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Abstract: There is an increased interest for battery electric vehicles in multiple sectors, including
agriculture. The potential for lowered environmental impact is one of the key factors, but there
exists a knowledge gap between the environmental impact of on-road vehicles and agricultural
work machinery. In this study, a life cycle assessment was performed on two smaller, self-driving
battery electric tractors, and the results were compared to those of a conventional tractor for eleven
midpoint characterisation factors, three damage categories and one weighted single score. The results
showed that compared to the conventional tractor, the battery electric tractor had a higher impact
in all categories during the production phase, with battery production being a majority contributor.
However, over the entire life cycle, it had a lower impact in the weighted single score (—72%) and
all three damage categories; human health (—74%), ecosystem impact (—47%) and resource scarcity
(—67%). The global warming potential over the life cycle of the battery electric tractor was 102 kg
COyeq.ha~! y~! compared to 293 kg CO,eq.ha! y~! for the conventional system. For the global
warming potential category, the use phase was the most influential and the fuel used was the single

most important factor.
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1. Introduction

According to IPCC [1], reaching net-zero emissions of greenhouse gases (GHG) is
required in order to limit and stabilise human-induced global temperature increase. To limit
global warming to 1.5 °C above pre-industrial levels, the global carbon budget (amount
of CO,eq. that can be emitted before that temperature is reached) must be kept between
300 and 900 GtCO; [1]. Globally, agriculture has a major impact on emissions of GHG. In
2010, 21-24% (9.5-11.9 Gt COz ¢q, y_l) of global GHG emissions originated from the AFOL
(agriculture, forestry and other land use) sector [2,3]. Of this, roughly half was attributable
to agricultural production, and 0.4-0.6 Gt CO; ¢q. y’l of that to agricultural machinery use.
To reach the net-zero emissions goal, agriculture cannot be ignored and environmentally
friendly solutions for agriculture are needed.

The European Union (EU) has set the goal of being carbon net neutral by 2050 [4].
The Swedish government has established similar goals, i.e., to have a fossil-free vehicle
fleet by 2030 and to be carbon net neutral by 2045 [5]. This includes areas that have
traditionally been difficult to shift from diesel to renewables, such as agriculture, forestry
and mobile work machinery. These sectors place high demands on their vehicles, so robust,
cost-effective solutions are needed. One such solution is implementation of battery electric
vehicles (BEV), for both on-road and nonroad vehicles, using electricity from fossil-free
sources. However, automotive batteries have been shown to have a large environmental
impact during their production [6-8], although EVs have also been shown to have a lower
impact during the use phase due to higher driveline efficiency and lower fuel impact [9,10].
In the agriculture sector, multiple research projects and demonstrations of BEVs for field
work have been conducted, with promising results [11-15]. It has therefore been concluded

Sustainability 2021, 13, 11285. https://doi.org/10.3390/su132011285

https:/ /www.mdpi.com/journal/sustainability


https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su132011285
https://doi.org/10.3390/su132011285
https://doi.org/10.3390/su132011285
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132011285
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su132011285?type=check_update&version=3

Sustainability 2021, 13, 11285

2 0f 24

by the World Economic Forum [16] that electrification is a potentially cost-effective way of
reducing GHG emissions in agriculture. There is significant interest from policy makers in
a more renewable food production system.

In previous studies by our research group assessing the production capacity and
economic impact of autonomous battery electric tractors through simulations [17,18], they
were shown to have a comparable work rate and lower total annual costs for certain system
topographies. One of the main arguments for changing from a few large diesel-powered
tractors to multiple smaller battery electric tractors is the potential environmental benefit
in replacing diesel with electricity that has a smaller environmental footprint. For this
change to be feasible, we have shown that autonomous operation is a prerequisite, due to
economic factors [18]. While a multitude of environmental impact assessments and life
cycle assessments (LCAs) have been performed for agricultural machinery [19-21], Li-ion
batteries [6,7,22,23], components in the electric driveline [24,25] and on on-road BEVs [9,26],
there is a lack of LCAs on electric tractors and other electric mobile work machinery.

Many studies look exclusively at the climate impact in the form of GHG emissions
when performing an LCA, but several other impact categories are of interest in order
to obtain a more complete understanding of the impacts of a system. In a review of
existing LCAs on automotive batteries by Aichberger and Jungmeier [8], one of the main
conclusions was that inclusion of more impact categories than GHG and energy use is
recommended for LCAs concerning automotive batteries, as also stated by Loon, et al. [27].
For example, availability of key materials and resource scarcity are potential challenges
connected with automotive batteries [6]. Arvidsson et al. [28] recommend the use of several
impact factors in LCA of emerging technologies because new technologies may lead to
different environmental impacts than the systems they replace. In LCAs of agricultural
systems, several other impact categories are of interest, notably eutrophication of freshwater
and the effect on biodiversity. By combined studies of impact factors for agriculture and
BEVs, a more thorough understanding of the environmental impact of battery electric field
machinery can be gained, and a more informed comparison to the systems used today can
be made.

The aim of the LCA performed in this study was to determine the environmental
impact of a self-driving BEV tractor system and compare it with that of a contemporary
diesel tractor system for a Swedish grain farm. The hypothesis tested was that changing to
an electricity-based system leads to lower environmental impacts.

2. Materials and Methods
2.1. Goal and Scope

This LCA study assessed the potential environmental impact of an autonomous BEV
agricultural vehicle system and compared it with the impact of a conventional internal
combustion engine (ICE) diesel-powered system used today. The environmental impact
was represented by characterisation of several midpoint and endpoint impact categories,
damage assessment and a weighted single score, as explained in further detail in Section 2.5.
As midpoint impact categories can be used as a measure of emission intensity, and end-
point impact categories as a measure of the resulting impact on human health and the
environment [29], determining both gives a broader picture of a system’s impact.

The scope of the LCA was limited to production and assembly, use phase and end-of-
life of two small BEV agricultural field tractors, as described in Section 2.1. Comparisons
were made between a vehicle system consisting of these vehicles and a vehicle system
consisting of a conventional manned diesel-powered tractor. A full cradle-to-grave (CTG)
analysis was made, and the gate-to-gate (GTG) aspect was also assessed separately.

The tractors were assumed to be used on a Swedish grain farm of 200 ha growing
winter wheat, spring wheat, barley and oats, in the manner described in Lagnel6v, Larsson,
Nilsson, Larsolle and Hansson [17]. The LCA methodology presented in the ISO 14040:2006
standard [30] was used, together with scalable life cycle inventories (LCIs) for the vehicle
glider, the battery and the driveline. LCIs for conventional tractors, electric vehicles
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and trucks were used, due to data shortages. As the focus of the study was on the
impact of the machine system and on comparison with the systems used today, original
LCIs for components were not created and secondary sources were used when possible,
after verification.

To account for the emerging state of the technology studied, a process-based, conse-
quential LCA was performed to test the hypothesis that a system of autonomous BEVs
reduces the climate impact in agricultural machinery systems compared with a contempo-
rary diesel tractor system doing the same work under the same conditions.

Vehicle Definitions, System Boundary and Functional Unit

The BEV system analysed consisted of two autonomous tractors with 50 kW perma-
nent magnet synchronous machine (PMSM) electric motors and 100 kWh nickel cobalt
aluminium (NCA) Li-ion batteries. Each vehicle had one on-board battery and an addi-
tional battery for rapid battery replacement, making a total of four 100 kWh NCA batteries
(two per vehicle). Because the vehicles were assumed to be autonomous, it was assumed
that they had no cabin. This vehicle system has been shown in previous studies to have a
high theoretical work rate [17] and to compare favourably to contemporary tractor systems
in economic terms [18]. The infrastructure necessary for charging the vehicle system was
also included in the analysis. It comprised two 50 kW CC/CV DC chargers and a battery
exchange system.

As the reference case, a 250 kW contemporary diesel tractor was assessed using the
same methods and models. Production, fuel, repair, maintenance and end-of-life steps
were included in the life cycle of the conventional vehicles and in that of the BEV vehicles.

The system boundary of the study started at manufacturing of the main vehicle
components and ended after the end-of-life phase, as shown in Figure 1. As the focus
of the study was on machinery, the agricultural part of the use phase was not modelled
other than in terms of energy demand [18], as it was assumed to be similar for the cases
studied. In addition, the autonomous system only included the hardware on the vehicle
and a single base station, while any additional infrastructure was not included.

Indirect system boundary

- Direct system boundary

f Production & assembly Use phase End-of-life \
1
‘! Vehicle sub-system \}
| |
‘ Tractor glider !
| : |
\ ) T Reuse & Recycled |
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Figure 1. System boundary of the studied system. Direct system boundary (square) shows the system described in the

article—production & assembly (green), use phase (yellow) and end-of-life (blue). The indirect system boundary (dashed

border rounded square) shows processes that are not specifically studied or described, but are included in the result. The

functional unit (FU) is included, and energy flows are represented by dashed arrows.
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The functional unit was set as one average hectare of arable land growing cereal, as
defined and with the machinery operations simulated and cereal data used in Lagnelov,
Larsson, Nilsson, Larsolle and Hansson [17] during an average year, giving a functional
unit of 1 ha=! y~1.

2.2. Inventory Analysis

Inventory data for autonomous vehicles are sparse, and data for tractors are less
available than data for on-road heavy duty vehicles. It was assumed that data from other
vehicles can be scaled, adjusted and fitted to the autonomous system, mostly concerning
electrification and autonomisation of vehicles (Table 1). The inventory and subsequent
analysis were made in the LCA software SimaPro (v.9.0.0.49, PRé sustainability, Amers-
foort, The Netherlands) [31]. A complete inventory list can be found in Supplementary
Material S1.

Table 1. Components included in life cycle assessment (LCA) of the battery electric vehicle (BEV) and internal combustion
engine (ICE) cases. Categories marked with * were included, but to a reduced extent. Dataset names and complete inventory

list can be found in Supplementary Material S1.

Phase Category Component BEV ICE Main Sources
Cab X [32,33]
Glider Tyres and wheels X X [32,33]
Frame X X [32,33]
Chassis X X [32,33]
Lead-acid battery X [33]
Engine X [33]
Manufacturing Diesel tank X [33]
and assembly Driveline Transmission X* X [32,33]
Auxiliary fluids (engine oil,
AdBlue etc.) X [33]
Li-ion battery X [34]
Electric motor (PMSM 1) X [35]
Other components Autonomous system X See Section 2.2.6
and sensors
Electric ch X 36
Infrastructure ectric charger 361
Battery exchange system X [37,38]
Diesel X
Fuel iese [39]
Electricity X [40-42]
Use phase -
Repair and Repair X X [33,43]
maintenance Maintenance X* X [33]
Disposal Vehicle disposal X X [27,33,44]
End-of-life Chargingv infrastructure X [27,33]
disposal .
Recycling Battery recycling X [45]

* Permanent magnet synchronous machine.

Transport in the inventory was divided between freight shipping and road transport.
The road transport was assumed to be perfomed by truck or lorry in the 16-32 tonnage
interval and with a Euro 6 emission standard because it is the most common truck used
in Sweden and is also common in Europe according to logistics experts (A. Lagneldv, J.
Peterson & C. Brus, VDAB, Uppsala, Sweden, Personal communication 2021-04-08).
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2.2.1. Glider

The inventory for the glider and other nondriveline parts of the vehicle can be found
in several publications. Wolff, Seidenfus, Gordon, Alvarez, Kalt and Lienkamp [32] give an
inventory for a general heavy-duty vehicle, while Lee, et al. [46] and Mantoam, Romanelli
and Gimenez [20] focus on agricultural tractors. However, their inventories include the
cabin and the conventional driveline, neither of which was included for the autonomous
battery electric drive (BED) tractors in this study. According to Nemecek and Kégi [33],
on-road heavy duty vehicles like lorries can be used as an approximation for material
composition and assembly of tractors where other data sources cannot be found. Because
the data in Wolff, Seidenfus, Gordon, Alvarez, Kalt and Lienkamp [32] are separated into
machine parts and are scalable, they were selected for use. A glider without internal
combustion engine (ICE) and cab was constructed and scaled to a total glider weight of
2500 kg, giving a scaling factor of 63.5% compared to the source data.

2.2.2. Battery

The battery considered in Lagnelov, Dhillon, Larsson, Nilsson, Larsolle and Hans-
son [18] was a Li-ion battery with an NCA positive electrode (LiNig gCo 15Al0502) and
graphite as the negative electrode (NCA-C). Inventory data for a NCA-C battery module
taken from Le Varlet, Schmidt, Gambhir, Few and Staffel [34] were used to represent this
battery. Some materials were not found in the database, so recommended proxies listed in
Siret, Tytgat, Ebert, Mistry, Thirlaway, Schultz, Xhantopoulos, Wiaux, Chanson, Tomboy,
Pettit, Gediga, Bonell and Carrillo [45] were used. In addition, the electricity used for
battery assembly and some manufacturing was switched from Norwegian mix in the
original article to Swedish mix, due to the focus of the present study being the Swedish con-
text, but component manufacturing was assumed to use either local or Chinese electricity
mix [34,40].

It is worth noting that the inventory in Le Varlet, Schmidt, Gambhir, Few and
Staffel [34] is for residential batteries for local energy storage, which is a different use
from that of electromobility. However, the inventory data were based on batteries for
use in electric vehicles [9,47-50] and were therefore considered applicable. Because the
battery studied in Lagnel6v, Dhillon, Larsson, Nilsson, Larsolle and Hansson [18] was
specified in terms of energy content (in kWh) and the battery LCI was given in mass units,
a gravimetric energy content of 0.10 Wh g’1 taken from Le Varlet, Schmidt, Gambhir, Few
and Staffel [34] was assumed.

2.2.3. Battery Recycling

Standardised general invenory data for battery recycling, including resource use
and credits, are provided as part of the EU product environmental footprint (PEF) docu-
mentation for batteries in mobile applications (PEFCR) [45]. The PEFCR data cover the
broader-term Li-ion battery but are modelled specifically on LCO, NMC, LFP and Li-Mn
chemistries. It was assumed that this was an adequate stand-in for the recycling part of the
chemistries (NCA-based) used in the model in this study. Recycled materials were used as
credits and replaced virgin material in applications outside the system boundry, modelled
as a negative flow.

2.2.4. Electric Motor

A gate-to-gate LCI for a general PMSM electric motor of variable power and torque
was performed by [51], with additional data given in [35]. It details the production of the
motor, but not the rest of the driveline. End-of-life is also omitted. However, this still served
as a good base for the electric machines used in the driveline in the present assessment,
as PMSM is the most common electric motor technology used in electric vehicles [51] and
the resolution is high. This value was verified with values for an electric motor of the
same power presented in Spielmann, et al. [52], which, due to lower resolution, had lower
impacts but agreed on the key impact points and impact magnitudes.
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2.2.5. ICE Driveline

The conventional tractor used for comparison was assumed to be a 250 kW tractor,
using field tractor data from Nemecek and Kégi [33]. This included raw material extraction,
manufacturing, assembly, maintenance and disposal steps of the life cycle. However, these
factors are often aggregated to the manufacturing phase in the presentation of results in
this paper. The model used the tractor mass as a quantifying unit for the inventory. The
unloaded weight was assumed to be 10,800 kg, which was based on the average weight of
modern tractor models with approximate power 250 kW (Valtra 5294, Fendt 933 Vario, John
Deere 7R330). The mass and inventory data were verified with data taken from [20] for a
246 kW tractor with mass 10,950 kg. The exact composition tends to vary between data
sources, but steel and ductile iron are key components, with rubber (in the form of tyres)
and oil frequently cited as a large part of the maintenance materials used [20,32,33,46]. A
comparison of key materials from different sources by weight can be seen in Figure 2.

B Nemecek & Kagi (2007) B Mantoam et al. (2016)
Wolff et al. (2020)

| -_-

Aluminum Copper Lubricating oil Polypropylene Steel Rubber

Figure 2. Material use in the assembly and maintenance phases of the vehicle body for key materials by weight [20,32,33].

Note that the data from Wolff, Seidenfus, Gordon, Alvarez, Kalt and Lienkamp [32] do not include maintenance and repairs,

and hence the usage of steel, rubber and lubricating oils is lower than in the other sources.

2.2.6. Autonomous System and Sensors

Because there are no industry standards for the equipment used for self-driving
vehicles, information on the components in these vehicles was gathered from previous
studies and industry practitioners. The sensors listed in Table 2 represent a realistic setup
according to industry experts (L. Ahlman (Agrodroids), F. Lofgren (Dynorobot), A. Stalring
& F. Gradelius (Tegbot), Linkdping, Sweden, Personal communications). This is in line
with the technology recommendations in Mousazadeh [53], Hirz and Walzel [54].
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Table 2. Type and number of sensors and components used to represent the autonomous capacity of the vehicle system.

Component Weight (kg) Number of Components Model Example
Lidar 22 4 Sick MRS6124R-131001
GPS 0.5 1
Camera 0.037 3 Point Gre}; f)ilﬁils}égr/[c\}i (():.irl;/g:a(folor USB
Radar 1.08 2 Sick RAS407-2801100
Wifi/5g router 0.23 1 Sick TDC-E200R6
Base station 0.23 1
GPU 0.25 1 Nvidia Jetson
Various sensors 01 ; ottion couer and posion sensors.
Switch 0.5 1
Control unit 0.5 1
Copper wiring 0.2m 19

Due to the lack of detailed inventory data and the assumption that the sensors make
up a small part of the total impact, proxies were used where applicable. It was assumed
that all the basic sensors weighed 0.1 kg and consisted of equal ratios of active and passive
electronic components, with a wiring board making up half the total weight. Lidar, radar,
cameras, GPS units and routers were assumed to make up half the weight in the plastic
casing, with half of the remainder being wiring board. The remaining quarter was equally
distributed on passive and active electronics components. Each component was assumed
to require 20 cm of copper wiring for data and electricity transmission, at a weight of
0.045 kg m~!. A switch and control unit electronics were assumed to be needed.

2.3. Use Phase
2.3.1. Refueling Infrastructure

The LCI for the charging infrastructure was taken from Lucas, Silva and Neto [36]
and included two fast chargers (50 kW DC-DC) and two slow chargers (3 kW) for less
demanding charging during longer periods of vehicle downtime. Both chargers were
assumed to be located on the farm and grouped at two stations, each containing one 50 kW
and one 3 kW charger. In addition, it was assumed that 10 m? of soil had to be excavated
and that 1 m® of concrete was used for the foundation for each fast charger, which is in line
with values presented in Lucas, Silva and Neto [36].

The BEV system also requires a battery exchange system. Due to lack of existing
systems of the correct size, a 42-inch forklift automatic transfer carriage (ATC) with a
gross weight of 349 kg [37] was assumed. It was made of a steel frame including 10 steel
rollers and was modelled as a general steel product with a minor hydraulic system. It
was assumed to function using the motor and battery of an existing electric hand pallet
truck, which was modeled after a Toyota LWE200 electric pallet truck using the option to
exchange the battery pack to Li-ion, giving it a total weight of 374 kg [38].

It was assumed that a diesel fuel tank and a fuel pump were part of the existing
infrastructure on the farm because they are common equipment and often display a lifetime
longer than the vehicle itself.

2.3.2. Fuel

The amounts of fuel used were taken from Lagnelov, Larsson, Nilsson, Larsolle and
Hansson [17] and amounted to an average of 79,302 kWh y ! electricity for the BEV and
168,748 kWh y~! in diesel for the conventional machine over the vehicle’s lifetimes of
15 years.
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The electricity used as fuel for the BEV was Swedish marginal electricity, a mix
consisting of 41.4% imported electricity produced from natural gas, 35.1% from wind
power and 23.5% from biomass in the form of wood products [40]. The origin of the
electricity used was varied in scenario analysis (see Section 3.3) to provide a thorough view
of the impacts of different mixes because the choice of electricity is reported to be one of
the most impactful assumptions in LCA of EVs [10,55].

Emissions from the diesel used as fuel for the conventional machine in this study were
based on emissions from burning diesel in agricultural machinery [39]. There is a legal
requirement for a blend with renewable fuels in Sweden, but pure diesel was used as the
default case, with renewable fuel additives included in the scenario analysis in Section 3.3.

2.3.3. Maintenance and Repair

It was assumed that repair and maintenance of the BEV followed the guidelines for
agricultural machinery [20,33,43]. However, engine oil, AdBlue and some lubricants were
ignored because they are not utilised in EVs. It was assumed that for every kg of tractor,
0.176 kg tyres and 0.103 kg of hydraulic oil were needed during the use phase [33], as well
as 27.2 MJ per kg material used. To account for repairs during the vehicle’s lifetime, a
repair factor of 0.2 was used, meaning that 20% of the initial material in the tractor needed
replacing during use [33]. This was handled by scaling up the glider by 20% because
the motor and charging infrastructure were assumed to last the lifetime of the tractor
without repairs and the battery was replaced instead of being repaired. This meant a total
glider scaling of 76.1% compared to the data in [32]. These values were verified with data
from [20,43].

2.3.4. Battery Replacement

The batteries assumed in the system are replaced as soon as their maximum state-of-
charge reaches 0.8 of the initial maximum value at full charge (this is sometimes called
a state-of-health of 0.8). This happens at different equivalent full cycles depending on
the charging speed. For the given charging rate, charging speed and battery size, the
lifetime of the battery was simulated to exceed 4000 cycles and was theoretically calculated
to be 15.5 years [18]. However, calender ageing was not included and the charging rate
was assumed to be the primary driver behind cell ageing. To include the uncertainties in
the battery simulations, variations in the battery lifetime were included in the sensitivity
analysis in Section 3.3.

2.4. End-of-Life

The end-of-life stage is reported to be the stage with the lowest life cycle emissions for
electric vehicles, when viewed in isolation [27]. It is also a stage that has high uncertainty
for EVs and is often simplified or omitted in studies of EVs [56]. Therefore, a simple method
in line with previous work on EVs [27,45] and agricultural machinery [33] was adopted.
The battery was assumed to be disposed of as recommended by Siret, Tytgat, Ebert, Mistry,
Thirlaway, Schultz, Xhantopoulos, Wiaux, Chanson, Tomboy, Pettit, Gediga, Bonell and
Carrillo [45], adjusted with battery production data from [34] to eliminate recycling of
materials not used in the production.

Following the suggestions of Loon, Olsson and Klintbom [27] and Nemecek and
Kagi [33], it was assumed that for the rest of the vehicle, the main metals (aluminium, cop-
per and steel) were recycled to 100%. To obtain a realistic energy demand, it was assumed
that the metals needed to go through a process before reuse. This was characterised by the
average metal working processes for each of the main metals and a general metal working
process for remaining metals, described by Steiner and Frischknecht [57].

The rubber in the tyres was assumed to be used for energy recovery. Oils were
assumed to be incinerated in hazardous waste incineration plants, while paper, plastics
and rubber were assumed to be incinerated for energy recovery and glass was assumed
to be sent to landfill [9,27]. The energy use for disassembly and shredding was set at
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139 kWh/ton machinery, based on Nemecek and Kégi [33]. All components were assumed
to be disposed of within Sweden and transported 150 km by lorry, a value used by Loon,
Olsson and Klintbom [27]. The same assumptions were made for recycling of refuelling and
recharging infrastructure. In addition, the concrete used for the foundation was assumed
to be sent to landfill for disposal. Recycling opportunities for concrete exist but are not
commonly used globally. The waste treatment allocation can be seen in Table 3.

Table 3. Waste treatment scenario allocation for each major component category, in mass fractions and with the total weight
scaled as described in Sections 2.2.1 and 2.3.3. Battery recycled as detailed in Siret, Tytgat, Ebert, Mistry, Thirlaway, Schultz,
Xhantopoulos, Wiaux, Chanson, Tomboy, Pettit, Gediga, Bonell and Carrillo [45].

Tractor Part Sub-Part Reust(at{/(l’{)ecycling La(r(l’/::)l)ﬁll Incirz;:;:ltion H?iz;g::;i il(\)/lriat(i/zi)al, V\;(;.(lg)ht
Frame 100 0 0 0 650
Chassis 97 0 3 0 1218
Glider Tyres and wheel 67 0 33 0 503
Other components 51 0 46 4 629
Glider total 83 0 16 1 3000
Motor PMSM * motor 83 2 7 7 26.9
Charger Charger 14 73 13 0 3305
Battery Body 99.7 0 0.3 0 349
e’s(fs‘fe 8 Pallet truck 95 0 3 1 374

* Permanent magnet synchronous machine.

2.5. Impact Assessment (LCIA)

The most common impact assessment categories presented in previous LCAs on EVs, au-
tomotive batteries and agricultural field operations were compiled [9,20,25,27,45-47,50,58,59].
This was done to encompass the scope of both the EV and agricultural viewpoints. A
summary of the compilation can be seen in Table S3a in the Supplementary Material. The
chosen impact factors (Table S3b in the Supplementary Material) were also in line with
recommendations made by Loon, Olsson and Klintbom [27]. The most frequently used im-
pact category factors were then matched with the factors given in the ReCiPe method [60].
This resulted in 11 out of 18 midpoint characterisation categories from SimaPro being used.
When calculating damage assessment and single score value, all 18 original categories were
included so as not to undermine the original method [31] or introduce bias (Figure 3).

The perspective chosen decides the weight of impacts and the conversion factors
used. The hierarchist perspective was stated as the default perspective [60] and was used
in this study. Results for both midpoint and endpoint indicators are presented, with the
conversion factors in Table S3c in the Supplementary Material used to go from midpoint to
endpoint, according to this equation:

CFex,c,a = Cme,c X FM—)E,c,a (1)

where CFe is the endpoint characterisation factor, CFm is the midpoint characterisation
factor, c is the perspective (in this study hierarchist), 4 is the area of protection (human
health, ecosystems, resource scarcity), x is the stressor and Fy;—f , is the midpoint-to-
endpoint conversion factor for perspective ¢ and area of protection a [60].
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Emissions

LCI results

Impact categories Damage categories Weighted score

Global warming

Stratospheric ozone depletion
Fine particulate matter formation
Terrestrial acidification
Freshwater eutrophication
Terrestrial ecotoxicity
Freshwater ecotoxicity

Human carcinogenic toxicity
Human non-carcinogenic toxicity
Mineral resource scarcity

Fossil resource scarcity

Human health

k.

Ecosystem impact Single score

: Ozone formation
I Marine eutrophication
: Marine ecotoxicity

I'Land use

| Water consumption

Resource scarcity

Figure 3. Life cycle impact assessment (LCIA) framework used in this study with all impact categories shown, divided

between those that are individually presented (full box) and those included in the damage assessment and weighted score,

but not presented separately (dashed box).
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