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Abstract: Ongoing urban expansion has accelerated the explosive growth of urban populations and
has led to a dramatic increase in the impervious surface area within urban areas. This, in turn, has
exacerbated the surface heat island effect within cities. However, the importance of the surface heat
island effect within urban areas, scilicet the intra-SUHI effect, has attracted less concern. The aim
of this study was to quantitatively explore the relationship between the spatial heterogeneity of a
built environment and the intra-urban surface heat island (intra-SUHI) effect using the thermally
sharpened land surface temperature (LST) and high-resolution land-use classification products. The
results show that at the land parcel scale, the parcel-based relative intensity of intra-SUHI should be
attributed to the land parcels featured with differential land developmental intensity. Furthermore,
the partial least squares regression (PLSR) modeling quantified the relative importance of the spatial
heterogeneity indices of the built environment that exhibit a negative contribution to decreasing the
parcel-based intra-SUHI effect or a positive contribution to increasing the intra-SUHI effect. Finally,
based on the findings of this study, some practical countermeasures towards mitigating the adverse
intra-SUHI effect and improving urban climatic adaption are discussed.

Keywords: built-up environment; spatial heterogeneity; urban thermal environment; blue–green
space; land use pattern

1. Introduction

Since the era of the industrial revolution, driven by capital flows and labor transfers,
urban agglomerations and metropolitan areas have become the preferred destinations for
urban–rural and cross-border migrants worldwide [1–3]. At present, global urban areas
house more than 50% of the total population and 70–90% of all economic activities [4],
resulting in unprecedented urban expansion and explosive growth of urban populations.
The United Nations Department of Economic and Social Affairs has reported that about
55% of the global population lives in urban areas. By 2050, global urban residents will
increase by 2.5 billion, of which 255 million will be in China, such that the urban population
will account for 68% of the country’s total population [5].

During urban expansion, impervious surfaces, such as buildings, roads, squares,
bridges, and parking lots, dominate the land-use structure of the built environment. They
consequently occupy and replace the area proportion of the pre-development landscapes
(e.g., water bodies and vegetation) [6]. The intensive human activities in cities lead to
severe ecological degradation [7], which has the consequence of artificial modification of
the urban climate; in particular, the urban heat island (UHI) effect and its influences on
human health have been of wide concern. To restore the urban natural environment and
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improve urban resilience, artificial blue and green space (BGS), including water bodies,
vegetation, and recreational landscapes, can be created and managed in order to deliver crit-
ical ecosystem services (e.g., air purification and climate modification) within cities [8–10].
Unfortunately, in most cases, impervious surfaces dominate the urban built environment’s
land-use structure and landscape pattern. Intensive urban land development usually alters
the surface thermal energy radiation, biological characteristics, and hydrological cycle,
resulting in changes in the absorption and emission of solar radiation and the surface
heat flux [11–13]. Meanwhile, due to its relatively small area proportion within cities, the
BGS that promotes local cooling effects is insufficient to offset the overwhelming heat
emissions from the impervious surfaces, which heat the lowest layer of the air [14]. Such
surface-to-air heating processes have been proven to profoundly impact the urban thermal
environment [15–17]; for instance, artificial modification of the urban climate is closely
related to the UHI effect, as measured in terms of air temperature (AT) and land surface
temperature (LST).

To date, existing studies on the urban thermal environment have mainly focused
on the UHI effect, including the boundary layer urban heat island (BLUHI) and canopy
urban heat island (CUHI), characterized by AT, as well as the surface urban heat island
(SUHI) effect, characterized by LST. The AT can generally be easily measured and used for
assessing human thermal comfort, but the sparsity of weather stations within cities and
in the urban fringe makes it difficult to characterize the spatial variation of AT, BLUHI,
and CUHI in the study area. In contrast, satellite- or air-borne thermal remote sensing
platforms, with sizable spatial cover, can provide alternative approaches for monitoring
urban climates.

Since the 1970s, spaceborne thermal remote sensing technology has become a prac-
tical approach for monitoring regional and local SUHI effects. Previous studies on the
multi-scale SUHI effect using spaceborne thermal infrared (TIR) data have produced
fruitful results, ranging from low-resolution(~km) sensors, such as the Geostationary
Operational Environmental Satellite (GOES), the Advanced Very High-Resolution Ra-
diometer (AVHRR), and the Moderate-Resolution Imaging Spectroradiometer (MODIS),
to high-resolution (60–120 m) sensors, such as Landsat 5 (Theme Mapper, TM), Landsat
7 (Enhanced Theme Mapper Plus, ETM+), Landsat 8 Operational Land Imager/Thermal
Infrared Sensor (OLI/TIRS), and the Advanced Spaceborne Thermal Emission Reflection
radiometer (ASTER) [18–20]. At present, given that most urban residents live in intensively
developed land lacking green infrastructure, few studies have been carried out on the
intra-SUHI effect, which indicates the SUHI effect within urban functioning zones (UFZs)
and is closely related to human health and urban climate adaptation. In the context of
urban settings characterized by complex land-use structure and landscape configuration,
the formation of the intra-SUHI effect largely depends on the fine-scale land developmental
features (e.g., land-use types, floor area ratio, building distances and heights, and landscape
patterns of specific land parcels) [21,22]. It should be noted that, for these above-mentioned
spaceborne TIR sensors, due to the problem of mixing pixels of land surfaces, they are still
too coarse to generate detailed information regarding the LST and heat flux and, thus, it is
impossible to depict the fine-scale pattern of the urban thermal environment when using
such data. In contrast, the airborne high-resolution TIR imaging systems, such as NASA’s
advanced thermal infrared and land application sensor (ATLAS) and unmanned aerial
vehicle (UAV)-borne TIR cameras, can effectively detect the fine-scale thermal effect of ur-
ban settings. However, the apparent shortcomings of ATLAS (e.g., fixed navigation routes
and low cost-effectiveness) and UAV systems (e.g., flexible navigation routes but short
flying durations) limit their applicability in the practice of detecting the variations in the
urban thermal environment. Alternatively, recent studies have attempted to combine ther-
mally sharpened satellite-retrieved data with commercial high-resolution optical images
in order to provide a practical approach for evaluating the intra-SUHI effect [23,24]. Such
an approach can provide a better understanding of the relationship between the spatial
heterogeneity of the built environment and the urban thermal environment, considering
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that the recent literature emphasizing such relationships is relatively scarce. Moreover, the
robustness and applicability of such approaches in practice need further testing in a variety
of case studies.

In this study, Shanghai—one of the fast-growing megacities suffering from extreme
summertime heat events—was taken as a case study. Our research goals were (1) to quanti-
tatively analyze the spatial heterogeneity of the built environment and its impact on the
summertime intra-SUHI effect within the city, and (2), based on the findings of this study,
to provide the operational choices for decision making towards enhancing urban planning
practices, mitigating the intra-SUHI effect, and improving urban climate adaption.

2. Study Area

Shanghai is located between latitudes 30◦40′ N–31◦53′ N and longitudes 120◦52′

E–122◦12′ E, in the front of the alluvial plain of the Yangtze River Delta (see Figure 1).
The whole city is low-lying and flat, dominated by plains (with an area of 93.91%) and
an average altitude of 2.19 m. Shanghai is located in the north sub-tropical monsoon
climate zone, with abundant sunshine, abundant rain, and four obvious seasons. Local
vegetation types are dominated by evergreen broad-leaved forest and evergreen deciduous
broad-leaved mixed forest [25]. At present, the wetland stock is 464,600 hectares, and
the forest coverage rate of the whole city reaches 17.6%. In this study, four typical urban
functioning zones (UFZs), which represent the socio-economic features and urban land-use
patterns within downtown Shanghai (Table 1), were used to investigate the relationship
between the urban built environment and intra-SUHI effect.
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Figure 1. Location of the study area and four UFZs.

Table 1. Description of four UFZs within downtown Shanghai.

UFZ Area (km2) Description

Wujiaochang 7.09 This UFZ includes a shopping center, university campus, research and development institutions,
innovative enterprises, high-tech parks, and residential areas.

Peace Park 2.00 This UFZ includes parks and recreational landscapes, a university campus, research and
development institutions, innovative enterprises, and residential areas.

Urban Core 5.97 This UFZ includes parks and recreational landscapes, the municipal administration, central
business district, and residential areas.

Xujiahui 2.58 This UFZ includes parks, a commercial center, historical and cultural relics, higher education
institutes, a health care center, high-tech enterprises, and residential areas.
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3. Materials and Methods
3.1. Materials

Landsat 8 OLI/TIRS (Level 1T) and Quickbird imagery were used as the major data
sets. Excluding the cloud contaminations, two cloud-free Landsat 8 OLI/TIRS images
(path/row: 118/038, cloud cover < 10%) acquired during typical summer days (dated
13 August 2013 and 3 August 2015) were used for the retrieval of the LST and further
exploration of the pattern of the urban thermal environment. Quickbird commercial high-
resolution imagery covering the four UFZs was used to classify the fine-scale land-use
structure. The auxiliary data sets included a commercial vector map data of Shanghai
city (roads, buildings, land-uses, and so on) and an aerial remote sensing atlas of the
Shanghai central area. A standard digital map of Shanghai downtown (Beijing Digital
Space Technology Co., LTD, 2015, Beijing, China), an aerial atlas of Shanghai (Shanghai
Academy of Surveying and Mapping 2015, Shanghai, China), Google Earth, and Baidu
Map were used as further auxiliary data sets.

3.2. Methods
3.2.1. Land-Use Classification

To better depict the fine-scale land-use characteristics from the Quickbird high-
resolution imagery, the object-oriented classification (OOC) method, which has higher
classification accuracy than regular methods, such as spectral feature extraction and clas-
sification and regression trees (CART) [26], was used for land classification within the
four UFZs.

For the Quickbird high-resolution imagery covering the four UFZs, classification with
the OOC method was performed with the use of PIE-Basic® (version 6.0) software by
PIESAT International Information Technology Limited. The overall accuracy of classifica-
tion was 80.03%, and the accuracy of the post-classification was determined to be 93.01%
with a manual check using Google Earth and Baidu Map layers, as well as a field survey.
The validated land-use classification product and its classification scheme are shown in
Figure A1 and Table A1, respectively.

In this study, considering the simplicity, representability, and availability of the data
sets, the spatial heterogeneity of the built environment was measured using the two- and
three-dimensional indices of urban morphology and land surfaces.

Table 2 lists several heterogeneity indices that may positively or negatively contribute
to the urban thermal environment (for details, see Table A2). According to the National
Standard for Urban Residential Planning and Design of China (GB50180-2018) [27], building
heights, distances between buildings, and the SVF were calculated from data collected
through in situ measurements. The land surfaces, including the impervious surfaces and
BGS, were extracted from the land-use classification maps. Specifically, for BGS, the parcel-
based land-use information was used to calculate the class-level pattern indices—namely,
the mean patch size (MPS), the number of patches (NP), the largest patch index (LPI),
and the SPLIT index—using Fragstats 4.2.1 software [28]. The three-dimensional green
volume (3DGV) of the BGS, which refers to the total volume of vegetation with stratified
layers, was estimated using several empirical models, ground measurements, and aerial
photogrammetry [29].

3.2.2. Generation of Thermally Sharpened LST and Cross-Validation

The process for generating the thermally sharpened LST consisted of four steps. First,
the 10 gray value thermal band Landsat 8 Level 1T data was converted to the top of
atmosphere (TOA) radiance using the rescaling factors in the MTL file [30].

Secondly, co-Kriging interpolation was employed to generate the high-resolution TOA
radiance by combining the Quickbird high-resolution land-use classification products and
the raw TOA radiance [31]. Given the different resolutions of these two data sets, the
high-resolution land-use classification products were resampled with multiple resolutions
(1–9 m) and set as base maps to overlap and delimit the raw TOA radiance layer. We
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assumed that the same or similar surfaces would have the same or similar radiance val-
ues. Then, for each scene of the TOA radiance layer, tedious sampling of random points
(ranging between 300 and 6000 points per km2) was carried out in order to generate the
co-Kriging interpolation results. By comparing the pairwise bias curve between the raw
and interpolated TOA radiance values, we found that the threshold of 3000 points was
reasonable, as the curve flattened and was nearly unchanged when the number of points
was over 3000 [32]. Subsequently, the interpolated TOA radiance layer was resampled to
multiple resolutions (1–9 m).

Table 2. Statistical description of indices used in this study.

Classification Metrics Abbr. Unit Range Median Mean Sd

Urban
morphology

Building height Height m 2.7–165.0 11.00 16.470 15.21
Building spacing Distance m 4.3–107.1 19.82 23.030 14.72
Sky view factor SVF % 2.48–26.38 13.19 12.053 6.0

Area of impervious surface ImperSurf ha 0.47–24.96 5.08 6.016 4.16

Land surface

Area of blue–green space BGS ha 0.13–15.89 1.66 2.393 2.38
Mean patch size MPS ha 0.00–0.44 0.01 0.030 0.05

Largest patch index LPI - 8.61–99.25 34.40 40.210 22.800
Number of patches NP - 8.00–840.00 96.500 124.340 110.870

SPLIT SPLIT - 1.015–37.299 6.005 7.383 5.938

3D green volume 3DGV m3 8001.702–
834,316.313 92,085.870 133,118.807 135,579.551

Third, based on the multiple-resolution land-use maps, a surface emissivity correc-
tion for the land surfaces was performed according to empirical studies and laboratory
testing [33,34]. The multiple-resolution interpolated TOA radiance and corrected surface
emissivity layers were used to retrieve the thermally sharpened LST using the Range Trans-
fer Equation (RTE) [35], which requires atmospheric correction for the thermal band [36].

Finally, cross-validation of the thermally sharpened LST products was performed
by comparing the pixel-based root-mean-square error (RMSE) between the target LSTs
(sharpened) and referencing LSTs [37]. To do so, all the thermally sharpened LST products
were resampled to the same resolution as the unsharpened LST products (30 m). Then, by
overlapping the 30 m unsharpened LST products and the LST products resampled from
the sharpened products, the pixel-to-pixel 10-fold RMSEs were used for cross-validation of
the thermally sharpened LST products. As shown in Figure A3, there were no significant
differences in the RMSEs of the LST products (resampled from the 1–9 m sharpened LST
products) and the original 30 m LST products; however, as they exhibited the best visual
quality and the lowest RMSE, the 1 m resolution sharpened LST products were used for
further analysis.

3.2.3. Calculation of Intra-SUHII

Rather than using the generalized concept of the UHI effect as measured by the
LST difference between urban and rural areas, the intra-SUHI intensity in this study is
defined as the LST difference between the impervious surfaces and the BGS (vegetated
land and water bodies) in a given land parcel. The parcel-based intra-SUHII is calculated
as follows [38]:

Intra− SUHII = LSTIS−LSTBGS (1)

where the unit of intra-SUHII is Kelvin (K), LSTIS represents the average LST of the
impervious surfaces, and LSTBGS represents the average LST of the BGSs.

At the land parcel level, according to the statistical description and analysis method,
the intra-SUHIIs were divided into six levels, according to the percentile threshold on the
cumulative probability curve of their normal distribution, as follows: Level 1—very low
(≤5%); Level 2—low (5–25%); Level 3—low to slightly high (25–50%); Level 4—medium-
high (50–75%); Level 5—high (75–95%); Level 6—very high (≥95%).
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3.2.4. Statistical Analysis

This section mainly describes hierarchical cluster analysis (HCA) and partial least
squares regression (PLSR) modeling. The former was used for the overall characterization
of the land parcel clusters with differential land developmental intensity, while the latter
was used for exploring the relationship between the intra-SUHII and multiple independent
variables, particularly in the case of multi-collinearity. Essential data analysis was per-
formed, including a normality test, outlier detection, Box–Cox transformation for skewed
data, and Pearson’s correlation. With the indices described in Table 2, HCA was performed
using the Euclidean distance method. Seven typical land parcel clusters representing
differential land developmental intensity were obtained (see Table A3).

The statistically significant correlation coefficients (see Table 4) revealed the existence
of multi-collinearity between the independent variables. According to the result of Pearson
correlation analysis, as there are many possible forms of PLSR models that involve the
independent variables, it is time-consuming to establish the PLSR models. To avoid
overfitting and determine a reasonable model, the leave-one-out (LOO) method was
adopted, setting 90% of the randomly selected data as the training data and the rest
as the test data. Finally, the optimal PLSR model, satisfying the highest determination
coefficient (R2) and minimum root mean square error (RMSE), was selected. The PLSR
model, indicating the relationship between the intra-SUHII and the impervious surfaces,
was written as follows:

Intra-SUHII = α1 + β1·X1 + β2·X2 + β3·X3 + β4·X4 + β5·X5 + ε1 (2)

where α1 is the intercept/constant item, β1–β5 are the partial coefficients; X1–X5 are the
height, distance, SVF, ImperSurf, and parcel area, respectively; ε1 is the error term.

Similarly, the PLSR model, indicating the relationship between the intra-SUHII and
the BGS, was written as follows:

Intra-SUHII = α1 + β1·X1 + β2·X2 + β3·X3 + β4·X4 + β5·X5 + β6·X6 + β7·X7 + ε1 (3)

where α1 is the intercept/constant item, β1–β7 are the partial coefficients; X1–X7 are the
3DGV, BGS, MPS, NP, LPI, SPLIT, and parcel area, respectively; ε1 is the error term.

In this study, all the essential statistical processes were performed using R statistical
software 4.0.3 (developed at Bell Laboratories (formerly AT&T, now Lucent Technologies,
Paris, France) by John Chambers and colleagues), and PLSR modeling was performed
using the library ‘pls’ [39].

4. Results
4.1. Spatial Distribution Characteristics of the Urban Thermal Environment

Overall, Figure 2 reveals the spatial distribution of the urban thermal environment
indicated with parcel-based LSTs and intra-SUHII levels on two summer days of 2013 and
2015, respectively. Figure 2a–h shows the remarkable pixel-based LST difference between
the land parcels dominated with impervious surfaces and BGS. Figure 2 (a-1–h-1) shows
the variations of the parcel-based intra-SUHII levels, which exhibit the similar spatial
patterns shown in Figure 2a–h.

Table 3 shows the statistics of parcel-based LST associated with seven typical land
parcel types featured with different land developmental intensities (see Table A3). As
shown, Type I and VII parcels exhibited the lowest and second-lowest mean LSTs, followed
by Type IV parcels. Apparently, these Type I, IV, and VII parcels, which featured dominant
BGS and lower impervious surfaces, exhibited much lower mean LSTs than the other land
parcel types. It is noteworthy that Type III, V, and VI parcels exhibited much higher mean
LSTs, indicating that the adverse thermal effect is related to higher developmental intensity
and lacking BGS. However, for Type V parcels, their temporally highest mean LSTs could
be alleviated if newly BGS are created in their later management.
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Figure 2. Spatial pattern of pixel-based LSTs and distribution pattern of parcel-based intra-SUHII
levels at four UFZs (unit: K).

4.2. Relationship between the Spatial Heterogeneity of the Built Environment and the Urban
Thermal Environment

Table 4 shows the significant positive and negative correlations between the spatial
heterogeneity indices of the built environment, indicating the complicated relationships
between the BGS and urban morphological characters. As shown, a competitive land-use
structure exists between the ImperSurf and BGS across the land parcels. The significant
negative coefficients between the ImperSurf and the BGS, LPI, MPS, and 3DGV indicate
that the dominance of the ImperSurf is inclined to decrease the BGS, LPI, MPS, and 3DGV.
The significant positive coefficient between the ImperSurf and the SPLIT indicates that the
ImperSurf is inclined to increase the SPLIT since the dominance of the ImperSurf usually
causes the absence of BGS and, consequently, an uneven pattern of BGS. On the other hand,
the significant positive coefficients between the building distances and BGS, LPI, MPS,
and 3DGV indicate that, to a certain extent, wider distances between buildings help shape
a better BGS landscape configuration since the former provides available space for the
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creation of BGS. Moreover, the significant positive coefficients between the BGS, LPI, MPS,
and 3DGV indicate the overall high standard of creation and management of the existing
BGS, particularly under the pressure of ecological land scarcity in urban settings.

Table 3. LST statistics of seven characteristic types of land parcels.

Clustered Land Parcel Type Min LST (K) Max LST (K) Mean LST (K) Range (K)

Type I: Parks and
recreational landscape 307.503 319.376 312.151 11.873

Type II: Mixture use of
high-density residential and

commercial areas
314.296 328.853 316.804 14.557

Type III: Poorly-planned
old residential 315.793 320.829 319.193 5.036

Type IV: Well-planned
modern residential 313.718 321.178 315.584 7.46

Type V: Mixture of land under
construction and high-density

low-rise (residential)
314.076 321.196 319.293 7.12

Type VI: Mixture of medium
and high-density residential

and commercial area
316.215 321.357 318.432 5.142

Type VII: University and
college campus 309.212 316.346 313.324 7.134

Table 4. Pearson correlation coefficients between heterogeneity indices.

3DGV BGS NP LPI SPLIT MPS Height Distance ImperSurf SVF

BGS 0.733 **

NP 0.105 0.063
LPI 0.311 ** 0.442 ** −0.417 **

SPLIT −0.301 ** −0.498 ** 0.435 ** −0.756 **

MPS 0.672 ** 0.605 ** −0.493 ** 0.591 ** −0.617 **

Height −0.090 −0.091 0.089 −0.092 0.135 −0.178 *

Distance 0.290 ** 0.293 * −0.069 0.363 ** −0.236 ** 0.392 ** 0.123
ImperSurf −0.692 ** −0.953 ** 0.065 −0.491 ** 0.552 ** −0.662 ** 0.100 −0.342 **

SVF −0.177 * −0.123 0.156* −0.151 * 0.18 * −0.242 ** 0.969 ** −0.071 0.146
Parcel-area −0.733 ** −0.538 ** 0.400** 0.009 0.020 −0.402 ** −0.069 0.110 0.631 ** −0.101

Note: Except for height, the other indices were Box–Cox transformed. * and ** indicate the significance levels of 0.05 and 0.01, respectively.

Table 5 quantifies the relationship between the impervious surfaces’ two- and three-
dimensional indices and parcel-based intra-SUHII on two summer days. Herein, consider-
ing the independent variables were measured in different units, the standardized regression
coefficients (S-Coefs) were used to interpret the results of the PLSR models. As shown,
the PLSR models account for approximately 48.7–49.8% of the variance of parcel-based
intra-SUHII in response to the independent variables. The positive and negative S-Coefs
indicate their relative importance or strength in determining the variance of parcel-based
intra-SUHII. The positive S-Coefs of ImperSurf indicate it exerted a much higher influence
on increasing the parcel-based intra-SUHII. When controlling the other independent vari-
ables, each standard deviation increase in ImperSurf resulted in a 0.455~0.480 standard
deviation increase in parcel-based intra-SUHII on two typical summer days. In contrast, the
small positive S-Coefs of the parcel area indicate its very weak contribution to the increase
in the parcel-based intra-SUHII. The negative S-Coefs of distance, height, and SVF indicate
their descending ordinal of relative importance in negatively contributing to the variance
of parcel-based intra-SUHII, as each standard deviation increase measured in these indices
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caused −0.368~−0.360, −0.135~−0.111, and −0.066~−0.082 standard deviation decreases
in the parcel-based intra-SUHII, respectively.

Table 5. Coefficients of PLSR models focusing on impervious surfaces.

Intra-SUHII2013 Intra-SUHII2015

Coef S-Coef Coef S-Coef

Constant 7.673 0.000 6.583 0.000
Distance −3.338 −0.368 −3.161 −0.360
Height −0.180 −0.135 −0.144 −0.111

SVF −0.028 −0.082 −0.021 −0.066
ImperSurf 0.000 0.455 0.000 0.480
Parcel area 0.128 0.042 0.216 0.072

Variance explained 48.7% 49.8%
Note: Coef and S-Coef represent the unstandardized and standardized coefficients, respectively.

Table 6 shows the PLSR models account for approximately 41.7–43.1% of the variance
of parcel-based intra-SUHII in response to the independent variables. The positive S-Coefs
of SPLIT, parcel area, and MPS indicate their influence on increasing the parcel-based
intra-SUHII. When controlling the other independent variables, each standard deviation
increase in the SPLIT and parcel-area resulted in 0.186~0.198 standard deviation increases
and 0.079~0.105 standard deviation increases in parcel-based intra-SUHII, respectively. In
contrast, the smaller S-Coefs of MPS indicate its very weak importance in increasing the
parcel-based intra-SUHII. Meanwhile, the descending sequence of negative S-Coefs of LPI,
BGS, NP, and 3DGV indicate their differential relative importance in negatively contributing
to the variance of parcel-based intra-SUHII, as each standard deviation increase measured
in these indices caused −0.169~−0.159, −0.142~0.137, −0.064~−0.028, and −0.047~−0.026
standard deviation decreases in the parcel-based intra-SUHII, respectively.

Table 6. Coefficients of PLSR models focusing on BGS.

Intra-SUHII2013 Intra-SUHII2015

Coef S-Coef Coef S-Coef

Constant 10.028 0.000 8.738 0.000
LPI −1.288 −0.159 −1.323 −0.169
BGS −0.374 −0.137 −0.375 −0.142
NP −0.381 −0.064 −0.164 −0.028

3DGV −0.098 −0.047 −0.053 −0.026
SPLIT 1.058 0.186 1.087 0.198

Parcel area 0.244 0.079 0.312 0.105
MPS 0.171 0.039 0.113 0.027

Variance explained 41.7% 43.1%
Note: Coef and S-Coef represent unstandardized partial regression and standardized partial regression
coefficients, respectively.

5. Discussion

The findings of this study show that, to an extent, the goal of alleviating the intra-SUHI
effect can be achieved via optimizing land parcel design, for instance, by increasing the
building distance/spacing and SVF, increasing the area proportion of BGS and 3DGV, and
improving the spatial configuration of BGS. Taking the Cui-hu-tian-di (CHTD) modern
residence (well planned) and the neighboring old residence (poorly planned) as examples,
Figures 3 and 4 show the contrasting intra-SUHI effects between these two land parcels at
the Urban Core UFZ. As can be seen, the CHTD modern residence, with higher building
spacing (averaged 46 m) and higher BGS cover (39%), exhibits overall lower LSTs (ranging
between 307 K and 318 K, and averaging 309 K). Moreover, together with the trees, the
higher buildings with wide spacing help create shadow areas and ventilation corridors
for cooling. In contrast, the neighboring old residence, with poorly planned building
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spacing (averaging 5 m) and lacking BGS, exhibits much higher LSTs (ranging between
309 and 330 K, and averaging 317 K). Obviously, for such an old residence, if future urban
regeneration is performed with the land parcel design attributes of the CHTD modern
residence, then the intra-SUHI effect will be substantially enhanced.
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Figure 4. Comparison of fine-scale LSTs of two neighboring land parcels.

In the sense of urban resilience and urban planning, our findings exemplify the relative
importance of land parcel design attributes in positive or negative contributions to the
intra-SUHI effect. However, there are some shortcomings of this study. Firstly, due to the
16-day revisiting interval of the Landsat 8 satellite and cloud contamination [30], the TIRS
data captured within the instantaneous field of view (IFOV) could not provide sufficient
a time series of thermal images for studying the seasonal variation of the intra-SUHI
effect. Secondly, until now, the satellite-borne thermal sensors could not generate the ~m
resolution data. We used thermally sharpened LSTs, which lack in situ measurements
for validation since there are no weather stations or long-term observation sites of the
four UFZs in downtown Shanghai [6,37]. Thirdly, the focus of this study was on the
possible linkage between solar radiation and the thermal effect of land surfaces in built
environments, regardless of the influence of the micro-climatic conditions. Thus, the
interpretation power of the PLSR models is somewhat low. Fourthly, the findings of this
study ignore the influence of anthropogenic heat emission, considering the complicated
relationship that exists between the LST-based intra-SUHI effect and the AT-based UHI
effect at a small scale.

Given the above shortcomings, future research should focus on the multi-point distri-
bution of data monitoring and improve the empirical research system. Data assimilation
processes, including three-dimensional modeling, computational fluid dynamics (CFD),
machine learning methods and other technologies, the long-term in situ observation data,
thermal infrared remote sensing data, and numerical simulation results, can provide en-
sured outputs with cross-validation and improve the accuracy of the prediction modeling.
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6. Conclusions

In this study, we quantitatively examined the spatial heterogeneity of the built envi-
ronment and its impact on the summertime intra-SUHI effect using the high-resolution
land-use classification products and thermally sharpened LSTs. The findings are summa-
rized as follows:

1. There are remarkable variations of LSTs and intra-SUHII among seven typical land
parcels with different land developmental intensities. Overall, land parcels featured
with dominant BGS and lower impervious surfaces, particularly parks and recre-
ational landscapes, a university/college campus with a higher green cover, and
well-planned modern residences exhibited much lower mean LSTs than the other
land parcel types with dense buildings and lacking BGS.

2. The PLSR models quantitatively revealed the relative importance of the main effect
of the urban built environment in determining the variances of the urban thermal
environment. The results show that the building distance/spacing, SVF, LPI, and BGS
are major negative contributors to decreasing the variance of the parcel-based intra-
SUHI effect. In contrast, the ImperSurf and SPLIT are major positive contributors to
increasing the variance of the parcel-based intra-SUHI effect.

To sum up, based on the findings, this study provides some practical implications
towards alleviating the adverse UHI effects via potentially optimizing the land parcel
design attributes, particularly focusing on increasing the two- and three-dimensional
indices of BGS and reducing the influence of impervious surfaces. Future urban decision-
making processes of mitigating UHI effects and improving cities’ adaption to climate
change should sufficiently embody these key points and produce scientifically sound
countermeasures.
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Appendix A

Table A1. Land-use classification using the OOC method.

Categories Land-Use Introduction Assigned Surface
Emissivity [40]

Blue–green space
(BGS)

Water River, creeks, lakes, and ponds 0.9925

Tree Evergreen trees, deciduous trees, and a mixture of both 0.95

Shrub Forest nurseries, hedges, and ornamental plants 0.95

Lawn Green land, mainly turf 0.95

http://www.gscloud.cn
https://www.piesat.cn/en/index.html
https://www.piesat.cn/en/index.html
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Table A1. Cont.

Categories Land-Use Introduction Assigned Surface
Emissivity [40]

Impervious
surface

Plastic runway Athletic tracks paved with plastic compounds, and so on 0.92

Hard-top pavement Asphalt and concrete pavement 0.85

Cement pavement Traffic road paved with cement mortar 0.90

Demolition of open space Closed construction site or temporarily vacant land
for demolition 0.83

Light-weighted steel roof Light steel roofs, mostly mobile houses or simple houses 0.66

Bituminous roof Asphalt paper waterproof roofs, more common in low-
and high-density old residential areas 0.85

Glass curtain wall Glass exterior wall of high-rises used as office premises 0.94

Light-colored wall Building walls furnished with light-colored
coating materials 0.90

Shadow Shadow of buildings and tall trees -

Table A2. The class-level landscape pattern indices of BGS.

Indices and Abbreviation Unit Formula Introduction

LPI—Largest Patch Index % LPI =
max

i=1

i
aij

Ai
aij: Patch ij area;

Ai: Total landscape area

Maximum patch percentageLandscape area ratio

NP—Number of Patches -
NP = ni

ni: Total area of category i
landscape elements

The number of patches in the study area

MPS—Mean Patch Size ha
MPS = Ai/NP

Ai: Total landscape area;
NP: number of patches

Mean patch size

SPLIT—Splitting Index %
SPLIT = Di

Ai
Di: Distance index of landscape type i;

Ai: Total landscape area
Degree of patch dispersion

Table A3. Illustrations of seven typical land parcel types with differential land developmental intensity.

Type Introduction

Type I: Park and recreational landscape
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Table A3. Cont.

Type Introduction

Type II: Mixture of high-density residential and commercial area
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Table A3. Cont.

Type Introduction

Type VI: Mixture of medium-density residential and
commercial area
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