integrating shared mobility services for last-
mile connections, building hospitality rooms or help points for users in case of aggression
or need, advertising helpline numbers as well as promoting campaigns to reduce incidents,
and finally increasing the availability and the reliability of the different service modes
available at the station.

In UC 2, to increase the acceptance of AVs by women, efforts should focus first on
increasing the users’ perception of safety of these vehicles. The use of AVs could reduce
environmental impact and help build a more sustainable society. In different studies,
women have shown that they are more concerned with the environment than men, and
this factor could lead them to accept the use of AVs, and also increase their perception
that using AVs could reduce accidents. Other issues to deal with are data security, so
that personal data and control of the car do not get into the wrong hands, the fact that
less training would be needed to use AVs, and the fact that using AVs will permit doing
additional things while the car drives by itself (e.g., watching a film or working on a laptop).
An improvement in the perception of the safety of AVs in any driving conditions would be
translated into an increase in the satisfaction with the safety of AVs and an increase in the
comfort of sharing data with others.

For UC 3, to increase the use of bicycle sharing stations by women, the FCs with
the highest priority or influence concern aspects such as developing cycling networks
that avoid hilly terrain as much as possible, the introduction of electric vehicles to make
travel easier, developing weather friendly infrastructure, as well as making rain ponchos
available. Other factors consider family responsibilities and include bicycles with child
seats and trailers for carrying kids and carting cargo, education on cycling with children
and cargo, development of safe routes when cycling with children, and incorporating
end-of-trip cycling facilities in the stations. When selecting only those people who consider
that a route including hilly terrain does not deter them from using the bicycle, there was a
higher percentage of people evaluating more positively cycling in rainy or bad weather
conditions as well as the presence of end of trip facilities compared with the overall sample.
We noted the same outcome with the perception of having a safe cycling network for
cycling with children: If the routes do not have hilly terrain or if there are measures to
make it more comfortable, it would be more suitable for cycling with children.

Inclusion of women in the transport sector is very low. The results showed that to
enhance the employment of women in the transport sector, first, recruitment processes
should be fair, with all positions advertised widely and all the applications welcomed no
matter the sociodemographic characteristics of the person applying for the position (e.g.,
blind CV), ensuring that employment decisions are based on objective issues related to the
job. Measures should also focus on reducing the gender gap, ensuring gender pay equality
for equivalent positions, and achieving a more equal balance between genders across all
occupations and levels (e.g., through new HR policies and CSR protocols). Family-friendly
policies should also be developed to provide more support to maternity and paternity leave,
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flexible working conditions, and allow leave for taking care of the family. The presence of
security staff in some positions that are in greater contact with people and in which the
probability that women could be harassed is higher would increase the perception of safety
and would provide women with support. Finally, because the low presence of women
in transport-related jobs is a result of the societal perceptions, special training should be
developed for both women and men to negate cultural stereotypes associated with women
and specific roles and tasks associated with men in the transport sector.

Future studies should focus on exploring other predictive methods to compare the
results regarding the simulation and to validate these conclusions. Moreover, this same
methodology and algorithms should be applied to filtered datasets to examine specific
profiles of women to conduct an intersectional analysis and draw conclusions that go
beyond considering women as a homogeneous group.
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analyzed for use case 4 employment in the transport sector. Weights (w) are included between
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