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Abstract: Any effort to combat corruption can benefit from an examination of past and projected
worldwide trends. In this paper, we forecast the level of corruption in countries by integrating artifi-
cial neural network modeling and time series analysis. The data were obtained from 113 countries
from 2007 to 2017. The study is carried out at two levels: (a) the global level, where all countries are
considered as a monolithic group; and (b) the cluster level, where countries are placed into groups
based on their development-related attributes. For each cluster, we use the findings from our previous
study on the cluster analysis of global corruption using machine learning methods that identified
the four most influential corruption factors, and we use those as independent variables. Then, using
the identified influential factors, we forecast the level of corruption in each cluster using nonlinear
autoregressive recurrent neural network models with exogenous inputs (NARX), an artificial neural
network technique. The NARX models were developed for each cluster, with an objective function
in terms of the Corruption Perceptions Index (CPI). For each model, the optimal neural network is
determined by fine-tuning the hyperparameters. The analysis was repeated for all countries as a
single group. The accuracy of the models is assessed by comparing the mean square errors (MSEs) of
the time series models. The results suggest that the NARX artificial neural network technique yields
reliable future values of CPI globally or for each cluster of countries. This can assist policymakers
and organizations in assessing the expected efficacies of their current or future corruption control
policies from a global perspective as well as for groups of countries.

Keywords: policy; corruption; artificial neural networks (ANNs); nonlinear autoregressive exoge-
nous models (NARX)

1. Introduction

Transparency International [1] defines corruption as “the abuse of public power
for private benefit (or profit)”. Fraudulent practice, according to the World Bank [2]
guidelines, is “any act or omission, including a misrepresentation, that knowingly or
recklessly misleads, or attempts to mislead, a party to obtain a financial or other benefit or
to avoid an obligation”; a collusive practice is “an arrangement between two or more parties
designed to achieve an improper purpose, including influencing improperly the actions
of another party”; and a corrupt practice is defined as “the offering, giving, receiving or
soliciting, directly or indirectly, of anything of value to influence improperly the actions of
another party” [2].

Corruption, and fraudulent, collusive, and corrupt practices related to development re-
sult in inefficiencies, inequities, and the diversion of resources. Corruption is a multifaceted
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phenomenon that ranges from a minor infraction or small act of forbidden compensation
to pervasive mass looting by public officials. Hence, it has considerable detrimental effects
on sustainable development [3,4]. Sustainable development is defined as “development
that meets the needs of the present without compromising the ability of future generations
to meet their own needs” [5]. In other words, sustainable development is the conservation
of resources and the minimization of waste and pollution [6].

The principles of sustainability include enhancing or maximizing the quality and
quantity of natural resources through reduction of use, reuse, and recycling, which min-
imizes the damage to the physical environment [6]. A corrupt society, however, fails to
take the constructive steps toward sustainable development, such as (a) avoiding adverse
institutional effects; (b) maintaining or enhancing the current and future quality of life;
(c) providing flexibility for changes in stakeholder requirements; (d) basing policy and busi-
ness on values such as fairness, duty, knowledge-based solutions, and efficient production;
and sharing responsibility for decision making, planning, and results. Corruption causes
short-term economic inefficiency (specifically in the private market), and in the long-term,
dynamic inefficiency and instability in economic growth and sustainability.

An accurate picture of how global corruption is evolving is needed to develop effective
policies and corruption control measures, not only from a monitoring standpoint, but also
from the perspective of being able to assess the long-term effectiveness of programs,
policies, and initiatives targeted towards corruption mitigation. The objective of this study
is to forecast corruption levels globally as well as in clusters of like countries using artificial
neural network (ANN) techniques. Using the findings from our previous study on the
cluster analysis of global corruption using machine learning methods that identified the
four most influential corruption factors, this work uses data from 113 countries that span
the time period from 2007 to 2017. This study considers two levels of analysis. The first is
the global level (all countries considered together as a single group). Then, to ensure model
flexibility by avoiding making the same predictions for countries that are very dissimilar
in terms of development-related attributes, cluster-level analysis was carried out using
techniques established in the literature [7]. The four most influential factors of corruption
(measured in terms of Corruption Perceptions Index (CPI)) for each cluster identified in the
previous study are the independent variables in the model in this paper. The model type
used in this study is the nonlinear autoregressive recurrent neural network with exogenous
inputs (NARX) technique.

In the next section, we review the literature on related studies in the area of cor-
ruption. Data collection and the methodology of the research follow. The results of this
research are thoroughly discussed afterward, and the final section presents conclusions
and recommendations for future work.

2. Literature Review

Many factors affect the levels of corruption in countries; some exacerbate, and oth-
ers inhibit corruption. Multiple linear regression models or other similar methods are
insufficient to model such complex systems, which exhibit non-linear relationships among
crucial attributes and outcomes. Therefore, a method that can handle time series in complex
systems is required to model and predict corruption [7]. Artificial neural networks (ANNs),
machine learning algorithms, using data that have been processed in prior research using
other machine learning techniques, are applied in this study due to their potential for
solving problems of this nature [8–11]. ANNs also possess superior predictive accuracy
compared to multi-linear regression, support vector machine (SVM), and multivariate
adaptive regression splines [12,13]. Of the various well-known ANN approaches and
reliable training algorithms, the nonlinear autoregressive recurrent neural network with ex-
ogenous inputs (NARX) forecasting method (a feed-backward approach) with the Bayesian
regularization training algorithm has been proven to be efficacious in various applications
and disciplines [14–17]. In addition, NARX is an effective instrument to forecast time
series [18], and in non-linear time series projection, it can utilize its memory capability to
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recollect the preceding values of the predicted time series. NARX provides more accurate
results compared with other neural network techniques and time series models, such
as autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA)
approaches [19].

The NARX neural network method has been used in various research studies, for
example, forecasting heating and cooling electrical loads [20,21], network traffic flows [22],
rainfall [23,24], and crop yield and price [25,26]. Peña et al. [24] found that NARX pro-
vides significantly more accurate results for rainfall predictions compared with nonlinear
regression models and SVM techniques, and Paul and Sinha [25] determined that NARX
outperforms ARIMA time series models in forecasting crop yield. NARX has also been
applied in macroeconomic modeling. For example, recognizing the episodic and non-linear
nature of the gross domestic product (GDP) of a country, researchers have espoused the use
of machine learning (ML) techniques such as NARX to improve forecast accuracy of that
variable. One example is Cicceri et al. [15], who showed that the great recession in Italy
in 2008–2009 could have been forecast by NARX neural network methods [15]. Tang [27]
assessed the feasibility of applying NARX for macroeconomic forecasting, national goal
setting, and global competitiveness assessment and carried out case studies using data
from countries including China, U.S., and Russia, demonstrating the capability of NARX in
forecasting macroeconomic indicators. Khan et al. [16] conducted a performance evaluation
of NARX in the foreign exchange market [16]. With regard to corruption forecasts, the
NARX technique seems to be a promising technique. In this research study, we seek to
provide some insights in this regard.

3. Data

There is rather limited data that can be used in studies of this nature. The data were
from the following databases [7]: the World Bank Group (WBG) [28], the United Nations
Department of Economic and Social Affairs (UNDESA) [29], the United Nations Develop-
ment Program (UNDP) [30], the World Economic Forum (WEF) [31], and Transparency
International (TI) [1] (see Table 1). All data are numerical.

Table 1. Data used for the study and their sources.

Source (Database)

WBG UNDESA UNDP WEF TI

Variables

Gross
National

Income per
Capita (GNI)

E-Governance
Index (EGI)

Human
Development
Index (HDI)

Global Competitiveness Index (GCI): undue
influence; public-sector performance; security;

transport infrastructure; goods market
efficiency; labor market efficiency;

financial market development; technological
readiness; market size; business sophistication

Corruption
Perceptions
Index (CPI)

Code C1 C2 C3 C4–C13 C0

The Gross National Income (GNI) is the dollar value of a country’s annual income,
and data on GNI are from the World Bank national accounts database [32]. UNDESA
publishes the E-Governance Index (EGI) data, which indicate the consistency of being able
to supervise all scales and levels of government authority as well as the digital interaction
of governments and citizens [29]. According to UNDP, people and their capabilities are
the fundamental benchmark to evaluate the development of a country (HDI), and not
its economic growth alone [30]. In this study, the Human Development Index (HDI) is
taken from the UNDP database [30]. The Global Competitiveness Index (GCI) shows the
competitiveness landscape of economies, offering exceptional vision into the contributors
to the productivity and prosperity of countries [33]. In this study, we use the following
attributes from GCI: undue influence, public sector performance, security, transport infras-
tructure, goods market efficiency, labor market efficiency, financial market development,
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technological readiness, market size, and business sophistication. Finally, the Corruption
Perceptions Index (CPI) from TI is a ranking indicator that indicates the perceived levels of
public sector corruption [1]; the CPI is our dependent variable.

More discussion on the reasoning behind choosing these attributes can be found
in our recent research study on the cluster analysis of corruption level in continents
using principal component analysis and machine learning techniques [7]. In this paper,
a principal component analysis (PCA), cluster analysis, and a random forest technique
are used to determine CPI values for countries. By performing PCA, we were able to
deal with the potential correlations between the thirteen attributes (C1 to C13 shown in
Table 1), and we were able to condense the original potentially correlated attributes into
principal components—with a minimum potential loss of data. Then, we used the top three
selected principal components (PC1, PC2, and PC3) to measure the Euclidean distance
between the components for each of the 113 countries to form the clusters. We verified the
optimum number of clusters using the K-means machine learning (ML) technique, and we
categorized the countries into four clusters. Table 2 shows the list of the countries within
their corresponding clusters. A description of the data and details on the cluster analysis
and ML methods related to the data presented in this study are thoroughly discussed in
Detecting and Measuring Corruption and Inefficiency in Infrastructure Projects Using Machine
Learning and Data Analytics [34].

Table 2. The cluster analysis results.

Cluster Countries No. of Countries in
Each Continent

1

Albania, Armenia, Azerbaijan, Bahrain, Barbados, Chile,
China, Costa Rica, Cyprus, Czech Republic, Estonia,
France, Georgia, Hungary, Iceland, India, Indonesia, Italy,
Jordan, Kazakhstan, Korea (Rep.), Latvia, Lithuania,
Mauritius, Mexico, Montenegro, Morocco, Oman, Panama,
Poland, Portugal, Russia, KSA, Slovakia, Slovenia, South
Africa, Spain, Thailand, Turkey, Uruguay, Vietnam

Africa
Asia and Oceania
Europe
North America
South America

3
13
19
4
2

2

Algeria, Argentina, Bangladesh, Bolivia,
Bosnia-Herzegovina, Brazil, Bulgaria, Croatia, Dominican
Republic, Egypt, El Salvador, Greece, Guatemala,
Honduras, Iran, Lebanon, Moldova, Nicaragua, Nigeria,
Pakistan, Paraguay, Peru, Philippines, Romania, Serbia,
Trinidad and Tobago, Tunisia, Ukraine

Africa
Asia and Oceania
Europe
North America
South America

4
5
8
6
5

3

Australia, Austria, Belgium, Canada, Denmark, Finland,
Germany, Ireland, Israel, Japan, Luxembourg, Malaysia,
Netherlands, New Zealand, Norway, Singapore, Sweden,
Switzerland, UK, USA

Africa
Asia and Oceania
Europe
North America
South America

0
6
11
3
0

4

Benin, Burkina Faso, Burundi, Cameroon, Côte d’Ivoire,
Ethiopia, Gabon, Gambia, Ghana, Guyana, Jamaica, Kenya,
Lesotho, Libya, Madagascar, Malawi, Mauritania,
Mozambique, Namibia, Nepal, Rwanda, Senegal,
Uganda, Zambia

Africa
Asia and Oceania
Europe
North America
South America

21
1
0
1
1

Furthermore, using a random forest (RF) algorithm, we found the marginal effects
of the given variables on the outcome, and we identified and ranked the most important
attributes in determining the CPI values using Gini charts [34]. RF generally offers higher
precision compared with other machine learning prediction methods [35] and is a robust
technique that builds on decision trees to predict models and perform analysis on the
behavior of objects. RF considers each object independently and chooses the one with the
maximum number of returns as the designated prediction.
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In the time series analysis that is presented in this paper, we use the top four important
attributes corresponding to each cluster to predict the CPI values. These attributes are
shown in Table 3 in descending order of importance/influence. In a complex dynamic
system such as the one that is presented in this paper, analyzing fewer variables would
be misleading due to the fact that we are dealing with more than 13 variables in reality;
however, the variables were narrowed down to four to provide feasible policy suggestions.

Table 3. Attributes corresponding to the world-level and cluster-level, 2007 to 2017.

Level Top Four Influential Attributes

World C11—technological readiness, C3—Human Development Index,
C2—E-Governance Index, C4—undue influence

Cluster 1 C11—technological readiness, C1—Gross National Income,
C6—security, and C4—undue influence

Cluster 2 C3—Human Development Index, C4—undue influence,
C2—E-Governance Index, C5—public sector performance

Cluster 3 C5—public sector performance, C9—labor market efficiency
C2—E-Governance Index, C11—technological readiness

Cluster 4 C4—undue influence, C5—public sector performance,
C6—security, C1—Gross National Income

In this study, four different distance measures were used: median clustering method,
Ward’s method, the nearest neighbor algorithm, and the average linkage clustering tech-
nique. The results are compared using the cophenetic correlation coefficients (CCCs)
for verification and comparison purposes and for the purposes of identifying the best
clustering method. CCC helped gage the extent to which the dendrogram upholds the
pairwise distances between the original unmodeled data points [36]. The maximum value
of the CCC helped identify the best method for the hierarchical agglomerative clustering.
Table 4, which presents the cophenetic correlation coefficients, suggests that the average
linkage method is the best approach for clustering the data in this study. Furthermore, the
optimal number of clusters using the K-means clustering method—a machine-learning
based clustering technique—was identified as four clusters (Table 5).

Table 4. The cophenetic correlation coefficient values.

Methods Median Method Ward’s Method Nearest Neighbor
Algorithm

Average Linkage
Technique

Values 0.872 0.889 0.907 0.928

Table 5. K-means clustering method results.

Machine Learning Trials Optimum Number of Clusters

4 2

3 3

8 4

3 7

2 10

1 12

1 15
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4. Methodology

To meet our objective to forecast corruption levels globally as well as in clusters of
like countries using artificial neural network (ANN) techniques, we used a NARX neural
network and the processed data described in the preceding section. In this Methodology
Section, we put this methodology in the context of ANN processes and then describe the
NARX methodology as applied to our data in more detail.

4.1. Artificial Neural Network Techniques

An ANN model has an input layer, hidden layers, and an output layer, using neurons
to find a pattern within a dataset and expanding the pattern to the other or future events.
The model is established using a nonlinear relationship between the input layers and the
output layers [37]. ANN accuracy varies with the network structure. Therefore, different
training/learning algorithms and changes in the number of hidden layers, neurons, lags,
iterations, hyperparameters, etc., can change the output [38]. ANN techniques can be
categorized as follows: feed-forward and feed-backward. As shown in Figure 1, each
category consists of different training algorithms [39].

Feed-forward NN training algorithms include single-layer perceptron, multi-layer per-
ceptron, and radial-based function network. On the other hand, recurrent or feed-backward
NN algorithms include Bayesian regularization NNs, Hopfield networks, competitive net-
works, art models, and Kohonen’s self-organizing map. One well-known ANN approach
and reliable training algorithm for nonlinear complex time series analysis is the nonlinear
autoregressive with exogenous variables (NARX) NN time series forecasting method (a
feed-backward approach) with the Bayesian regularization training algorithm [14–17,19,40].
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4.2. Nonlinear Autoregressive Recurrent Neural Network with Exogenous Inputs (NARX) Models

The nonlinear autoregressive recurrent neural network with exogenous inputs (NARX)
technique is a time series modeling technique that relates the current value of a time series
to both past values of the time series and the current and past values of the exogenous
inputs time series [41]. In fact, this characteristic of NARX, which accepts dynamic variables
from different time series sets, makes it superior over other feed-forward backpropagation
through-time algorithm (BPTT) neural networks [42,43]. The recurrent NNs, including
NARX, are cyclic in nature. Time lag connections, which transfer values between successive
activations, form the cycles that include exogenous inputs and endogenous inputs [25].
NARX NN performs this procedure via autonomous learning [19]. The NARX technique
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builds complex interconnections among the exogenous variables and ultimately creates a
function, and this renders NARX a reliable approach for time series forecast analysis [44,45].

The architecture of the NARX neural network applied to the world-level corruption
data is illustrated in Figure 2. Under this architecture, the output is forecast from the past
values of CPI as well as the past and present values of the exogenous variables. The NARX
technique is defined according to the following equation:

y(t + n) = f (y(t + 1), . . . , y(t + n − 1), x(t − l + 1), . . . , x(t − l + n − 1)) + ε (1)

where n is the discrete time step, y(t + n) is the predicted value of CPI, f (.) is the neural
network mapping function, y(t + 1), . . . , y(t + n − 1) are the past predicted values for
CPI, l is the number of lags, x(t − l + 1), . . . , x(t − l + n − 1) are the past values for the
exogenous variables (including l number of lags), and ε is the error term. The variable y(t)
(Figure 2) is defined as follows:

y(t) = ∑
i

αi∅
(

k

∑
j=1

(
β jixt−j + γjiyt−1

))
(2)

where ∅ is the hidden layer activation function, β ji and γji are the hidden layer input
weights at the neuron j, αi is the hidden layer output weights, and k is the number of
input nodes.

In the NARX technique, a recurrent multi-layer perceptron (RMLP), is utilized to
estimate the mapping function of f (.), which consists of input layers, hidden layers, and
output layers. RMLP also includes neurons, activation functions, and weights. Within the
hidden layer, neural network functions are operated through the interior neurons. The
neurons multiply the previous layers’ input vectors by the weight vectors, and they provide
the scalar output. The connection weights are tuned using the Bayesian regularization
algorithm. Afterward, the activation function maps each output layer to generate the
neuron output to be forwarded to the next layer. In other words, to compute the output,
the weighted sum of the inputs is applied to the activation function. When the general-
ization improvement (in the training period) ends, and the changes in the mean square
error values (MSEs) become stable, the training process automatically stops. MSE is a
crucial performance evaluation criterion that assists with determining the optimum initial
hyperparameters for the neural network. MSE can be obtained according to Equation (3):

MSE = SSE/d f (3)

where SSE is the sum of square errors and d f is the degree of freedom. Obviously, the
lowest MSE value for the neural network models leads to the optimum model [46]. After
the first model is fitted through the series-parallel architecture, more time steps can be
forecast in a closed-loop parallel architecture, where each predicted output (in the previous
step) is fed into the model to predict a future output.

In NARX, the number of hidden layers, lags, and neurons, as the main hyperparam-
eters, influence the accuracy of the results. Therefore, we investigate several different
numbers of hidden layers, lags, and neurons to find the optimum model. It is ideal to
consider all hyperparameters at the same time; however, it increases the process time [47].
Therefore, we optimized the hyperparameters based on their importance level. The varia-
tion of the number of hidden layers, lags, and the number of neurons selected in this study
were one to seven for the number of hidden layers, one to three for the number of lags,
and one to 20 for the number of neurons, respectively. Two other hyperparameters are
important: the number of epochs and the learning rate. One epoch is one cycle that the
full training dataset performs; an epoch is made up of one or more batches, and in the
current panel time series dataset that is used in this study, the countries are considered
for the epochs’ training dataset batches. The epochs in this study were initially set to 100
and then varied from 100 to 1000. The learning rate is the step size at each iteration while
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moving toward a minimum of a loss function and was initially set to 0.1 and then varied
from 0.0001 to 0.1.

The NARX structure and methodology recognizes the structure of the data as panel
data that includes lagged exogenous variables. For example, the hyperparameter values
selected for training the model recognize this structure. This is in fact an important strength
of the methodology. We evaluate the precision of the models by comparing the mean
square error values (MSEs) accordingly. Our exogenous variables (inputs), as shown in
Table 3, include GNI, E-governance index (EGI), human development index (HDI), undue
influence, public-sector performance, security, labor market efficiency, and technological
readiness. CPI is used as the dependent variable (output). Data from 2007 to 2017 for
113 countries are assembled for all variables, with 70% of the data used for training the
model, 15% for validation, and 15% of the data used to test the model. In the next section
we present the results of the NARX analysis outcome.
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5. Results and Discussion

Hyperparameters play a critical role in the accuracy of the NARX analysis or any
neural network analysis [14]. The hyperparameters in the NARX analysis, which need
to be tuned to give models with higher accuracies, are the number of hidden layers, lags,
neurons, and epochs as well as the learning rate. In many cases, a higher number of hidden
layers causes overfitting in the model and lower prediction accuracy [48,49]. Ideally, all
hyperparameters should be optimized in parallel. However, this significantly increases
processing time. In this study, we optimized the hyperparameters sequentially based on the
importance level. This approach is supported in the literature ([48,49]). First, we investigate
different numbers of hidden layers and lags to initiate the neural network analysis, and we
choose the least error associated with a hidden layer and a lag. Table 6 presents the errors
associated with each hyperparameter (number of lags and number of hidden layers) for the
world-level data. Consistent with best practices, the hyperparameters are optimized using
the training and validation data and the error values reported for the testing data. The data
shows that four hidden layers with one lag gives the least possible error among the other
number of hidden layers and lags. The training MSE is calculated as 0.261, the error for
the validation phase is 0.180, and the testing error is 0.243. The four hidden layer training
MSEs for two lags and three lags are 26.82% and 15.71% higher than that of the four hidden
layer MSE for one lag, respectively. When it comes to the testing MSE, two lags and three
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lags show 93.49% and 181.61% higher MSE compared to one lag, respectively. While the
training MSE for four layers and one lag is 1.91% higher that the training MSE for six layers
and one lag, the validation and testing MSEs are 4.76% and 64.68% lower, respectively. This
also shows that when the number of hidden layers increases, lower prediction accuracy
is obtained.

Table 6. NARX errors associated with the number of hidden layers and the number of lags (world-
level category) (neuron = 1, epochs = 100, and learning rate = 0.1).

Lag No. of Hidden Layers Training MSE Validation MSE Testing MSE

1 1 0.278 0.175 1.073

2 0.494 0.385 0.253

3 0.315 1.484 0.715

1 2 0.351 0.228 0.561

2 0.375 0.669 0.309

3 0.619 1.164 0.675

1 3 0.267 0.188 0.280

2 0.341 0.485 0.540

3 0.527 0.793 0.466

1 4 0.261 0.180 0.243

2 0.331 0.505 0.553

3 0.302 0.735 0.487

1 5 0.379 0.287 0.413

2 0.271 0.374 0.499

3 1.128 0.652 0.425

1 6 0.256 0.189 0.688

2 1.388 0.372 0.375

3 0.488 0.502 0.814

1 7 0.368 0.360 1.507

2 0.327 0.851 0.966

3 0.278 0.175 1.073

Next, to fine-tune another crucial NARX NN hyperparameter, we focus on the number
of neurons at each hidden layer. Table 7 presents the errors associated with the number
of hidden layers (H) and the number of neurons (N) for the world-level data. The data
indicate that four hidden layers with five neurons gives the least possible error among the
other number of hidden layers and neurons. The training MSE for H4|N5 is calculated as
0.236, and the testing error is 0.209. H3, H5, and H6 with five neurons show 2.48%, 4.45%,
and 0.84% higher training MSEs compared with H4|N5, respectively. Likewise, testing
MSEs for H4|N5 are 15.72%, 36.08%, and 53.76% lower than those of the H3, H5, and H6
testing MSEs with five neurons. When the number of neurons exceeds 10 neurons, the
errors significantly increase. The H4|N5 training and testing MSE values are 43.13% and
49.64% lower than those of the training and testing MSEs for H4 with 10 neurons. This also
confirms the importance of fine-tuning hyperparameters for the NARX NN.
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Table 7. Hyperparameter fine-tuning for the world-level data—NARX errors associated with the
number of hidden layers (H3–H6) and number of neurons (N1–N10, N15, and N 20) (lag = 1,
epochs = 100, and learning rate = 0.1).

Training MSE Testing MSE

H3 H4 H5 H6 H3 H4 H5 H6

N1 0.267 0.261 0.279 0.256 0.280 0.243 0.413 0.688
N2 0.257 0.253 0.271 0.251 0.265 0.235 0.399 0.612
N3 0.250 0.244 0.265 0.246 0.264 0.228 0.379 0.545
N4 0.242 0.239 0.251 0.238 0.254 0.224 0.352 0.462
N5 0.242 0.236 0.247 0.238 0.248 0.209 0.327 0.452
N6 0.252 0.249 0.254 0.240 0.264 0.233 0.340 0.480
N7 0.271 0.267 0.286 0.278 0.297 0.249 0.371 0.509
N8 0.295 0.282 0.304 0.315 0.329 0.259 0.400 0.691
N9 0.349 0.334 0.361 0.403 0.374 0.347 0.478 0.922

N10 0.431 0.415 0.435 0.615 0.460 0.401 0.563 1.085
N15 1.034 1.008 1.175 1.456 1.199 0.972 1.140 2.266
N20 1.471 1.456 1.640 2.649 1.656 1.370 1.578 3.646

The final hyperparameter tuning is related to epochs and learning rates. The epochs
range from 100 to 1000, and learning rates (LRs) from 0.0001 to 0.1 are investigated to
determine the optimum MSE. Table 8 presents the results for the training and testing MSE
values associated with different ranges of epochs and LRs for the NARX NN with four
hidden layers, five neurons, and one lag. According to the results, the differences between
the epochs and LRs are insignificant, demonstrating that the number of hidden layers,
neurons, and lags were selected properly. We keep the epochs and the learning rate at
100 epochs and 0.1 learning rate, our starting point, to keep the calculation costs as low
as possible.

Table 8. Hyperparameter fine-tuning for the world-level data—NARX errors associated with the
epochs and learning rates (LR) (lag = 1, hidden layers = 4, and neurons = 5).

Epoch

Learning Rate

Training MSE Testing MSE

0.0001 0.001 0.01 0.1 0.0001 0.001 0.01 0.1

100 0.240 0.235 0.238 0.236 0.213 0.206 0.211 0.209
200 0.241 0.239 0.240 0.237 0.215 0.207 0.215 0.211
400 0.240 0.234 0.237 0.236 0.213 0.205 0.210 0.209
600 0.250 0.235 0.236 0.236 0.213 0.207 0.211 0.209
800 0.241 0.238 0.238 0.238 0.214 0.209 0.215 0.212
1000 0.241 0.239 0.240 0.240 0.215 0.210 0.216 0.215

The data at each level (world-level data and cluster level data) are distinct; therefore,
different errors are likely for each cluster. This means that the number of lags, hidden layers,
and neurons can vary for the NARX analysis for each cluster. The analysis of training,
validation, and testing MSEs for ranges of the various hyperparameters for each cluster was
conducted following the process described for the world-level data. The hyperparameter
values resulting in optimal performance and MSEs for the world-level and each cluster are
presented in Table 9. According to the results, Cluster 2 and Cluster 3 have a lower MSE
value compared with the MSE values for Cluster 1 and Cluster 4, which could be due to
fact that the CPI variance among the countries in Cluster 2 and Cluster 3 is significantly less
(as shown in Figure 3). Likewise, Cluster 1 and Cluster 4 exhibit higher errors of 0.254 and
0.259 at the testing phase, respectively. Considering the error values, four hidden layers are
selected for Cluster 1 and Cluster 4, whereas three hidden layers are found to be optimum
for Cluster 2 and Cluster 3.
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Table 9. NARX model hyperparameters and performance values for the world-level and the cluster-
level analysis.

Category Lag No. of Hidden
Layers

No. of
Neurons

Training
MSE

Validation
MSE

Testing
MSE

World-level 1 4 5 0.236 0.161 0.209

Cluster 1 4 6 0.324 0.267 0.254

Cluster 2 3 6 0.280 0.189 0.210

Cluster 3 3 5 0.208 0.140 0.150

Cluster 4 4 6 0.350 0.294 0.259
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Finally, the results of the NARX analysis using the world-level data and the clusters
are discussed in this section of this manuscript. The NARX ANN time series response for
the world-level data is presented in Figure 4. Figure 4a indicates the training, target, and
predicted outputs and the corresponding errors (target output—training output) with a
97.5% confidence band. This figure also presents the predicted values for the 2017–2020
period. Figure 4b presents the optimum ultimate epoch that is selected for obtaining the
optimum results regarding the world-level data. The best training performance is identified
as occurring at 0.10020 MSE and at the epoch 298, with no observable overfitting. This
means that after the initial training of the first neural network model, it retrained the
network for 298 epochs until it reached a near-zero change in MSE. According to the results,
the highest difference between the training target and training outputs is calculated for
2012, with a value of −0.999, and the second-highest error is achieved for 2011, with a
value of −0.619, due to the significant change in the average CPI values from 2011 to 2013.
The results show that the predicted CPI values for 2018, 2019, and 2020 (shown in black
triangles connected with a dashed line) are comparatively close to the real values reported
by Transparency International for those specific years [50]. The CPI actual and forecast
values are presented in Table 8, showing generally insignificant error between the two; the
differences between the CPI forecasts and actual values in 2017, 2018, 2019, and 2020 are
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calculated as 0.25, 0.04, −0.07, and −0.08, respectively. Figure 4a. also indicates that the
overall CPI value of the world is increasing. Although a 0.18% decrease in CPI value is
seen from 2007 to 2010, the general trend is positive, with a 6.71% increase in the CPI value
from 2010 to 2020.
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Figure 5 presents the NARX ANN time series response for Cluster 1. Figure 5a
illustrates training, target, and predicted outputs and the corresponding errors (target
output—training output) with a 97.5% confidence band. In addition, this figure indicates
the predicted values for the 2017–2020 period. Figure 5b illustrates the optimum epoch
chosen for calculating the optimum results for Cluster 1; the best training performance
is set at 0.2135 MSE and epoch 151, with no observable overfitting. This denotes the fact
that after the initial training of the first neural network model, it retrained the network for
151 epochs until it reached a near-zero change in MSE. Based on the results, the maximum
difference between the training target and training outputs is in 2013, with a value of
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0.835, and the second-highest error is in 2011, with a value of −0.690. This could be due
to the considerable change in the average CPI values from 2011 to 2013 for this cluster.
The predicted CPI value results for 2017, 2018, 2019, and 2020 are close to the real values
reported by Transparency International for those specific years [50]. Table 8 presents the
actual and forecast CPI values. The results show a 0.01, 0.26, 0.21, and 0.39 difference
between the forecast and actual CPI values in 2017, 2018, 2019, and 2020, respectively.
Furthermore, Figure 5a shows that the overall CPI value for Cluster 1 is increasing. Despite
a 1.67% decrease in CPI value from 2008 to 2010, the general trend is positive, with a 7.41%
increase in the CPI value from 2010 to 2020.
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The NARX ANN time series analysis results for Cluster 2 are presented in Figure 6.
Figure 6a shows training, target, and predicted outputs and the corresponding errors (target
output—training output) with a 97.5% confidence band. Furthermore, this figure shows
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the predicted values for the 2017–2020 period. Figure 6b denotes the optimum ultimate
epoch selected in this analysis in order to obtain the optimum results. The best training
performance is caught at epoch 248 and 0.20484 MSE, with no observable overfitting. This
shows that after the initial training of the first neural network model, it retrained the
network for 248 epochs until it reached a near-zero change in MSE. Results show that the
highest training target and training output difference is in 2012 and 2011, with values of
−0.833 and −0.714, respectively. This could be due to the significant change in the average
CPI values from 2011 to 2013. The results indicate that the predicted CPI values for 2017 to
2020 are comparatively close to the real values reported by Transparency International [50].
The values presented in Table 8 indicate a minor error between the real CPI values and
the predicted CPI values. Differences between the predicted and real CPI values for 2017
to 2020 are calculated as 0.23, −0.01, −0.35, and −0.21, respectively. Moreover, Figure 6a
shows an overall increase in the CPI values in this cluster. Although a 3.64% decrease in
the CPI value is seen from 2008 to 2010, the general trend is upward, with a 13.37% increase
in the CPI value from 2010 to 2020.
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The NARX ANN time series response for the third cluster is illustrated in Figure 7.
Figure 7a shows training, target, and predicted outputs and the corresponding errors
(target output—training output) with a 97.5% confidence band. This figure also illustrates
the predicted values for 2017, 2018, 2019, and 2020. Figure 7b shows the optimum epoch
chosen for calculating the optimum results for Cluster 2; the best training performance
is obtained at 0.11938 MSE and epoch 66, with no observable overfitting. This indicates
that after the initial training of the first neural network model, it retrained the network for
66 epochs until it reached a near zero change in MSE. Based on the results, the difference
between the training target and training outputs is at its maximum value of 0.696 in 2012,
and the second-highest error at 0.436 is in 2013, which could be due to the significant
change in the average CPI values in 2012 and 2013 for this cluster. The predicted CPI
value results for 2017 to 2020 are comparatively close to the real values reported by the
Transparency International for those specific years [50]. The actual and forecast CPI values
are illustrated in Table 8. The results show differences of −0.63, −0.32, −0.35, and −0.16
between the forecast and actual CPI values in 2017 to 2020, respectively. Figure 7a also
illustrates that the overall CPI value for Cluster 3 is decreasing. The general CPI trend in
this cluster is negative, with a 5.35% decrease in the CPI value from 2007 to 2020.
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The NARX ANN time series analysis results for Cluster 4 are presented in Figure 8.
Figure 8a shows training, target, and predicted outputs and the corresponding errors
(target output—training output) with a 97.5% confidence band. This figure also illustrates
the predicted values for 2017–2020. Figure 8b shows the optimum ultimate epoch selected
in this analysis to obtain the optimum results; the best training performance is caught
at epoch 143 and 0.25328 MSE, with no observable overfitting. This means that after the
initial training of the first neural network model, it retrained the network for 143 epochs
until it reached a near-zero change in MSE. Results indicate that the highest training target
and training output differences are in 2011 and 2012, with values of −0.733 and 0.696,
respectively; this could be due to the significant change in the average CPI values from
2010 to 2012 in this cluster. The results denote that the predicted CPI values for 2017–2020
are comparatively close to the real values reported by Transparency International [50].
The values are presented in Table 10, indicating a minor difference between the real CPI
values and the predicted CPI values. The differences between the predicted and real CPI
values for 2017–2020 are calculated as 0.18, 0.17, −0.17, and 0.08, respectively. Furthermore,
Figure 8a indicates an overall increase in the CPI values. The general trend in this cluster is
upward, with a 21.25% increase in the CPI value from 2010 to 2020.

A steep increase in CPI between 2011 and 2012 for all clusters except Cluster 3 (coun-
tries with higher CPI values) is observable. The criteria for CPI calculation changes every
year, and this significant change might mean that there was a change in the method of
calculation for CPI for the countries with lower CPI. However, further investigation is
needed to pinpoint the changes in the method of calculation.
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World-level 47.73 47.80 −0.07
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6. Concluding Remarks

Artificial neural networks (ANNs) are effective tools for non-linear mapping of multi-
ple variables on one or more outputs. In this study, we use a well-known neural network
method, the nonlinear autoregressive recurrent neural network with exogenous inputs
(NARX), to model and forecast corruption in countries. The analysis was carried out
using the data on 113 countries from 2007 to 2017. The development-related attributes
that have significant influence on the levels of corruption in countries, as measured by the
CPI, were identified from the literature. We split the countries into four clusters based on
their development-related attributes and developed corruption forecasting models for each
cluster. NARX NN training was performed on 70% of the data, 15% of the data were used
for validation, and the rest of the data were used for testing the output.

Any reliable neural network model needs precise hyperparameter fine-tuning before
training. The variations of the number of hidden layers, lags, and neurons were selected as
1–7, 1–3, and 1–20, respectively. Considering MSE as a baseline for the hyperparameter
tuning process showed that one lag, four hidden layers, and five neurons would give an
optimum NARX model for forecasting CPI values for the world-level data. For Cluster 1
and Cluster 4, the number of hidden layers was found to be four, versus three for Cluster 2
and Cluster 3. At the same time, the number of neurons for Cluster 1, Cluster 2, and
Cluster 4 were chosen to be six, versus five for Cluster 3. Epochs and learning rates
were found to have no significant influence on the initial hyperparameter MSE values
for the NARX models. It was observed that when the number of neurons and hidden
layers increased, a comparatively lower prediction accuracy was obtained, due to the
models’ overfitting.

As expected, the NARX NN prediction models showed different results for the world-
level data analysis and the cluster-level data analysis. For the world-level data, it was
found that there is a general uptrend in the value of CPI, showing a 6.71% increase in CPI
from 2010 to the predicted value of CPI in 2020. Cluster 1, Cluster 2, and Cluster 4 showed
the same uptrend, with a 7.41%, 13.37%, and 21.25% increase in CPI from 2010, respectively,
despite having a comparatively minor downtrend in CPI from 2007 to 2010. However,
Cluster 3—despite containing a majority of developed countries—showed a 5.35% decrease
in CPI from 2007. For countries within the clusters introduced in this paper, the study
results can be valuable to policymakers, governments, and NGOs as they continue to assess
the efficacy of their current or prospective future corruption-mitigation policies, programs,
and initiatives.

In this paper, the lack of adequate data on development-related attributes was one
of the main limitations. In future studies, access to other data will be helpful to develop
more confident conclusions. Another limitation was the reliance on only one attribute
(CPI) as the indicator of corruption. Suggested directions for future research include
(a) a detailed investigation of the causes of the uptrend and downtrend momentum in
CPI values in each cluster; (b) adequate and explicit assessment of corruption-mitigation
initiatives implemented in countries in each cluster, identifying solutions that have worked
as well as those that failed, and an overall assessment of the extent to which these solutions
succeeded or failed. Furthermore, future studies could investigate project-level data
(instead of the country-level data in this study). In this regard, researchers could examine
the effect of corruption on infrastructure delivery quality, time delay, and cost overruns
and thereby measure, for example, the portion of overrun cost that could be attributed
to corruption and the portion that could be attributed to inefficiency. As suggested by
a reviewer, the methodology could also be used to explore the impact of corruption on
sustainability indices.
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