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Abstract: This paper is aimed at proposing a short-term hybrid energy system robust optimization
model for regional energy system planning and air pollution mitigation based on the inexact multi-
stage stochastic integer programming and conditional value-at-risk method through a case study in
Shandong Province, China. Six power conversion technologies (i.e., coal-fired power, hydropower,
photovoltaic power, wind power, biomass power, and nuclear power) and power demand sectors
(agriculture, industry, building industry, transportation, business, and residential department) were
considered in the proposed model. The optimized electricity generation, capacity expansion schemes,
and economic risks were selected to analyze nine defined scenarios. Results revealed that electricity
generations of clean and new power had obvious increasing risks and were key considerations
of establishing additional capacities to meet the rising social demands. Moreover, the levels of
pollutants mitigation and risk-aversion had a significant influence on different power generation
schemes and on the total system cost. In addition, the optimization method developed in this paper
could effectively address uncertainties expressed as probability distributions and interval values,
and could avoid the system risk in energy system planning problems. The proposed optimization
model could be valuable for supporting the adjustment or justification of air pollution mitigation
management and electric power planning schemes in Shandong, as well as in other regions of China.

Keywords: electric power capacity planning; stochastic programming; multi-scenario analysis;
emission reduction; system risk aversion

1. Introduction

Due to economic development and resource service loads increasing, energy–
environmental contradictions (e.g., single-energy structure, small proportion of clean en-
ergy, and environmental quality improvement) from energy activities have become a more
significantly critical and complex issue in China [1–4]. Although renewable power technol-
ogy has a widespread application with the national new energy law enacted, China still
has a single-energy structure. Additionally, coal-fired power conversion technologies have
occupied large proportions of electricity production compared to other energy conversion
technologies. According to the China Statistical Yearbook (2018), the amount of electricity
generation of coal-fired power has increased from 3.3 × 106 GWh to 4.4 × 106 GWh from
2010 to 2016. Moreover, the rapid growth of the electric power industry could pose threats
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to environment protection and generate both a series of air pollutants (e.g., sulfur dioxide
(SO2), nitrogen oxides (NOx), and particulate matter (PM)) and greenhouse gases [5,6].
The total discharged amount of pollutants from electricity generation has brought sig-
nificant impacts on the atmospheric environment quality protection, with the values of
1.7 million tonne, 1.6 million tonne, and 0.4 million tonne for SO2, NOx, and PM in 2016,
respectively. However, in most energy system planning activities, these environmental
effects and their interactions with both energy development and utilization are often am-
biguous or uncertain [7–10]. Therefore, a reasonable and effective energy system planning
model is important and necessary in balancing regional energy and environmental system
sustainable development.

Previously, a number of studies were conducted for planning energy systems and
managing air pollution reduction at regional and national scales [11–13]. In real-world
management problems, uncertainties exist in many system parameters and within their
interrelationships, which could be presented in terms of multiple formats (e.g., inter-
val numbers, probability distributions, and system dynamics) [4,12,14]. Many studies
were proposed for energy system optimization and air pollution mitigation models under
uncertainty conditions by interval-parameter programming (IPP), fuzzy mathematical pro-
gramming (FMP), and stochastic mathematical programming (SMP) technologies [15–18].
For example, Dong et al. [19] presented an inexact optimization modeling approach to
effectively analyze and address the complexities and uncertainties in energy systems and
regarding air pollution mitigation. Zhu et al. [20] advanced an inexact mixed-integer
fractional approach for addressing uncertainties and for optimizing management efficiency
in sustainable energy systems. In addition, more studies provided multi-stage stochas-
tic programming (MSP) addressing uncertainties and the dynamic performance within
energy systems.

According to previous research studies, MSP is used to efficiently address probabilistic
uncertainties in the model’s right-hand side, which is known as the probability distribu-
tions within the multi-stage context [21]. Moreover, MSP has a dynamic characteristic,
especially regarding the dynamic transmission of large systems, such as the transfer of
capacity expansion in energy systems. However, MSP can hardly address the independent
uncertainties of the model’s left-hand sides and neither the cost coefficients, and it cannot
effectively reduce or avoid system risk, especially regarding the optimization problem,
without considering the risk of deviating from the expected value. Risk management
entails the exercise of control over some statistical characteristic of the uncertain portfo-
lio return [1,18]. The value at risk (VaR) and conditional value at risk (CVaR) could be
used to avoid portfolios that may likely be susceptible to severe losses, which are widely
accepted as risk measures in risk management [22–24]. In comparison with VaR, CVaR
is a coherent risk measure that has many attractive properties and mainly involves the
α-quantile and conditional expectation. Through being coupled with CVaR, the conditional
expectation of the portfolio returns below a prespecified low percentile of the distribution
and the expected losses in severe circumstances can be effectively reflected in large system
management problems.

The purpose of this study was to develop an energy system optimization model that
combines the interval multi-stage stochastic programming and conditional value-at-risk
(CVaR) measure for addressing uncertainties and complexities in the energy system opti-
mization and planning. Focused on the top-level design for the national energy structure
adjustment and the environmental protection request, the energy system optimization
model was derived from deep deconstruction of regional electric power systems in Shan-
dong Province, as presented in Section 2. Based on energy resource supply, technical
processing, demand activities, economic cost/benefits, and the associated air pollution
emissions, an energy system optimization model for organizing the relationship was pro-
posed to reflect the dynamics of capacity expansion issues and to address both the uncertain
information and system risk that are introduced by the system random characters, as dis-
cussed in Section 3. Finally, multi-scenario analysis for electric power system management
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in Shandong Province were taken as examples to study under different emission reduc-
tion options and risk-aversion levels in Section 4. The model proposed could be widely
applicable to other regions in China for energy system optimization and planning, and the
results obtained could provide decision schemes for energy system planning and pollutant
mitigation in the mid/long-term period.

2. Energy System Analysis of Shandong Province

Shandong Province, which is located in China’s east coast (34◦22.9′~38◦24.01′ N,
114◦47.5′~122◦42.3′ E), is one of the most crucial energy consumption and production
regions (as shown in Figure 1). Shandong Province covers an area of 157,100 km2 with
17 districts. The resident population was 100.5 million in 2018. Most parts of Shandong are
located in the warm temperate zone. The GDP of Shandong Province increased by 6.4%,
corresponding to CNY 7.6 trillion, which contributed to the third largest economy area in
China in 2018.
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Figure 1. Geographical location of Shandong Province.

Due to the intensified variation of energy activities caused by the economic devel-
opment mode, new-type urbanization, and industrial structure adjustment, the statistics
of energy consumption has displayed a rapid growth trend in Shandong Province. Ac-
cording to the Shandong Province Statistical Yearbook (2010–2018), the terminal energy
consumption increased from 302.4 million ton of coal equivalent in 2010 to 386.8 million
ton of coal equivalent in 2017, with the consumption rates of 70.5%, 17.0%, and 1.9% for
coal, crude oil, and primary electricity, respectively. Moreover, it is estimated that the
consumption of coal reached to 272.6 million ton in 2017 and the production of coal was
only 97.9 million ton, accounting for 35.9% of the total coal consumption, which may lead to
serious issues regarding energy-supply security and economic development. Similarly, the
consumption of electricity had increased from 329.9× 103 GWh in 2010 to 543.0× 103 GWh
in 2017. By the end of 2018, the total electricity generation capacities had reached 131.1 GW;
the proportion of the thermal power installed capacity was 79.10%; and the capacity of
new energy power (e.g., wind power, nuclear power, biomass power, and photovoltaic
power) and hydropower accounted for 23.2% and 0.8% of the total generation capacities,
respectively. These phenomena could reveal that although the energy end-consumption
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structure has been improved greatly in recent years, energy consumption still heavily relies
on coal in Shandong Province. Obviously, faced with the crisis of energy shortage, the
development and utilization of renewable energy resources has been inevitable.

Furthermore, as one of the most challenging issues of the electric power system, air
pollution mitigation brings profound impacts on energy-environmental contradictions [9].
Electric power plants have become one of the main sources of air pollution in Shandong
Province because of their impact on coal consumption. For instance, in 2017, the amount of
SO2, NOx, and PM emission were 739.1 × 103 ton, 1158.6 × 103 ton, and 549.6 × 103 ton,
respectively. According to the Shandong Province Social Development Thirteenth Five-Year
Plan, large-scale renewable energy projects will be carried out. A total of 30.1 GW of new
and renewable energy source (e.g., nuclear power, solar power, biomass power, and wind
power) generation facilities will be installed by the end of 2020. In terms of the long-term
and mid-term development plans for pollutant and carbon emission control, the province’s
SO2 emission in 2020 decreased by 127.0% compared to that of 2015 and NOx emissions
were controlled below 1040.0 × 103 ton in 2020.

In view of the above, it can be found that Shandong Province still faces significant
challenges in terms of ensuring the safety of the regional power supply, achieving the
goals of air pollution (i.e., PM, SO2 and NOx) mitigation, and optimizing the electric power
structure because of the single-power energy structure. These problems have severely
hampered the sustainable development of electric power systems for Shandong Province
in the future. Generally, electric power systems are complicated with various interrelated
electric-related interactions including related to its production, import/export, expansion,
consumption, and pollution reduction. In a long-term planning period perspective, the
future electricity demand is often modeled as an uncertain parameter with a probability
distribution and many key components of the electric power management system contain
uncertainties in terms of, for example, energy source availabilities, electricity demands,
processing costs, and different power generation technologies. In addition, air pollution
emissions (e.g., SO2, NOx, and PM) incorporated within electric power planning systems
should be controlled for below a certain tolerance limitation through the adoption of
various proper inequality constraints. Therefore, it is essential to study the uncertainties
and complexities of electric power system for Shandong Province in the future in order
to resolve the contradiction between the optimization of electric power systems and the
mitigation of air pollutant emissions.

3. Energy System Optimization Model
3.1. Optimization Method

Figure 2 presents the general framework of the optimization method, which is inte-
grated with multi-stage stochastic programming, interval-parameter programming, and
CVaR techniques. Among these lay uncertain information that is presented as interval
numbers, which can be reflected through interval-parameter programming [25], while
random information system dynamic characters and policy implications can be effectively
addressed by multi-stage stochastic programming [26]. In addition, the system risk intro-
duced by the model uncertainty and the influence of random disturbance on the system can
be addressed with the CVaR method [27–29]. The optimization method can be expressed as

Min f± =
T

∑
t=1

n

∑
j=1

c±jt x±jt +
T

∑
t=1

n

∑
j=1

ht

∑
h=1

pjthd±jt y±jth + λ

{
t

∑
t=1

(
ξ±t +

1
1− α

ht

∑
h=1

p±thv±th

)}
(1a)

which is subject to

n

∑
j=1

a±rjtx
±
jt ≤ b±rt , ∀r = 1, 2, . . . , m1; t = 1, 2, . . . , T (1b)
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n

∑
j=1

a±jt x±jt −
n

∑
j=1

a′jty
±
jth ≥ ω±th, ∀h = 1, 2, . . . , ht; t = 1, 2, . . . , T (1c)

v±th ≥
n

∑
j=1

c±jt x±jt +
n

∑
j=1

d±jt y±jth − ξ±t , ∀h = 1, 2, . . . , ht; t = 1, 2, . . . , T (1d)

v±th ≥ 0, ∀h = 1, 2, . . . , ht; t = 1, 2, . . . , T (1e)

x±jt ≥ 0, ∀ j = 1, 2, . . . , n; t = 1, 2, . . . , T (1f)

y±jth ≥ 0, ∀j = 1, 2, . . . , n; h = 1, 2, . . . , ht; t = 1, 2, . . . , T (1g)

where c±jt and d±jt are the interval parameters in the objective function; a±rjt, b±rt , a±jt , a′jt, and

ω±th denote a set of interval parameters in the constraints; x±jt are the first stage decision

variables; and y±jth represent the variables in the second stage. v±th are the random variables
in the constraints; pjth is the parameter of the probability levels in the second stage; and
∑ Pjth = 1. According to the role of these different parameters in the proposed method,
the optimization model, coupled with the RIMSP method, can be established to solve the
optimization problem.

Sustainability 2021, 13, x FOR PEER REVIEW 5 of 21 
 

1 1 1 1 1 1 1

1
 

1

n t th hT n T t

jt jt jth jt jth t th th
t j t j h t h

Min f c x p d y p v 


       

      

  
         

  
 (1a) 

which is subject to 

1
1

, 1,2,..., ; 1,2, ,
n

rjt jt rt
j

a x b r m t T  



      (1b) 

'

1 1

, 1,2,..., ;  1,2,...,
n n

jt jt jt jth th t
j j

a x a y h h t T   

 

       (1c) 

1 1

, 1,2,..., ; 1,2, ,
n n

th jt jt jt jth t t
j j

v c x d y h h t T     

 

        (1d) 

0, 1,2,..., ; 1, 2, ,th tv h h t T      (1e) 

0,  1,2,..., ; 1, 2, ,
jt

x j n t T      (1f) 

0, 1,2,..., ;  1, 2,..., ; 1, 2, ,
jth t

y j n h h t T       (1g) 

where 
jt

c
 and 

jt
d   are the interval parameters in the objective function; 

rjt
a , 

rt
b

, 

jt
a , '

jt
a , and 

th


 denote a set of interval parameters in the constraints; 
jt

x
 are the 

first stage decision variables; and 
jth

y
 represent the variables in the second stage. 

th
v

 

are the random variables in the constraints; 
jth

p  is the parameter of the probability levels 

in the second stage; and 1
jth

P  . According to the role of these different parameters in 

the proposed method, the optimization model, coupled with the RIMSP method, can be 

established to solve the optimization problem. 

 

Figure 2. General framework of the RIMSP method. 

Uncertainties

Random

variables

Discrete

interval

Multistage stochastic

Programming (MSP)

Interval-parameter

Programming (IPP)

Conditional Value-

at-Risk (CVaR)

Dynamic of 

energy systems

IMSP

Model

RIMSP 

Model

Submodel (Ⅰ) 

corresponding to  f -  

Submodel (Ⅱ) 

corresponding to  f+

Optimal solution for RIMSP

Risk

Figure 2. General framework of the RIMSP method.

3.2. Model Development

The purpose of this paper is to develop a short-term hybrid energy system robust opti-
mization model for regional energy system planning and air pollution mitigation through
a case study in Shandong. Six power conversion technologies, six power demand sectors,
and three pollutants were considered based on the regional energy system feature and en-
ergy development plans. In detail, the model size and boundary conditions were designed
as follows: (1) energy resources included coal, hydro-energy, wind, solar, biomass, and
nuclear power that correspond to coal-fired power, hydropower, wind power, photovoltaic
power, and biomass power (nuclear power was considered as the main electric power
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generation technology in the model); (2) power load demand from multiple end-users
(e.g., agricultural, industrial, transportation, commercial, and residential sectors) was taken
into consideration and divided into three levels (e.g., low, medium, and high) with the
corresponding probabilities; (3) PM, SO2, and NOx are the major air pollutants in energy
resource conversation processes and the total emission amount control was carried out
to improve the environmental quality; and (4) the planning horizon is 6 years and was
further divided into two planning periods. The objective of this section was to minimize the
system cost (i.e., energy resources cost, power generation cost, import power cost, and air
pollutants treatment cost) cover over the whole planning period. The constraints were used
to maintain a balance between the supply/demand, resources/final-product, cost/risk,
and within the interaction in environment–economic energy system development. More-
over, the inexact multi-stage stochastic integer programming and conditional value-at-risk
method were selected to effectively address uncertainties and complexities in the energy
system optimization and planning. Based on the roles and definitions of different parame-
ters in the proposed RIMSP method (Section 3.1), the energy system optimization model
can be expressed as follows:

Min f± = f±1 + f±2 + f±3 + f±4 + f±5 (2a)

(1) Cost for resource consumption:

f±1 =
6

∑
k=1

2

∑
t=1

Z±kt · PEC±kt (2b)

(2) Cost for electricity generation:

f±2 =
6
∑

k=1

2
∑

t=1
PV±kt · XE±kt +

6
∑

k=1

2
∑

t=1

Ht
∑

h=1
pth ·

(
PV±kt + PP±kt

)
· EQ±kth

+
6
∑

k=1

2
∑

t=1

Ht
∑

h=1
pth ·

(
YCA±kth · A

±
kt + XCA±kth · B

±
kt
) (2c)

(3) Net import cost for electric power:

f±3 =
2

∑
t=1

(
IE±t · IPE±t − EE±t · EPE±t

)
(2d)

(4) Cost for air pollutant emission:

f±4 =
3
∑

s=1

6
∑

k=1

2
∑

t=1
XE±kt · ξ

±
skt ·

(
1− η±skt

)
· CPC±st

+
3
∑

s=1

6
∑

k=1

2
∑

t=1

Ht
∑

h=1
pth · EQ±kth · ξ

±
skt ·

(
1− η±skt

)
· DPC±st

(2e)

(5) Risk-aversion of the electric power system:

f±5 = λ ·
2

∑
t=1

(
VaR±t +

1
1− α

Ht

∑
h=1

pth · ς±th

)
(2f)

where k denotes electric power generation technology; k = 1, 2, 3, 4, 5, and 6 for coal-
fired power, hydropower, solar power, wind power, biomass power, and nuclear power; t
denotes the planning period; t = 1 represents period 1 from 2019 to 2021 and t = 2 represents
period 2 from 2022 to 2024; s represents the atmospheric pollutants, wherein s = 1, 2, and 3
represent SO2, NOx, and PM; h is electricity-demand level; and lastly i represents the power
load demand sectors, wherein i = 1, 2, 3, 4, 5, and 6 represent the agriculture, industry,
building industry, transportation, business, and residential department.
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These variables are subject to:

(1) constraints regarding the electricity supply and demand balance, expressed as

6

∑
k=1

(
XE±kt + EQ±kth

)
+ IE±t − EE±t ≥

6

∑
i=1

AD±ith, ∀t, h; (2g)

IE±t ≤ γt ·
6

∑
i=1

AD±ith, ∀t, h; (2h)

(2) constraints regarding the environment capacity, expressed as

6

∑
k=1

(
XE±kt + EQ±kth

)
· ξ±kst ·

(
1− η±kst

)
≤ MAGE±st , ∀s, t, h; (2i)

(3) constraints regarding the electric power production capacity, expressed as

XE±kt + EQ±kth ≤ ST±kt ·
{

ICP±k +
T

∑
t=1

XCA±kth

}
, ∀k, t, h; (2j)

XCA±kth ≤ M±kt ·YCA±kth, ∀k, t, h; (2k)

XE±kt ≥ EQ±kth, ∀k, t, h; (2l)

(4) constraints regarding the capacity expansion, expressed as

YCA±kth

{
= 1, if capacity expansion is undertaken
= 0, if otherwise

, ∀k, t, h; (2m)

(5) constraints regarding the coal mass balance, expressed as

(
XE±1t + EQ±1th

)
· FE±1t ≤ Z±1t , ∀t, h; (2n)

(6) constraints regarding the hydropower mass balance, expressed as

(
XE±2t + EQ±2th

)
· FE±2t ≤ Z±2t , ∀t, h; (2o)

(7) constraints regarding the solar mass balance, expressed as

(
XE±3t + EQ±3th

)
· FE±3t ≤ Z±3t , ∀t, h; (2p)

(8) constraints regarding the wind mass balance, expressed as

(
XE±4t + EQ±4th

)
· FE±4t ≤ Z±4t , ∀t, h; (2q)

(9) constraints regarding the biomass mass balance, expressed as

(
XE±5t + EQ±5th

)
· FE±5t ≤ Z±5t , ∀t, h; (2r)

(10) constraints regarding the nuclear mass balance, expressed as

(
XE±6t + EQ±6th

)
· FE±6t ≤ Z±6t , ∀t, h; and (2s)

(10) constraints regarding risk control, expressed as
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6
∑

k=1
Z±kt · PEC±kt +

6
∑

k=1
PV±kt · XE±kt +

6
∑

k=1

(
PV±kt + PP±kt

)
· EQ±kth

+
6
∑

k=1

(
YCA±kth · A

±
kt + XCA±kth · B

±
kt
)
+
(

IE±t · IPE±t − EE±t · EPE±t
)

+
3
∑

s=1

6
∑

k=1
XE±kt · ξ

±
skt ·

(
1− η±skt

)
· CPC±st +

3
∑

s=1

6
∑

k=1
EQ±kth · ξ

±
skt ·

(
1− η±skt

)
· DPC±st

−VaR±t ≤ ς±th

(2t)

Decision variable
Z±kt is the energy resource consumption amount for electricity generation (PJ); XE±kt is

fixed power generation target (103 GWh); XCA±kth denotes the expanded capacity (GW);
EQ±kth represents the excess power generation amount (103 GWh); YCA±kth denotes the
capacity-expansion option; and IE±t and EE±t are the imported and exported electricity
amount (103 GWh).

Parameters
PEC±kt is purchase cost for the energy resource (USD million/PJ); PV±kt denotes the

regular operation cost for power generation (USD million/103 GWh); PP±pt denotes the
surplus cost for power generation (USD million/103 GWh); A±pt is the fixed-charge for the
power conversion expansion (USD million); B±pt denotes the variable cost for the power
conversion expansion (USD million/GW); IPE±t and EPE±t are the price of imported and
exported electricity (USD million/103 GWh); CPC±st is the cost for pollutant treatment
(USD million/103 tonne); ξ±kst is the emission coefficient of pollutants from conversion
technology (103 tonne/103 GWh); DPC±it denotes the punishment cost for pollutant treat-
ment (USD million/103 tonne); AD±dth is the power load demand of the sector (GWh); γ
is the proportion of imported electricity; η±ipt denotes removal coefficient of pollutant i in

period t; ξ±ipt is emission coefficient of pollutant i from conversion technology p in period

t (kilotonnes/GWh); MAGE±it represents the allowable upper bounds of the pollutant
emission quantity in period t (kilotonnes); M±pt is upper bound of the expansion capacity
for conversion technology p in period t (GW); ST±pt denotes the service time of conversion
technology p in period t (h); ICPpt is the initial capacity for conversion technology p in
period t (GW); Z±1t represents the domestic coal supply in period t (PJ); Z±2t denotes the
electricity production by hydropower in period t (PJ); Z±3t is the domestic solar power
supply in period t (PJ); Z±4t denotes the domestic wind power supply in period t (PJ); Z±5t
represents the domestic biomass supply in period t (PJ); Z±6t denotes the domestic nuclear
supply in period t (PJ); and lastly FE±pt denotes the energy consumption of conversion
technology p in period t (TJ/GWh).

3.3. Data Collection and Scenarios Definition

The study system covers a time horizon of 6 years (2019–2024), which is divided into
two planning periods with each representing a 3-year span (i.e., period 1: 2019, 2020, and
2021; period 2: 2022, 2023, and 2024). From the previous analysis, the existing power
generation system in Shandong Province cannot meet electricity demands and needs
to purchase electricity from other places or expand the generation capacities. Through
analyzing a series of studies for the regional power system, many economic-power data
were acquired, such as from the Shandong Statistics Bureau (2010–2018) [30], Shandong
Thirteenth Five-Year Plan, and Shandong Electric Thirteenth Five-Year Plan. Table 1
provides the economic and technological dates of different conversion technologies in detail,
which include the regular and surplus costs for power generation, the fixed and variable
costs for capacity expansion, and the operation times of each conversion technology.



Sustainability 2021, 13, 11341 9 of 20

Table 1. Economic and technological data for each conversion technology.

Conversion Technology
Time Period

t = 1 t = 2
Regular and surplus costs for power generation of each power conversion technology (USD 103/GWh)

Regular cost, PV±1t [23.1, 25.4] [23.9, 26.2]
Coal-fired power

Surplus cost, PP±1t [9.9, 10.5] [10.4, 11.1]

Regular cost, PV±2t [13.1,14.6] [12.4, 13.9]
Hydropower

Surplus cost, PP±2t [5.6, 6.6] [5.8, 7.2]

Regular cost, PV±3t [8.5, 9.4] [8.3, 9.0]
Photovoltaic power

Surplus cost, PP3t± [3.6, 4.0] [3.6, 4.4]

Regular cost, PV±4t [6.4, 8.6] [6.2, 8.2]
Wind power

Surplus cost, PP±4t [2.9, 3.2] [3.1, 3.4]

Regular cost, PV±5t [28.3, 30.0] [29.9, 31.7]
Biomass power

Surplus cost, PP±5t [14.7, 15.6] [15.9, 16.2]

Regular cost, PV±6t [7.2, 8.5] [6.8, 8.1]
Nuclear power

Surplus cost, PP±6t [3.5, 4.0] [3.2, 3.7]

Fixed (USD 106) and variable (USD 106/GW) costs for capacity expansion

Fixed cost, A±1t [816.0, 96.0] [757.4, 891.0]
Coal-fired power

Variable cost, B±1t [544.2, 640.3] [522.5, 614.9]

Fixed cost, A±2t [2065.5, 2430.0] [2021.3, 2378.0]
Hydropower

Variable cost, B±2t [1380.6, 1624.2] [1394.4, 1640.4]

Fixed cost, A±3t [2159.0, 2540.0] [1981.4, 2331.0]
Photovoltaic power

Variable cost, B±3t [1439.5, 1693.6] [1367.5, 1608.9]

Fixed cost, A±4t [1704.3, 1583.6] [2005.0, 1863.0]
Wind power

Variable cost, B±4t [1137.9, 1338.7] [1092.4, 1285.2]

Fixed cost, A±5t [1856.4, 2184.0] [1746.8, 2055.0]
Biomass power

Variable cost, B±5t [1210.0, 1423.5] [1178.7, 1386.7]

Fixed cost, A±6t [2082.5, 2450.0] [1787.6, 2103.0]
Nuclear power

Variable cost, B±6t [1389.8, 1635.0] [1232.5, 1450.0]
Operation time for generation technology p in period t (h)

Coal-fired power ST±1t [16,800, 17,400] [16,800, 17400]

Hydropower ST±2t [11,700, 12,000] [11,700, 12,000]

Photovoltaic power ST±3t [2700, 3000] [2700, 3000]

Wind power ST±4t [8700, 9000] [8700, 9000]

Biomass power ST±5t [13,800, 14,400] [13,800, 14,400]

Nuclear power ST±6t [18,900, 19,200] [18,900, 19,200]

According to the Shandong Province Statistical Yearbook (2010–2018), three discrete
target values of power load demand (i.e., low, medium, and high) were selected. As shown
in Table 2, to illustrate the applicability of the developed model, electricity demands of
different end users were assumed to be uncertain with three probability levels (i.e., 20% for
the low level of electricity demand, 60% for the medium level of electricity demand, and 20%
for the high level of electricity demand, respectively). According to the medium and long-
term planning of energy development and environmental-emission reduction of Shandong
Province, three levels of emission reduction targets were considered, corresponding to
reductions of 0%, 7%, and 15% of the total air pollution emissions during the planning
period. In this study, in order to have decision-makers determine the value of the risk
aversion and to find points from the frontier, we built an approximation of the efficient
frontier by setting three λ values (i.e., 0.05, 0.5, and 10, respectively). Thus, to compare
the effects of different risk aversion parameter λ and the emission reduction targets on the
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regional electricity supply strategies, nine different scenarios were designed (as shown in
Table 3).

Table 2. End user’s total electricity demand.

Demand Sector Demand Level Probability (%)
Electricity Demand (103 GWh)

t = 1 t = 2
L 20 [25.4, 25.9] [31.7, 32.8]
M 60 [27.9, 28.4] [34.7, 35.9]Agriculture
H 20 [30.3, 30.8] [37.7, 39.0]
L 20 [864.0, 880.5] [1075.6, 1113.8]
M 60 [946.6, 963.2] [1178.5, 1218.4]Industrial
H 20 [1029.3, 1045.8] [1281.5, 1323.0]
L 20 [9.8, 10.0] [12.2, 12.7]
M 60 [10.8, 10.9] [13.38, 13.8]Building industry
H 20 [11.7, 11.9] [14.6, 15.0]
L 20 [17.6, 17.9] [21.9, 22.7]
M 60 [19.3, 19.5] [24.0, 24.8]Transportation
H 20 [21.0, 21.3] [26.1, 27.0]
L 20 [82.1, 83.7] [102.2, 105.8]
M 60 [90.0, 91.5] [112.0, 115.8]Business
H 20 [97.8, 99.4] [121.8, 125.7]
L 20 [122.2, 124.5] [152.1, 157.5]
M 60 [133.9, 136.2] [166.7, 172.3]Residential
H 20 [145.6, 147.9] [181.3, 187.1]

Note: the symbols L, M, and H denote that the total electricity demand is low, medium, and high in period 1, respectively.

Table 3. Nine analysis scenarios.

Scenario Risk Aversion Parameter Emission Reduction Target

Scenario 1 (S_1) 0.05 0%
Scenario 2 (S_2) 0.05 7%
Scenario 3 (S_3) 0.05 15%
Scenario 4 (S_4) 0.5 0%
Scenario 5 (S_5) 0.5 7%
Scenario 6 (S_6) 0.5 15%
Scenario 7 (S_7) 10 0%
Scenario 8 (S_8) 10 7%
Scenario 9 (S_9) 10 15%

4. Results and Discussion

The objective function of the interval multi-stage stochastic integer programming
model is to minimize the expected cost and to establish a stable budget under different
scenarios of both pollutant reduction targets and risk-aversion levels over the planning
horizon. Interval solutions can provide energy utilization schemes and help managers
acquire multiple decision alternatives, which are useful for decision-makers to obtain
insight regarding tradeoffs between environmental and economic objectives.

4.1. Optimized Electricity Generation in Different Emission Reduction Scenarios

From the above results in Section 2, Shandong Province experiences serious air pol-
lution generation from electric power systems. In this study, three emission reduction
levels of air pollution (i.e., SO2, NOx, and PM) were taken into consideration, including
0%, 7%, and 15%. Figures 3 and 4 present the results of the optimized electricity genera-
tion plans for different power conversion technologies under different emission reduction
levels over the planning horizon. Generally, the proportion of the amount of coal-fired
power generation would be reduced, with significant emission reductions [31]. Addition-
ally, lean energy and new energy power generation would be rapidly increased, such
as through wind and photovoltaic power generation technologies. For example, in pe-
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riod 1, under the medium demand level, the coal-fired power generations calculated to
[1738.5, 1771.4] × 103 GWh, [1665.0, 1711.6] × 103 GWh, and [1673.9, 1715.1] × 103 GWh
in S_1, S_2, and S_3, respectively. Similarly, the wind power generations calculated to
98.2 × 103 GWh, [137.4, 151.1] × 103 GWh, and [137.4, 145.6] × 103 GWh in S_1, S_2, and
S_3, respectively. Furthermore, due to the fact that coal-fired energy accounts for a great
amount of pollutant emissions, managers could limit the operation of coal-fired power
and encourage both new and clean energy development, especially wind power and nuclear
power. In S_2, the hydropower calculated to [41.4, 57.2] × 103 GWh, [60.4, 82.8] × 103 GWh,
and 82.8 × 103 GWh when the demand level was low-low, low-medium, and low-high
in period 2, respectively. Similarly, wind power calculated to [137.4, 150.5] × 103 GWh,
[137.4, 150.5] × 103 GWh, and 196.3 × 103 GWh, while it calculated to [58.5, 65.4] × 103 GWh,
65.4 × 103 GWh, and 65.4 × 103 GWh for nuclear power, respectively.

Sustainability 2021, 13, x FOR PEER REVIEW 12 of 21 
 

 

 

 

Figure 3. Optimized electricity generation for coal-fired power, hydropower, and photovoltaic 

power in different emission reduction scenarios. 

L M H

L
_
L

L
_
M

L
_
H

M
_
L

M
_
M

M
_
H

H
_
L

H
_
M

H
_
H

1000

1500

2000

2500
(a) Coal-fired power 

 

G
en

er
at

io
n
 q

u
an

ti
ty

 (
1
0

3
G

W
h
)

L M H

L
_

L

L
_

M

L
_

H

M
_

L

M
_

M

M
_

H

H
_

L

H
_

M

H
_

H

0

20

40

60

80

100
(b) Hydropower

 

G
en

er
at

io
n

 q
u

an
ti

ty
 (

1
0

3
G

W
h

)

L M H

L
_

L

L
_

M

L
_

H

M
_

L

M
_

M

M
_

H

H
_

L

H
_

M

H
_

H

0

5

10

15
 lower bound of S_1

 lower bound of S_2

 lower bound of S_3

(c) Photovoltaic power

 

G
en

er
at

io
n

 q
u

an
ti

ty
 (

1
0

3
G

W
h

)

 upper bound of S_1

 upper bound of S_2

 upper bound of S_3

Figure 3. Optimized electricity generation for coal-fired power, hydropower, and photovoltaic power
in different emission reduction scenarios.



Sustainability 2021, 13, 11341 12 of 20Sustainability 2021, 13, x FOR PEER REVIEW 13 of 21 
 

 

 

 

Figure 4. Optimized electricity generation for wind power, biomass power, and nuclear power in 

different emission reduction scenarios. 

In addition, the structure of the Shandong power system was relatively unitary, 

mainly including coal-fired power, while the proportion of clean power was less. In this 

L M H

L
_

L

L
_

M

L
_

H

M
_

L

M
_

M

M
_

H

H
_

L

H
_

M

H
_

H

0

50

100

150

200
(a) Wind power

 

G
en

er
at

io
n

 q
u

an
ti

ty
 (

1
0

3
G

W
h

)

L M H

L
_

L

L
_

M

L
_

H

M
_

L

M
_

M

M
_

H

H
_

L

H
_

M

H
_

H

0

20

40

60
(b) Biomass power

 

G
en

er
at

io
n

 q
u

an
ti

ty
 (

1
0

3
G

W
h

)

L M H

L
_

L

L
_

M

L
_

H

M
_

L

M
_

M

M
_

H

H
_

L

H
_

M

H
_

H

0

20

40

60

80
 lower bound of S_1

 lower bound of S_2

 lower bound of S_3

(c) Nuclear power

 
 

G
en

er
at

io
n

 q
u

an
ti

ty
 (

1
0

3
G

W
h

)

 upper bound of S_1

 upper bound of S_2

 upper bound of S_3

Figure 4. Optimized electricity generation for wind power, biomass power, and nuclear power in
different emission reduction scenarios.
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In addition, the structure of the Shandong power system was relatively unitary, mainly
including coal-fired power, while the proportion of clean power was less. In this study,
when the pollution-emission reduction rate was more than 15%, the power system could
be crashed, and there were no solutions under the condition of minimum economic cost.
This phenomenon could be attributed to the fact that the air pollutant mitigation measures
for the Shandong power system was modelled by the project emissions, which controlled
air pollution emissions by engineering treatment facilities including for desulfurization,
denitration, and dust removal [9]. However, with the continuous improvement of the
economy, air pollutant emissions would further increase, thus the project emissions will not
be enough to totally support the tasks of economic development and pollution-emission
reductions [32]. As a result, in order to effectively reduce air pollutant emissions, the
development and utilization of new and renewable energy should be strengthened in the
future. For example, the Shandong Jiaodong peninsula has good nuclear site resources and
three nuclear power plants have been build, including the Haiyang nuclear power plant,
Hongshiding nuclear power plant, and Shidaowan nuclear power plant.

4.2. Optimized Electricity Generation in Different Risk Aversion Scenarios

Figures 5 and 6 illustrate the results of optimized electricity generation from different
power generation technologies in different risk aversion scenarios wherein the emission
reduction rate was fixed as 15%. In this study, the CVaR method was integrated in the pro-
posed optimization model as the objective function and constraint to determine a policy that
minimizes this measure of risk. The results indicate that electricity generation from various
power conversion technologies varies greatly, with risk aversion parameter λ fixed as 0.05,
0.5, and 10, respectively. For instance, in period 1, the coal-fired power generations were
[1547.5, 1673.9] × 103 GWh, [1485.9, 1545.3] × 103 GWh, and [1488.0, 1547.5] × 103 GWh
under the low demand level, while they were calculated as [29.2, 58.4] × 103 GWh,
[52.0, 58.4] × 103 GWh, and [41.4, 58.4] × 103 GWh for hydropower, respectively. In gen-
eral, electricity generations from conventional power conversion technologies would
decrease, while those for clean and new power would relatively increase as the risk
levels rise. The reasons for these phenomena concern that the conventional coal-fired
power conversion technology corresponded to a higher air pollution-emission rate and
the clean power conversion technology could reduce the risk of environment pollu-
tion [33]. However, in the regional electric power system, coal-fired power accounted
for a large proportion of pollutant emissions compared with other power generation
technologies [9,10]. From these results, it could be seen that the coal-fired power gener-
ations were increased steadily in period 2 and for other power conversion technologies,
the power generations would have substantial fluctuations compared to those in the
first period. For example, the coal-fired power would be generated with the values of
[2228.4, 2293.4] × 103 GWh, [2248.9, 2293.6] × 103 GWh, and [2224.5, 2293.5] × 103 GWh
under the low-high demand level in period 2, while for photovoltaic power these were
[2.2, 5.7] × 103 GWh, [4.3, 5.7] × 103 GWh, and [2.2, 4.3] × 103 GWh, respectively.
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Figure 5. Optimized electricity generation for coal-fired power, hydropower, and photovoltaic power
in different risk aversion scenarios.
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Figure 6. Optimized electricity generation for wind power, biomass power, and nuclear power under
different risk-aversion levels.
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4.3. Capacity Expansion Schemes in Different Emission Reduction Scenarios

The capacity expansion schemes under different emission reduction levels were calcu-
lated and they are presented in Figures 7 and 8, with the risk aversion parameter λ fixed
as 0.05. Generally, the existing capacities could not satisfy the future electricity demands
from end users, while some capacity expansion projects would be undertaken to avoid the
insufficient electricity supply. From the graphs, it can be observed that with the stricter
environmental requirements, clean power conversion technologies were key considerations
in establishing additional capacities to meet the rising social demands. In detail, in period
1, the expansions were [0.87, 0.92] GW, [0.9, 2.8] GW, and [1.7, 2.8] GW for hydropower, and
[2.4, 2.6] GW, [2.4, 2.6] GW, and [6.0, 8.5] GW for wind power under the low, medium, and
high demand levels, respectively. Moreover, the nuclear power could be expanded with
an increment of [1.0, 1.9] GW, [1.0, 1.9] GW, and [1.9, 2.0] GW in period 1 under the low,
medium, and high demand levels, respectively. In addition, the differences included the
fact that the photovoltaic power only expanded at a lesser capacity and the biomass power
could not be expanded in period 1. The reasons for these phenomena were attributed to
the fact that the biomass power could be discharged in large amounts of air pollutants and
the photovoltaic power was easily affected by meteorological factors [34,35]. In period
2, there would be eight possible capacity expansion schemes under various electricity
demand levels. In comparison, coal-fired power and wind power would be expanded
under constraints for controlling air pollutant emissions. Additionally, nuclear power
conversion technology had relatively high fixed and variable costs for capacity expansions.

Sustainability 2021, 13, x FOR PEER REVIEW 17 of 21 
 

fixed as 0.05. Generally, the existing capacities could not satisfy the future electricity de-

mands from end users, while some capacity expansion projects would be undertaken to 

avoid the insufficient electricity supply. From the graphs, it can be observed that with the 

stricter environmental requirements, clean power conversion technologies were key con-

siderations in establishing additional capacities to meet the rising social demands. In de-

tail, in period 1, the expansions were [0.87, 0.92] GW, [0.9, 2.8] GW, and [1.7, 2.8] GW for 

hydropower, and [2.4, 2.6] GW, [2.4, 2.6] GW, and [6.0, 8.5] GW for wind power under the 

low, medium, and high demand levels, respectively. Moreover, the nuclear power could 

be expanded with an increment of [1.0, 1.9] GW, [1.0, 1.9] GW, and [1.9, 2.0] GW in period 

1 under the low, medium, and high demand levels, respectively. In addition, the differ-

ences included the fact that the photovoltaic power only expanded at a lesser capacity and 

the biomass power could not be expanded in period 1. The reasons for these phenomena 

were attributed to the fact that the biomass power could be discharged in large amounts 

of air pollutants and the photovoltaic power was easily affected by meteorological factors 

[34,35]. In period 2, there would be eight possible capacity expansion schemes under var-

ious electricity demand levels. In comparison, coal-fired power and wind power would 

be expanded under constraints for controlling air pollutant emissions. Additionally, nu-

clear power conversion technology had relatively high fixed and variable costs for capac-

ity expansions. 

 

 

L M H

L
_
L

L
_
M

L
_
H

M
_
L

M
_
M

M
_
H

H
_
L

H
_
M

H
_
H

0

2

4

6

8

10
(a) Coal-fired power 

 

G
en

er
at

io
n
 q

u
an

ti
ty

 (
1
0

3
G

W
h
)

L M H

L
_
L

L
_
M

L
_
H

M
_
L

M
_
M

M
_
H

H
_
L

H
_
M

H
_
H

0

1

2

3

4
(b) Hydropower

 

G
en

er
at

io
n
 q

u
an

ti
ty

 (
1
0

3
G

W
h
)

Figure 7. Cont.



Sustainability 2021, 13, 11341 17 of 20
Sustainability 2021, 13, x FOR PEER REVIEW 18 of 21 
 

 

Figure 7. Capacity expansion schemes for coal-fired power, hydropower, and photovoltaic power 

under different emission reduction levels. 

 

 

L M H

L
_
L

L
_
M

L
_
H

M
_
L

M
_
M

M
_
H

H
_
L

H
_
M

H
_
H

0.0

0.3

0.6

0.9

1.2
 lower bound of S_3

 lower bound of S_6

 lower bound of S_9

(c) Photovoltaic power

 

G
en

er
at

io
n
 q

u
an

ti
ty

 (
1
0

3
G

W
h
)

 upper bound of S_3

 upper bound of S_6

 upper bound of S_9

L M H

L
_
L

L
_
M

L
_
H

M
_
L

M
_
M

M
_
H

H
_
L

H
_
M

H
_
H

0

3

6

9
(a) Wind power

 

G
en

er
at

io
n
 q

u
an

ti
ty

 (
1
0

3
G

W
h
)

L M H

L
_

L

L
_

M

L
_

H

M
_
L

M
_

M

M
_
H

H
_
L

H
_
M

H
_
H

0.0

0.5

1.0

1.5

2.0
(b) Biomass power

 

G
en

er
at

io
n
 q

u
an

ti
ty

 (
1
0

3
G

W
h

)

Figure 7. Capacity expansion schemes for coal-fired power, hydropower, and photovoltaic power
under different emission reduction levels.
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Figure 8. Capacity expansion schemes for wind power, biomass power, and nuclear power under
different emission reduction levels.

4.4. Economic Risk Analysis for the Shandong Province Energy System Model

The objective of the proposed model is to minimize the system cost according to
optimized air pollution mitigation and the avoided environment risk in this study. The
values of the objective function under the nine scenarios were calculated and are listed
in Figure 9. The results indicate that the available amount of pollutant mitigation and
the risk-aversion level would not only lead to different power generation schemes but
would also have impacts on the total system cost. In detail, planning electric power
systems without pollution-emission reduction constraints would lead to a lower system
cost; conversely, planning with a high system cost would lead to higher emissions under
the fixed risk-aversion level. For example, with the λ fixed as 0.05, the total cost would
be (in USD) [828.0, 965.2] × 109, [832.5, 974.5] × 109, and [472.7, 553.7] × 109 in the two
periods. The costs would have a slight increase in period 2 compared to those in period
1. The main reason for this concerns the increasing electricity demands that could lead to
increasing power generations and facility expansions, and there would be more pressures
to reduce pollution emissions in period 2. In addition, electric power system management
schemes with some lower risk-control constraints would lead to higher system costs, while
low system costs would lead to higher risk-control constraints under the fixed emission-
reduction rate. For instance, without pollution-emission reduction constraints, the total
system cost for scenario 1 (in USD) was [828.0, 965.2] × 109, while this calculated to (in
USD) [833.7, 984.5] × 109 and [847.2, 985.0] × 109 for S_4 and S_7, respectively.
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Figure 9. System cost under different scenarios. In the plot, the symbol TSC, FSC, and SSC denote the total system cost, the
system cost in period 1, and system cost in period 2, respectively.



Sustainability 2021, 13, 11341 19 of 20

5. Conclusions

In this study, an inexact optimization model was developed and examined in Shan-
dong Province for supporting energy system planning and air pollution mitigation under
uncertainty conditions. The proposed model was based on a multi-stage interval stochas-
tic integer linear programming and the conditional value-at-risk (CVaR) measure. The
optimized electricity generation, capacity expansion schemes, and economic risks were
calculated and analyzed under nine defined scenarios in the paper. Results indicated that
electricity generations from conventional power conversion technologies would decrease
in contrast with the relative increase of clean and new power as the risk-level rises. Notably,
due to the stricter environmental requirements, clean power conversion technologies were
key considerations in establishing additional capacities to meet the rising social demands.
Additionally, the available amounts of pollutant-mitigation and risk-aversion levels would
not only cause the different power generation schemes but would also influence the total
system cost. The obtained solutions could provide useful decision alternatives under
different pollutant emission reduction policies and various risk aversion scenarios. Fur-
thermore, the proposed optimization model could effectively address the uncertainties
expressed as probability distributions and existing interval values, as well as could reflect
the risk aversion in energy system planning problems. The solutions obtained could be
valuable for supporting the adjustment or justification of air pollution mitigation man-
agement and electric power planning schemes within a complicated energy system under
uncertainty conditions.
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