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Abstract: With rapid urbanization in China, the dramatic land-use changes are one of the most
prominent features that have substantially affected the land ecosystems, thus seriously threatening
sustainable development. However, current studies have focused more on evaluating the economic
efficiency of land-use, while the loss and degradation of ecosystem services are barely considered.
To address these issues, this study first proposed a land use-based input–output index system,
incorporating the impact on ecosystem services value (ESV), and then by taking 30 provinces in
China as a case study. We further employed the super-efficiency slacks-based model (Super-SBM)
and the Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT)
model to explore the spatial–temporal changes and driving factors of the evaluated land-use eco-
efficiency. We found that the evaluated ESV was 28.09 trillion yuan (at the price of 2000) in 2015,
and that the total ESV experienced an inverted U-shaped trend during 2000–2015.The average
land-use eco-efficiency exhibited a downward trend from 0.87 in 2000 to 0.68 in 2015 with distinct
regional differences by taking into account the ESV. Our results revealed that northeastern region
had the highest efficiency, followed by the eastern, western, and central region of China. Finally, we
identified a U-shaped relationship between the eco-efficiency and land urbanization, and found that
technological innovation made great contributions to the improvement of the eco-efficiency. These
findings highlight the importance of the ESV in the evaluation of land-use eco-efficiency. Future land
development and management should pay additional attention to the land ecosystems, especially
the continuous supply of human well-being related ecosystem services.

Keywords: land-use eco-efficiency; ecosystem services; super-efficiency slacks-based model (super-
SBM); STIRPAT model; China’s provincial level

1. Introduction

Ecosystem services (ES) are goods and services that are directly or indirectly related
to human well-being and sustainability, and the supply of ecosystem services is subject
to specific land-use structures and patterns [1]. However, emerging evidence shows that
land-use changes can make fundamental impacts on ecosystem services provisioning [2].
It has been estimated that the global loss of ES value (ESV) can reach 4.3–20.2 trillion
USD/year due to the land-use change [3]. A significant decline in global loss of ES value is
also reported in China, which is 4.18–91.09 billion USD from 1988 to 2008 [4]. Moreover,
in a small region of Nigeria, land-use changes led to a 4.83% decline in total ESV during
2000–2010 [5]. Facing this increasingly worsening situation, it has great significance to
enhance the sustainable development through considering the ESV losses.
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In principle, expansion of built-up land would change local land-use structures and
patterns, thus directly affecting the supply of ES. For example, the heavy use of cultivated
land will exert direct impacts on food production [6,7]. On the other hand, the land-use
changes can strongly affect local climatic conditions [8], resulting in indirect responses
of ESV to land-use changes, such as biodiversity loss [9]. Therefore, the trade-off be-
tween economic benefits and ESV losses needs to be addressed in the process of rapid
urbanization. The dissection of the trade-off can provide important clues for sustainable
development [10,11]. Currently, scholars have conducted a lot of meaningful work to
ease this trade-off. For example, payments for ecosystem services (PES) is recommended
as an efficient economic tool that can internalize the ecological cost into specific policy
making [12]. In addition, economists are trying to construct a framework of the System of
Environmental and Economic Accounting (SEEA), which can provide valuable information
for sustainable policy-making [13].

In the process of urbanization in China, there are many issues associated with land-use,
such as disordered exploitation, leave unused, low land-use efficiency, and so on [14,15].
Intensive land-use has been considered as an effective way to improve land-use efficiency.
In general, high land-use efficiency means more economic benefits with less inputs per
unit area [16]. The economic output per unit area has been used to represent land-use
efficiency [17]. More generally, the non-parametric model, slacks-based model (SBM), is
frequently applied to evaluate land-use efficiency [18–20]. In SBM, the scientific construc-
tion of an input–output index system is the premise of evaluating efficiency reasonably.
The increasing environmental problems have led to extensive studies on evaluating the
eco-efficiency of land-use in recent years [10,15,21,22]. Some undesirable outputs are
considered in the efficiency evaluation, such as exhaust gas, waste water discharge, and
solid waste discharge [10,15,21,22]. There is evidence that economic efficiency was higher
than eco-efficiency when the undesirable outputs were taken into account. For example,
after considering multiple undesirable outputs, including COD discharge, NOx, SO2, soot
emission, dust emission, and industrial solid wastes, Zhang et al. [23] found that China’s
average eco-efficiency was reduced to 0.39 from 0.50. Huang et al. [24] compared the results
with and without undesirable outputs. They found that the average of eco-efficiency in
China was reduced by 0.13 after considering COD, wastewater, exhaust gas, SO2, dust,
solid waste, and smoke dust. These evidences highlight the importance of these undesir-
able outputs in the evaluation of eco-efficiency. However, the land-use change, especially in
the context of rapid urbanization, exerts substantial impacts on provision of ES [2–5,25–27],
seriously threatening the sustainable development. Therefore, it is necessary to incorporate
the ESV impact into the evaluation of land-use eco-efficiency, otherwise, it may lead to
unreliable conclusions [28].

Currently, Shi et al. [29] proposed a new eco-efficiency by dividing the economic
output per unit area by the ESV per unit area. The use of this indicator has been reported
to analyze the eco-efficiency changes from 2007 to 2015 in the case of Ningguo Gangkou
industrial park in eastern China. However, this indicator cannot eliminate the influence
of random factors, thus a comprehensive eco-efficiency indicator reflecting endogenous
impacts should be provided. In addition, the eco-efficiency of provinces in China was
evaluated in 2014 by a super-efficiency slacks-based model (Super-SBM), and the eco-
efficiency in the most southeastern provinces was found to decline by taking into account
the provincial aggregate ESV [28]. However, the variations of ESV are mainly driven by
land-use changes, thus, considering the aggregated ESV in eco-efficiency calculation is
unreasonable and unpersuasive in theory. In sum, current attempts to integrate the ESV
into eco-efficiency still have some drawbacks. We attempt to make some improvements
from the following three aspects: First, this study measures the eco-efficiency from the
perspective of land-use change. Second, the spatial–temporal changes of the eco-efficiency
are explored. Finally, we further analyze the driving factors of the eco-efficiency, which can
provide more specific policy implications.
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Finally, since the 1990s, China has undergone a remarkable urbanization and in-
dustrialization, and one of the most prominent features in this process is the dramatic
expansion of built-up land [30]. As a valuable input factor, land resources are the basis of
economic development, providing essential room for human activities and industrial orga-
nizations [31]. However, an extensive expansion of built-up land has also made substantial
impacts on land-use patterns, such that a substantial amount of forest and cultivated
land are encroached on during the rapid urbanization [25,26]. This deeply affects land
ecosystems, thus hampering the continuous supply of ecosystem services [2]. Facing the
increasing contradiction between economic expansion and land ecological conservation, it
has great practical significance to evaluate and explore regional land-use eco-efficiency and
its driving factors [15,32]. The main contents are organized as follows: We first introduced
the data and the methods employed in this study. Then, the results were presented and
analyzed, including the spatial–temporal variations of ESV and land-use eco-efficiency in
China during 2000 to 2015, and the driving factors. The discussion, policy implication, and
conclusion are given at the final part.

2. Data and Methodology

Based on previous studies, the present study made some extensions and improvements
from the following aspects. First, we proposed a land use-based input–output index system,
in which the ESV per unit of built-up land was considered. Second, the eco-efficiency
changes over a long period from 2000 to 2015 in China were studied using the Super-SBM.
Third, we further employed the Stochastic Impacts by Regression on Population, Affluence
and Technology (STIRPAT) model to explore the driving factors of land-use eco-efficiency.

2.1. Data Sources

In this study, multisource data in different formats are used. Land use data at the
resolution of 1 × 1 km2 covered 4 years (2000, 2005, 2010, and 2015), which were obtained
from Resource and Environment Science and Data Center, Chinese Academy of Sciences
(RESDC, http://www.resdc.cn/). In addition, net primary productivity (NPP), precipita-
tion, and soil erosion data were used to calculate the ESV, which were also provided by
RESDC. The socio-economic data were used to measure the driving factors of land-use
eco-efficiency, which involved net profit per unit area of natural grain output (obtained
from The Compilation of Cost and Income Data of National Agricultural Products), population,
GDP, added value of secondary industry, and energy consumption (obtaining from China
Statistical Yearbook). In addition, in order to eliminate the price effect, all currency data
were converted to the price of 2000. Specifically, the consumer price index, fixed asset
investment price index, and agricultural price index were applied to convert the price of
GDP, fixed asset investment, and agricultural product to the price of 2000.

2.2. Dynamic Evaluation of ESV
2.2.1. Spatial–Temporal Adjustment of Equivalent Factors

The two prevailing methods are currently used to evaluate the ESV, namely equivalent
factor method (EFM) and ecological modelling method (EMM), respectively [28,33]. EMM
contains multiple parameters and complicated calculations, which are applicable to the
ESV evaluation at local regions [33]. In contrast, EFM that requires less data and simple
calculations is particularly suitable for the evaluation at large scale regions. Given this
advantage, a large number of case studies based on EFM have been conducted in different
regions, such as the global [3,34], China [4,33], India [35], Nepal [36], Nigeria [5], and so on.
Therefore, in the present study, we applied EFM to evaluate the ESV in China.

The footstone of EFM is an equivalent factor for different ES functions. The seminal
work by Costanza et al. provided an equivalent factor table for the global ecosystem [1].
For the terrestrial ecosystems in China, Xie et al. [33] have done extensive research in this
area, and their findings provided the most comprehensive and solid equivalent factor table
(Table 1). However, the equivalent factors in [33] are static, reflecting the average of a

http://www.resdc.cn/
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certain ES in a certain ecosystem [28]. In practice, ES provisioning is not only determined by
land-use changes, but also subject to local natural and geographical conditions [37]. Based
on previous studies [28,33,38,39], different ES functions are separately affected by critical
ecological factors. In this study, we selected NPP, precipitation, and soil erosion level to
realize spatial–temporal adjustment of the ES coefficients as described previously [33].
Specifically, the adjustment formula is given as follows:

EFa
ij f = EFf × Cij f ( f = 1, 2, 3) (1)

where EFf is the equivalent factor value of ES function f in Table 1; Cijf is the adjustment
coefficient for function f in province i and year j; EFa

ij f is the adjusted equivalent factor
value for function f in province i and year j. Function f = 1 refers to the function of FS, MS,
GR, CR MSF, WT, BC, and CAS in Table 1, which is assumed to be linearly related to NPP.
Similarly, function f = 2 refers to WS and WFR, which is assumed to be linearly related to
precipitation, and function f = 3 refers to EP, which is assumed to be linearly related to soil
erosion level. The formulas for adjustment coefficient Cijf are given as follows:

(1) Spatial–temporal adjustment coefficient of NPP:

Cij1 = NPPij/NPP (2)

where NPPij is the NPP in province i and year j, and NPP is the four-year average
(2000, 2005, 2010, and 2015) of national NPP.

(2) Spatial–temporal adjustment coefficient of precipitation:

Cij2 = Pij/P (3)

where Pij is the precipitation in province i and year j, and P is the four-year average
(2000, 2005, 2010, and 2015) of national precipitation.

(3) Spatial adjustment coefficient of soil erosion level:

Ci3 = SEi/SE (4)

where SEi is the soil erosion level in province i, it should be noted that soil erosion
data are available merely for 1995 in this study, thus, SE is the average of national soil
erosion level in 1995. According to RESDC’s classification, soil erosion is divided into
6 levels (from 1 to 6, the higher the value, the severer the erosion is). We applied the
Zonal Statistics tool in ArcGIS 10.5 to calculate average erosion level as described in
the literature [28].

Table 1. Table of equivalent factors for China’s terrestrial ecosystem provided by the reference [33].

Ecosystem Classification Provisioning Services Regulating Services Habitat Services CAS

Primary Secondary FP MS WS GR CR WT WFR EP MSF BC CAS

Cultivated
land

Dry land 0.85 0.40 0.02 0.67 0.36 0.10 0.27 1.03 0.12 0.13 0.06
Paddy land 1.36 0.09 −2.63 1.11 0.57 0.17 2.72 0.01 0.19 0.21 0.09

Forest Forest 0.25 0.58 0.30 1.91 5.70 1.67 3.73 2.32 0.18 2.11 0.93

Grassland Grassland 0.23 0.34 0.19 1.21 3.19 1.05 2.34 1.47 0.11 1.34 0.59

Wetland Wetland 0.51 0.50 2.59 1.90 3.60 3.60 24.23 2.31 0.18 7.87 4.73

Barren land
Desert 0.01 0.03 0.02 0.11 0.10 0.31 0.21 0.13 0.01 0.12 0.05
Barren 0.00 0.00 0.00 0.02 0.00 0.10 0.03 0.02 0.00 0.02 0.01

Water area Water 0.8 0.23 8.29 0.77 2.29 5.55 102.24 0.93 0.07 2.55 1.89

Glacier and snow 0.00 0.00 2.16 0.18 0.54 0.16 7.13 0.00 0.00 0.01 0.09

Notes: FP, MS, WS, GR, CR, WT, WFR, EP, MSF, BC, and CAS refer to the ecosystem service (ES) functions of food production, materials
supply, water supply, gas regulation, climate regulation, waste treatment, water flow regulation, erosion prevention, maintenance of soil
fertility, biodiversity conservation, and cultural and amenity service.
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2.2.2. Economic Value of Standard Equivalent Factor

We took the economic value of the average annual grain yield as a standard equivalent
value. In this study, we included three main grain crops, namely rice, wheat, and corn.
Furthermore, to eliminate the influence of human factors on grain output, we used the
net profits of grain production to measure standard equivalent value. Finally, the value of
standard equivalent factor can be obtained by the following formula:

SEV =
1
5 ∑2014

i=2010 ri(Sr
i × NPr

i + Sw
i × NPw

i + Sc
i × NPc

i ) (5)

where SEV is the calculated value of standard equivalent factor (yuan/km2). Sr
i , Sw

i and Sc
i

are the proportions of rice, wheat, and corn in their total cultivated area. NPr
i , NPw

i and
NPr

i are net profit per unit area of rice, wheat, and corn (yuan/km2), respectively. i is the
year from 2010 to 2014. Agricultural price index r was used to convert the price in 2000.
Finally, SEV was estimated at 1612.08 yuan/km2 at the price of 2000.

2.2.3. Evaluation of ESV

Finally, provincial and national ESV can be obtained by the following formulas:

ESVi = SEV ×∑
k

∑
f
(EFa

ik f × Aik) (6)

TESV = ∑m
i=1 ESVi (7)

where ESVi is the ESV in province i (yuan). Aik is the area of land use type k in province
i (km2). EFa

ik f is the adjusted factor for function f of a certain land use type k in province i.
TESV is total ESV in China (yuan). m is the number of provinces.

2.3. Evaluation of Land-Use Eco-Efficiency
2.3.1. Input–Output Index System

The construction of the index system is the key to accurate evaluation of the land-use
eco-efficiency. In this study, we selected capital stock per unit of built-up land (SCPBA),
labor input per unit of built-up land (LIPBA), and energy consumption per unit of built-up
land (ECPBA) as the inputs, meanwhile, pollutant discharge per unit of built-up land
(PDPBA), GDP per unit of built-up land (GPBA), and ESV per unit of built-up land (EPBA)
are taken as the outputs. In addition, due to the data availability, Tibet, Macao, Hong Kong,
and Taiwan are not considered in this study. The specific data processing is described
as follows:

(1) SCPBA: This study employed perpetual inventory method to calculate the capital
stock, and the formula is Kt = Kt−1(1− δt) + PAt It. Thereinto, Kt is the capital
stock in period t, which is made up of the fixed asset investment in period t and the
depreciated value of cumulative investment in period t − 1. δt is the depreciation
rate, which was provided by [40]. PAt is the fixed asset investment in year t. The
initial capital stock of each province in 2000 was estimated by [41]. Finally, the capital
stock in 2000, 2005, 2010, and 2015 was determined by the formula of K2000+n =

K2000(1− δ)n + ∑n
i=1(1− δ)n−iPA2000+i I2000+i (n = 0, 5, 10 and 15).

(2) LIPBA: Following [42], we used the total number of employees in each province to
represent the labor input.

(3) ECPBA: The total energy consumption represented as standard coal equivalent was
used to measure energy input in each province [43].

(4) PDPBA: This study selected sewage, exhaust, and solid waste to describe the un-
desirable outputs [24]. In addition, entropy method was used to obtain a single
comprehensive environmental indicator [44].
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(5) GPBA: Routinely, the GDP of each province was used to describe the desirable output.
The GDP was converted to the price of 2000 by the equation of GDP2000 = PGiGDPi.
PGi is the consumer price index in year i.

(6) EPBA: Different from pervious researches, this study further considered the impact
on ESV resulting from the land exploitation. Therefore, this study incorporated the
ESV into the evaluation of land-use eco-efficiency.

It should be noted that all inputs and outputs mentioned above were divided by the
area of built-up land in each province. By doing so, we can portray the land-use based
production process. On the one hand, SCPBA, LIPBA, and ECPBA can reflect economic
activity intensity. On the other hand, GPBA and PDPBA are used as the desirable and
undesirable output, respectively. These two indicators have been routinely incorporated in
traditional eco-efficiency evaluation [10,15,45]. Furthermore, the EPBA was also considered.
To some extents, this indicator represents an ecological carrying capacity (ECC), the higher
the indicator is, the better ECC is. In sum, on a comparable spatial unit, a region that con-
sumes fewer resources, producing more desirable outputs, and simultaneously sustaining
better ECC can be viewed as good performance, thus has higher land-use eco-efficiency.
Table 2 shows the detailed description of the above variables.

Table 2. The summary of the input–output indicators. SCPBA: Capital stock per unit of built-up land;
LIPBA: Labor input per unit of built-up land; ECPBA: Energy consumption per unit of built-up land;
PDPBA: Pollutant discharge per unit of built-up land; GPBA: GDP per unit of built-up land; EPBA:
ESV (ecosystem services value) per unit of built-up land.

Type Variable Units Obs Mean Std. Dev Min Max

Inputs
SCPBA 109 yuan/km2 120 6.17 5.99 0.22 30.33
LIPBA 104 person/km2 120 0.51 0.67 0.03 3.81
ECPBA 104 ton/km2 120 2.15 1.61 0.35 11.47

Outputs
PDPBA - 120 0.80 0.15 0.26 0.99
GPBA 109 yuan/km2 120 0.86 0.64 0.12 3.22
EPBA 109 yuan/km2 120 2.67 3.51 0.08 17.71

2.3.2. Super-SBM Model

SBM and stochastic frontier function (SFA) are two widely used methods for efficiency
evaluation [46]. SBM is a non-parametric approach that can evaluate the efficiency of
multiple decision making units (DMUs) with multiple inputs and outputs [47]. SFA needs
to set up the production function in advance, which is more suitable for a large sample
estimation [48]. In this study, we used a SBM model to evaluate the land-use eco-efficiency.

Traditional CCR model (developed by Charnes, Cooper, and Rhodes) evaluates the
efficiency of a DUM between 0 to 1 [47]. The value of a DUM at the production frontier is
equal to 1, and it can be considered efficient, while the DMU away from the frontier means
that it is less efficient. A drawback of CCR model is that it cannot further distinguish the
performances of the DMUs at the frontier. To address this issue, we applied an improved
supper-efficiency model [49]. This method can be used to compare and distinguish the effi-
cient DMUs. The higher the value of a DMU is, the better the efficiency is. In addition, the
CCR model is a radial model, which cannot capture the slacks, resulting in overestimation
of the efficiency [50]. Therefore, in the present study, we employed the Super-SBM model
to evaluate the eco-efficiency. The Super-SBM model is given as follows:

minρ =
1+ 1

m ∑m
i=1 s−i /xik

1− 1
s ∑s

r=1 s+r /yrk

s.t. ∑n
j=1, j 6=k xijωj − s−i ≤ xik

∑n
j=1, j 6=k yrjωj + s+r ≥ yrk

ωj, s−i , s+r ≥ 0

(8)
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where, we consider n DMUs with m inputs and s outputs. The vector form can be respec-
tively expressed as x ∈ Rm, y ∈ Rs. The matrices of X > 0 and Y > 0 are defined as
X = [x1, . . . , xn] ∈ Rm×n and Y = [y1, . . . , y2] ∈ Rs×n. ωj is a weighting factor, and s−i
and s+r are the slacks of inputs and outputs. When ρ < 1, it means the evaluated DMU is
less efficient, while ρ > 1 means the DMU is efficient.

2.4. Influential Factor Analysis of Land-Use Eco-Efficiency

In order to explore the driving factors of the land-use eco-efficiency, this study used
a widely accepted environmental attribution model, the STIRPAT model, to analyze the
impacts of driving factors on land-use eco-efficiency. The general form of this model is
shown as follows:

I = aPα AβTγε (9)

for the sake of reducing heteroscedasticity, we took the logarithm of formula (9), as follows:

lnI = C + αlnP + βlnA + γlnT + ε′ (10)

where I is the environmental impact. P is the population. A is the wealth level. T is the
technical progress. C is the constant term. ε′ is the error term. In our case, the variable
I refers to the land-use eco-efficiency. Moreover, we introduced the indicators of land
urbanization and its quadratic term in our empirical model [51]. For the sake of robustness,
we perform three empirical models, model (1–3), which are given as follows:

lnLUEEit = A + α0lnLUit + α1lnPDit + α2lnPGDPit + α3lnTECit + ui + ε
′
it (11)

lnLUEEit = A + β0lnLUit + β1(lnLUit)
2 + β2lnPDit + β3lnPGDPit + β4lnTECit + ui + ε

′
it (12)

lnLUEEit = A + θ0lnLUit + θ1(lnLUit)
2 + θ2lnPDit + θ3lnPGDPit + θ4lnTECit + ui + vt + ε′it (13)

where LUEE is the calculated land-use eco-efficiency. PD refers to population density,
which was calculated by dividing the total population by the total area. PGDP refers to
GDP per capita. TEC was the technology level. Referring to previous studies [15], we
used energy consumption per unit of GDP as a proxy for TEC. The lower the TEC is, the
higher the technology level is. In addition, to explore urbanization impacts on land-use
eco-efficiency, land urbanization (LU) was introduced, which was calculated by dividing
the built-up land area by the total area. ui and vt are provincial and year effect, and ε′it
is the error term. α, β, and θ are regression results. The descriptions of the variables are
shown in Table 3.

Table 3. The summary of the variables.

Type Variable Units Obs Mean Std.
Dev Min Max

Dependent variable LUEE - 120 0.81 0.41 0.04 1.88
Independent variable LU % 120 5.56 6.34 0.14 28.95

PD person/km2 120 403.10 495.04 7.42 3036.88
PGDP yuan/person 120 9860.31 5771.05 2662 34547
TEC 10−4 ton/yuan 120 2.98 1.80 0.75 9.57

3. Results
3.1. Spatial–Temporal Changes of ESV

Figure 1 and Table 4 show the overall variations of the ESV in China. For temporal
changes, during the whole study period, the ESV was reduced by 1.5 billion yuan. Specifi-
cally, the ESV increased during the period of 2000–2005. This is because multiple major
ecological protection projects were implemented around 2000, such as Grain for Green
Project and the Sloping Land Conversion Program [52]. A remarkable achievement is
the continuous conversion from the unused land and cultivated land to the forest. The
total ESV experienced dramatic declines during the following two periods of 2005–2010
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and 2010–2015. With the acceleration of urbanization, the huge demand for built-up land
resulted in rapid loss and degradation of the natural or semi-natural land [39]. On average,
the eastern and central region presented a similar inverted U-shaped trend (Table 4), while
the western region maintained a growth trend across the whole period, demonstrating that
the ecological protection projects are well effective in the western area [52]. However, the
northeastern provinces experienced a significant decrease from 1864.20 billion yuan in 2000
to 1853.81 billion yuan in 2015.

Figure 1. The spatial distribution of ESV in 2015 (a); and the temporal changes of ESV during 2000–2015 (b).

Table 4. Changes in ESV from 2000 to 2015 in different regions (billion yuan).

Region 2000 2005 2010 2015

Eastern 563.21 564.36 563.58 561.20
Central 1010.04 1017.27 1014.06 1012.62
Western 982.56 983.59 984.77 985.68

Northeastern 1864.20 1860.05 1858.91 1853.81
Total 28093.17 28147.01 28129.48 28091.67

Notes: Eastern region includes Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong,
and Hainan. Central region includes Shanxi, Anhui, Jiangxi, Henan, Hubei, and Hunan. Western region includes
Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and
Xinjiang. Northeastern region includes Liaoning, Jilin, and Heilongjiang.

For spatial distribution, benefitting from the vast forest cover, the southern and
northeastern areas presented high ESV per unit area (Figure 1). Fujian, Zhejiang, and
Guangdong were the highest provinces with 11.76 million yuan/ha, 10.16 million yuan/ha,
and 9.99 million yuan/ha, respectively. While the northwestern five provinces had the lowest
value, specifically referring to Xinjiang (0.15 million yuan/ha), Ningxia (0.52 million yuan/ha),
Qinghai (0.62 million yuan/ha), Gansu (0.78 million yuan/ha), and Inner Mongolia
(1.00 million yuan/ha). This is because these areas are dominated by low ecological
value land, such as the Gobi desert, bare land, degraded grassland, etc. In addition, the
northern and southeastern provinces presented a declining trend, such that Tianjin and
Shanghai exhibited the most declines, with the decline by 8.27% and 6.48%, respectively.
Most of the growth was found in the Midwest. Shandong, Henan, and Ningxia increased
the most, with the increase by 2.90%, 2.75%, and 2.02%, respectively.

3.2. Analysis of Land-Use Eco-Efficiency
3.2.1. Spatial–Temporal Changes of Land Use Eco-Efficiency

We selected SCPBA, LIPBA, and ECPBA as the inputs, and PDPBA, GPBA, and EPBA
as the outputs. The Super-SBM model was used to calculate provincial land-use eco-
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efficiency. The detailed results are given in Table 5, and the spatial–temporal distributions
are presented in Figure 2.

Table 5. Land-use eco-efficiency changes of provinces from 2000 to 2015.

Region Province 2000 2005 2010 2015 Annual Change Rate (%)

Eastern Beijing 0.20 1.08 1.11 1.16 12.43
Tianjin 1.01 1.05 1.04 1.17 0.97
Hebei 0.13 0.12 0.12 0.11 −1.59

Shanghai 1.24 1.18 1.16 1.10 −0.76
Jiangsu 1.00 0.23 0.15 0.12 −13.36

Zhejiang 0.66 0.61 0.58 0.45 −2.42
Fujian 1.13 1.03 0.85 0.73 −2.88

Shandong 1.09 1.00 1.00 0.04 −19.15
Guangdong 1.00 1.05 1.09 1.05 0.31

Hainan 1.06 1.11 1.07 1.03 −0.19
Mean a 0.85 0.85 0.82 0.70 −1.33

Central Shanxi 0.20 0.19 0.20 0.15 −1.78
Anhui 0.43 1.16 1.17 1.09 6.41
Jiangxi 1.00 0.82 0.80 0.62 −3.17
Henan 0.14 1.00 0.18 0.13 −0.46
Hubei 1.09 0.69 0.65 0.53 −4.68
Hunan 1.01 1.03 1.01 0.81 −1.47
Mean b 0.64 0.82 0.67 0.56 −0.99

Western Inner
Mongolia 1.88 1.48 1.35 1.00 −4.14

Guangxi 1.14 1.06 1.01 0.73 −2.92
Chongqing 1.05 0.76 0.57 0.39 −6.35

Sichuan 0.56 0.64 0.59 0.60 0.54
Guizhou 1.20 1.28 1.34 0.66 −3.86
Yunnan 1.18 1.20 1.19 1.21 0.16
Shaanxi 0.46 0.41 0.43 0.39 −1.18
Gansu 1.00 1.01 1.01 0.33 −7.18

Qinghai 1.03 1.02 1.03 0.53 −4.37
Ningxia 0.13 0.13 0.10 1.01 14.81
Xinjiang 1.00 1.01 1.03 0.16 −11.43
Mean c 0.97 0.91 0.88 0.64 −2.74

Northeastern Liaoning 1.03 0.30 0.27 0.24 −9.20
Jilin 0.89 1.07 1.05 1.05 1.07

Heilongjiang 1.22 1.28 1.42 1.87 2.88
Mean d 1.05 0.88 0.91 1.05 0.04

Total Mean e 0.87 0.87 0.82 0.68 −1.62
Notes: The superscript a, b, c, d and e refer to the mean of eastern region, central region, western region,
northeastern region and the whole country.

Our results showed that the average of land-use eco-efficiency in China was 0.68 in
2015. From the perspective of the four regions, the northeastern region was the highest
(1.05), then followed by the eastern region (0.70), the western region (0.64) and the central
region (0.56) (Table 5). Specifically, Heilongjiang had the highest value of 1.87 in 2015,
followed by Yunnan (1.21), Tianjin (1.17), and Beijing (1.16). Conversely, Shandong was
evaluated as the lowest of 0.04, Hebei (0.10), Jiangsu (0.11), and Henan (0.13) were also at the
bottom of the evaluated provinces. For spatial distribution (Figure 1a), in the southeastern
region, only Beijing, Tianjin, Shanghai, Guangdong, and Hainan presented high land-use
eco-efficiency. Previous studies have shown a gradual decline trend from the east to the
west in China [24]. However, after considering the ESV, low values were found in the
North China Plain and the northwest region (Figure 1a). This is because these areas are
dominated by low ecological value land, such as the desert and cultivated land.
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Figure 2. The spatial distribution of land-use eco-efficiency in 2015 (a); and the temporal changes of land-use eco-efficiency
during 2000–2015 (b).

From the perspective of temporal changes, China’s land-use eco-efficiency presented
a downward trend during 2000–2015. As shown in Table 5, the average land-use eco-
efficiency in China was 0.87 in 2000, and dropped to 0.68 by 2015. The annual change
rate during the period was −1.61%. Specifically, except for the northeastern region, the
eastern, central, and western regions showed downward trends. For example, the western
region had the highest drop (2.74%), followed by the eastern (1.33%) and central (0.99%)
regions. As shown in Figure 2b, 9 provinces had experienced the growth. Of them, Ningxia
increased the most by 14.81%, followed by Beijing (12.43%), Anhui (6.41%), Heilongjiang
(2.88%), Jilin (1.07%), Tianjin (0.97%), Sichuan (0.54%), Guangdong (0.31%), and Yunnan
(0.16%). These provinces had at least one prominent feature: The rapid economic growth
or the ESV growth. These results confirmed the importance of ESV in the evaluation of
eco-efficiency.

3.2.2. Comparison of Land Use Eco-Efficiency with and without ESV

As mentioned above, previous studies did not consider the ESV in the eco-efficiency
evaluation, and this may lead to unreliable results. In the present study, we further analyzed
how the eco-efficiency was affected by ESV.

Figure 3 presents the rank changes of the provinces in 2015 with and without ESV.
In general, southwestern areas in China showed positive changes, while most provinces
in the northeast had negative changes. Specifically, Yunnan and Guizhou experienced a
significant increase of their ranks, from 22th and 26th to 2th and 15th, respectively. Because
of their high EPBA, the EPBAs of Yunnan and Guizhou were 1001.55 million yuan/ha
and 624.19 million yuan/ha, which were the two highest provinces. In other words, the
ECC levels in these two provinces were relatively high. Besides the two provinces, the
ECC levels in Chongqing, Sichuan, and Jiangxi also showed substantial improvements.
On the contrary, the rankings of Henan, Gansu, and Xinjiang were found to reduce by
16, 11, and 9, respectively. The EPBAs of the three provinces were 15.23 million yuan/ha,
71.28 million yuan/ha, and 37.10 million yuan, respectively. It can be seen that these
provinces had relatively poorer ecological conditions.
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Figure 3. The rank change of land-use eco-efficiency in 2015 with and without ESV.

To further explore policy implications, the slacks of the inputs and outputs were
given in Table 6. First, we can observe that the proportion of total slacks in EPBA was
the most, reaching 103.02%. It has been suggested that the loss and degradation of ESV
are an unneglected problem in eco-efficiency evaluation. According to the average of
four regions, western and central provinces exhibited higher shortages, which is mainly
determined by the vast low-value land type cover in these provinces. In addition, the
proportion of GPBA was the lowest due to the rapid economic development, resulting
in the excess production [53]. Finally, the proportions of the three inputs were basically
the same. However, the inputs in the central, western, and northeastern regions were
significantly higher than those in the eastern region, suggesting that the excess investments
in the midwestern area resulted in a certain level of production inefficiency [54].

Table 6. The slacks of four regions in China for 2015.

S − (1) S − (2) S − (3) S + (1) S + (2) S + (3)

Average·E 0.02 0.06 1.16 0.19 0.18 1.78
Average·C 0.03 0.53 2.04 0.14 0.002 2.07
Average·W 0.04 0.75 3.14 0.02 0.03 2.20
Average·NE 0.002 0.42 1.37 0.17 0.04 1.95
Average·T 0.03 0.44 2.08 0.12 0.08 2.01

% 16.05 17.33 16.44 15.71 9.35 103.02
Note: S − (1), S − (2), S − (3), S + (1), S + (2) and S + (3) refer to the slacks of LIPBA, ECPBA, SCPBA, PDPBA,
GPBA, and EPBA, respectively. Average·E, Average·C, Average·W, Average·NE, and Average·T refer to the
average slacks of the eastern, central, western, and northeastern regions, respectively. % refers to the proportion
of total slacks in total inputs/outputs.

3.3. Influential Factors of Land-Use Eco-Efficiency

First of all, according to the results of Hausman Test, we applied a fixed effect model
to analyze the influential factors of land-use eco-efficiency. Based on the results of Table 7,
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the monomial term was negative, and the quadratic term was positive. This means that the
relationship between land urbanization and land-use eco-efficiency follows a “U” shaped
curve. This is due to extensive and inefficient exploitation resulting from the initial phase
of urbanization, the unregulated, unordered, and blind urban expansion. However, with
the continued urbanization, the government and the public have focused more on the
quality of urban development [51]. For example, green infrastructures are planned and
constructed during urban expansion, and the encroachment on natural and semi-natural
land is strictly prohibited [51]. Moreover, the turning point of the “U” shaped curve was
1.47%, which has been achieved in 33 provinces in 2015. In addition, the GDP was a critical
input in the evaluation of eco-efficiency, meanwhile, the per capita GDP was taken as
a potential driving factor for the eco-efficiency variations. This treatment may result in
biased estimation problem. Thus, for the sake of robustness, we selected another indicator
of per capita income as the proxy in our empirical model. Results are shown in model (4)
(Table 7), we can find that the basic results were unchanged, indicating that the estimation
results were robust.

Table 7. Regression results for driving factors of land-use eco-efficiency.

Variables Model (1) Model (2) Model (3) Model (4)

lnLU −0.57 (−1.35) −0.61 (−1.47) −0.31 (−0.68) −0.29 ** (−2.24)
(lnLU)2 0.39 ** (2.35) 0.40 ** (2.35) 0.32 * (1.97)

lnPD 1.53 * (1.73) 0.52 (0.54) 1.73 (1.33) 0.16 (0.15)
lnPGDP 0.50 (1.09) 0.91 * (1.90) 1.51 ** (2.09) 0.86 ** (2.19)
lnTEC −0.40 ** (−2.52) −0.60 ** (−3.40) −0.54 ** (−2.37) −0.63 *** (−2.70)

Province fixed effects Yes Yes Yes Yes
Year fixed effects No No Yes Yes

Constant 1.40 (0.32) −7.19 (−1.29) −8.16 (−1.45) −0.55 (−0.07)
Adj-R2 0.13 0.18 0.25 0.21

Observations 120 120 120 120
Note: *, **, *** represent the significance level at 10%, 5%, and 1%. t-value is in the parentheses. In model (4), the
variable of lnPGDP was replaced by per capita income.

Regarding other driving factors, the population density and GDP per capita were
positive (Table 7). However, only GDP per capita was significant, with the coefficient
of 1.51. With the economic development, the improvements of production and energy
efficiency as well as industrial structure lead to the promotion of eco-efficiency [51]. The
coefficient of the technology level was negative (Table 7). In our study, we found that every
1% increase in the technology level can bring an increase in eco-efficiency by 0.54%.

4. Discussion and Policy Implication

Due to the rapid urbanization, the loss and degradation of ES has become an ur-
gent problem. However, there is still a lack of effective methods to guide sustainable
development. This study proposed a land use-based input–output index system, which
incorporated the important ecological factor of ESV, and further, by employing the Super-
SBM and STIRPAT model, we calculated and explored the spatial–temporal changes and
driving factors of this creative eco-efficiency.

In the present study, we evaluated the ESV in China from 2000 to 2015. We found that
the evaluated ESV was 28.09 trillion yuan (at the price of 2000) in 2015. One important
finding in the present study is that only the western region exhibited a steady growth
during the 15 years, while the eastern, central, and northeastern regions showed dramatic
declines after 2005 according to the spatial–temporal changes in ESV. On the one hand, our
results demonstrated that the major ecological protection projects were highly effective
in the western region, e.g., the Grain for Green Project. On the other hand, rapid urban
expansion in the mid-eastern region has encroached on a great deal of natural or semi-
natural land, resulting in significant declines of the ESV in these areas. Therefore, in the
future, more ecological conservation projects should be initiated and strengthened in the
western region [52], and further extended to the mid-east. Moreover, strict restrictions on
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protection of cultivated land and urban development should be implemented, especially in
central eastern areas.

The land-use eco-efficiency in China’s provinces during 2000–2015 was calculated
based on the built land use-based input–output index system. A downward trend in
eco-efficiency was identified. This result differed from most previous studies in which an
upward trend in eco-efficiency in recent years has been reported [24]. We demonstrated
that the ESV has considerable impacts on the evaluation of land-use eco-efficiency (Table 5
or Figure 2). Land-use change is one of the most prominent features of urbanization, which
directly or indirectly affects the supply of ecological service. Therefore, the consideration
of the ESV is highly essential when evaluating regional land-use eco-efficiency. In addition,
an interesting finding is that some provinces with declining ESV showed eco-efficiency
improvement. Beijing, Tianjin, and Shanghai were typical examples (cf. Figures 1b and 2b).
Due to the remarkable economic growth in these provinces, the contribution of economic
growth outweighs the ESV losses, thus leading to an upward trend in eco-efficiency.
However, it is worth noting that these provinces may be over-consuming local natural
resources, hence, the total scale of built-up land should be strictly controlled, and more
green infrastructures and ecological lands should be provided during urban development.

Finally, we further explored the driving factors of land-use eco-efficiency using the
STIRPAT model. Our results indicate a “U” shaped relationship between land-use eco-
efficiency and land urbanization in China. The improvement of the eco-efficiency may
result from the intensive land-use and/or an increase in green infrastructure, as well as the
extensive economic growth. Therefore, the underlying causes of this relationship need to
be explored in the future. For policy makers, optimizing the spatial structure, promoting
orderly development, and investing in green infrastructure are very important for sus-
tainable urban development. In addition, the government should continue to strengthen
its investment in the technology, especially in the field of green-oriented technological
innovation [55].

5. Conclusions

This study evaluated the land-use eco-efficiency of China’s provinces from 2000 to
2015. By incorporating the ESV into the input-output index system, we explored spatial-
temporal changes of the comprehensive land-use eco-efficiency, which could better reflect
regional sustainability level. A Super-SBM model was applied to measure the efficiency,
and then a panel STIRPAT model was employed to explore the driving factors of the
efficiency. The results showed that the overall ESV experienced an inverted U-shaped
trend during 2000–2015, but with obvious regional differences. In the eastern and central
regions, they had a similar inverted U-shaped trend, while the western and northeastern
regions presented a steady upward and downward trend, respectively. In addition, after
incorporating regional ESV, the evaluated land-use eco-efficiency declined from 0.87 in 2000
to 0.68 in 2015. For spatial distribution, the eco-efficiency of the northeastern region was the
highest, followed by the eastern region, the western region, and the central region. Finally,
the results of the STIRPAT model indicated a U-shaped relationship between land-use
eco-efficiency and land urbanization, and a significant improvement of the eco-efficiency by
the technological innovation. These findings indicate that ecosystem services are important
determinants for regional sustainable development. Therefore, land development should
pay additional attention to the land ecosystems, especially the closely related provisions of
ecosystem services.
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