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Abstract: With rapid urbanization in China, the dramatic land‐use changes are one of the most 

prominent features that have substantially affected the land ecosystems, thus seriously threatening 

sustainable development. However, current studies have focused more on evaluating the economic 

efficiency of land‐use, while the loss and degradation of ecosystem services are barely considered. 

To address these issues, this study first proposed a land use‐based input–output index system, 

incorporating the impact on ecosystem services value (ESV), and then by taking 30 provinces in 

China as a case study. We further employed the super‐efficiency slacks‐based model (Super‐SBM) 

and the Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT) 

model to explore the spatial–temporal changes and driving factors of the evaluated land‐use eco‐

efficiency. We found that the evaluated ESV was 28.09 trillion yuan (at the price of 2000) in 2015, 

and that the total ESV experienced an inverted U‐shaped trend during 2000–2015.The average land‐

use eco‐efficiency exhibited a downward trend from 0.87 in 2000 to 0.68 in 2015 with distinct 

regional differences by taking into account the ESV. Our results revealed that northeastern region 

had the highest efficiency, followed by the eastern, western, and central region of China. Finally, 

we identified a U‐shaped relationship between the eco‐efficiency and land urbanization, and found 

that technological innovation made great contributions to the improvement of the eco‐efficiency. 

These findings highlight the importance of the ESV in the evaluation of land‐use eco‐efficiency. 

Future land development and management should pay additional attention to the land ecosystems, 

especially the continuous supply of human well‐being related ecosystem services. 

Keywords: land‐use eco‐efficiency; ecosystem services; super‐efficiency slacks‐based model (super‐

SBM); STIRPAT model; China’s provincial level 

 

1. Introduction 

Ecosystem services (ES) are goods and services that are directly or indirectly related 

to human well‐being and sustainability, and the supply of ecosystem services is subject to 

specific land‐use structures and patterns [1]. However, emerging evidence shows that 

land‐use changes can make fundamental impacts on ecosystem services provisioning [2]. 

It has been estimated that the global loss of ES value (ESV) can reach 4.3–20.2 trillion 

USD/year due to the land‐use change [3]. A significant decline in global loss of ES value 

is also reported in China, which is 4.18–91.09 billion USD from 1988 to 2008 [4]. Moreover, 

in a small region of Nigeria, land‐use changes led to a 4.83% decline in total ESV during 

2000–2010 [5]. Facing this increasingly worsening situation, it has great significance to 

enhance the sustainable development through considering the ESV losses. 
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In principle, expansion of built‐up land would change local land‐use structures and 

patterns, thus directly affecting the supply of ES. For example, the heavy use of cultivated 

land will exert direct impacts on food production [6,7]. On the other hand, the land‐use 

changes can strongly affect local climatic conditions [8], resulting in indirect responses of 

ESV to land‐use changes, such as biodiversity loss [9]. Therefore, the trade‐off between 

economic benefits and ESV losses needs to be addressed in the process of rapid 

urbanization. The dissection of the trade‐off can provide important clues for sustainable 

development [10,11]. Currently, scholars have conducted a lot of meaningful work to ease 

this trade‐off. For example, payments for ecosystem services (PES) is recommended as an 

efficient economic tool that can internalize the ecological cost into specific policy making 

[12]. In addition, economists are trying to construct a framework of the System of 

Environmental and Economic Accounting (SEEA), which can provide valuable 

information for sustainable policy‐making [13]. 

In the process of urbanization in China, there are many issues associated with land‐

use, such as disordered exploitation, leave unused, low land‐use efficiency, and so on 

[14,15]. Intensive land‐use has been considered as an effective way to improve land‐use 

efficiency. In general, high land‐use efficiency means more economic benefits with less 

inputs per unit area [16]. The economic output per unit area has been used to represent 

land‐use efficiency [17]. More generally, the non‐parametric model, slacks‐based model 

(SBM), is frequently applied to evaluate land‐use efficiency [18–20]. In SBM, the scientific 

construction of an input–output index system is the premise of evaluating efficiency 

reasonably. The increasing environmental problems have led to extensive studies on 

evaluating the eco‐efficiency of land‐use in recent years [10,15,21,22]. Some undesirable 

outputs are considered in the efficiency evaluation, such as exhaust gas, waste water 

discharge, and solid waste discharge [10,15,21,22]. There is evidence that economic 

efficiency was higher than eco‐efficiency when the undesirable outputs were taken into 

account. For example, after considering multiple undesirable outputs, including COD 

discharge, NOx, SO2, soot emission, dust emission, and industrial solid wastes, Zhang et 

al. [23] found that China’s average eco‐efficiency was reduced to 0.39 from 0.50. Huang et 

al. [24] compared the results with and without undesirable outputs. They found that the 

average of eco‐efficiency in China was reduced by 0.13 after considering COD, 

wastewater, exhaust gas, SO2, dust, solid waste, and smoke dust. These evidences 

highlight the importance of these undesirable outputs in the evaluation of eco‐efficiency. 

However, the land‐use change, especially in the context of rapid urbanization, exerts 

substantial impacts on provision of ES [2–5,25–27], seriously threatening the sustainable 

development. Therefore, it is necessary to incorporate the ESV impact into the evaluation 

of land‐use eco‐efficiency, otherwise, it may lead to unreliable conclusions [28]. 

Currently, Shi et al. [29] proposed a new eco‐efficiency by dividing the economic 

output per unit area by the ESV per unit area. The use of this indicator has been reported 

to analyze the eco‐efficiency changes from 2007 to 2015 in the case of Ningguo Gangkou 

industrial park in eastern China. However, this indicator cannot eliminate the influence 

of random factors, thus a comprehensive eco‐efficiency indicator reflecting endogenous 

impacts should be provided. In addition, the eco‐efficiency of provinces in China was 

evaluated in 2014 by a super‐efficiency slacks‐based model (Super‐SBM), and the eco‐

efficiency in the most southeastern provinces was found to decline by taking into account 

the provincial aggregate ESV [28]. However, the variations of ESV are mainly driven by 

land‐use changes, thus, considering the aggregated ESV in eco‐efficiency calculation is 

unreasonable and unpersuasive in theory. In sum, current attempts to integrate the ESV 

into eco‐efficiency still have some drawbacks. We attempt to make some improvements 

from the following three aspects: First, this study measures the eco‐efficiency from the 

perspective of land‐use change. Second, the spatial–temporal changes of the eco‐efficiency 

are explored. Finally, we further analyze the driving factors of the eco‐efficiency, which 

can provide more specific policy implications. 
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Finally, since the 1990s, China has undergone a remarkable urbanization and 

industrialization, and one of the most prominent features in this process is the dramatic 

expansion of built‐up land [30]. As a valuable input factor, land resources are the basis of 

economic development, providing essential room for human activities and industrial 

organizations [31]. However, an extensive expansion of built‐up land has also made 

substantial impacts on land‐use patterns, such that a substantial amount of forest and 

cultivated land are encroached on during the rapid urbanization [25,26]. This deeply 

affects land ecosystems, thus hampering the continuous supply of ecosystem services [2]. 

Facing the increasing contradiction between economic expansion and land ecological 

conservation, it has great practical significance to evaluate and explore regional land‐use 

eco‐efficiency and its driving factors [15,32]. The main contents are organized as follows: 

We first introduced the data and the methods employed in this study. Then, the results 

were presented and analyzed, including the spatial–temporal variations of ESV and land‐

use eco‐efficiency in China during 2000 to 2015, and the driving factors. The discussion, 

policy implication, and conclusion are given at the final part. 

2. Data and Methodology 

Based on previous studies, the present study made some extensions and 

improvements from the following aspects. First, we proposed a land use‐based input–

output index system, in which the ESV per unit of built‐up land was considered. Second, 

the eco‐efficiency changes over a long period from 2000 to 2015 in China were studied 

using the Super‐SBM. Third, we further employed the Stochastic Impacts by Regression 

on Population, Affluence and Technology (STIRPAT) model to explore the driving factors 

of land‐use eco‐efficiency. 

2.1. Data Sources 

In this study, multisource data in different formats are used. Land use data at the 

resolution of 1  1 km2 covered 4 years (2000, 2005, 2010, and 2015), which were obtained 

from Resource and Environment Science and Data Center, Chinese Academy of Sciences 

(RESDC, http://www.resdc.cn/). In addition, net primary productivity (NPP), 

precipitation, and soil erosion data were used to calculate the ESV, which were also 

provided by RESDC. The socio‐economic data were used to measure the driving factors 

of land‐use eco‐efficiency, which involved net profit per unit area of natural grain output 

(obtained from The Compilation of Cost and Income Data of National Agricultural Products), 

population, GDP, added value of secondary industry, and energy consumption (obtaining 

from China  Statistical Yearbook). In addition, in order to eliminate the price effect, all 

currency data were converted to the price of 2000. Specifically, the consumer price index, 

fixed asset investment price index, and agricultural price index were applied to convert 

the price of GDP, fixed asset investment, and agricultural product to the price of 2000. 

2.2. Dynamic Evaluation of ESV 

2.2.1. Spatial–Temporal Adjustment of Equivalent Factors 

The two prevailing methods are currently used to evaluate the ESV, namely 

equivalent factor method (EFM) and ecological modelling method (EMM), respectively 

[28,33]. EMM contains multiple parameters and complicated calculations, which are 

applicable to the ESV evaluation at local regions [33]. In contrast, EFM that requires less 

data and simple calculations is particularly suitable for the evaluation at large scale 

regions. Given this advantage, a large number of case studies based on EFM have been 

conducted in different regions, such as the global [3,34], China [4,33], India [35], Nepal 

[36], Nigeria [5], and so on. Therefore, in the present study, we applied EFM to evaluate 

the ESV in China. 

The footstone of EFM is an equivalent factor for different ES functions. The seminal 

work by Costanza et al. provided an equivalent factor table for the global ecosystem [1]. 
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For the terrestrial ecosystems in China, Xie et al. [33] have done extensive research in this 

area, and their findings provided the most comprehensive and solid equivalent factor 

table (Table 1). However, the equivalent factors in [33] are static, reflecting the average of 

a certain ES in a certain ecosystem [28]. In practice, ES provisioning is not only determined 

by land‐use changes, but also subject to local natural and geographical conditions [37]. 

Based on previous studies [28,33,38,39], different ES functions are separately affected by 

critical ecological factors. In this study, we selected NPP, precipitation, and soil erosion 

level to realize spatial–temporal adjustment of the ES coefficients as described previously 

[33]. Specifically, the adjustment formula is given as follows: 

𝐸𝐹 𝐸𝐹 𝐶   (f = 1, 2, 3) (1)

where EFf is the equivalent factor value of ES function f in Table 1; Cijf is the adjustment 

coefficient for function f in province i and year j; 𝐸𝐹  is the adjusted equivalent factor 

value for function f in province i and year j. Function f = 1 refers to the function of FS, MS, 

GR, CR MSF, WT, BC, and CAS in Table 1, which is assumed to be linearly related to NPP. 

Similarly, function f = 2 refers to WS and WFR, which is assumed to be linearly related to 

precipitation, and function f = 3 refers to EP, which is assumed to be linearly related to soil 

erosion level. The formulas for adjustment coefficient Cijf are given as follows: 

(1) Spatial–temporal adjustment coefficient of NPP: 

𝐶 𝑁𝑃𝑃 /𝑁𝑃𝑃 (2)

where NPPij is the NPP in province i and year j, and 𝑁𝑃𝑃 is the four‐year average (2000, 

2005, 2010, and 2015) of national NPP. 

(2) Spatial–temporal adjustment coefficient of precipitation: 

𝐶 𝑃 /𝑃 (3)

where Pij is the precipitation in province i and year j, and 𝑃 is the four‐year average (2000, 

2005, 2010, and 2015) of national precipitation. 

(3) Spatial adjustment coefficient of soil erosion level: 

𝐶 𝑆𝐸 /𝑆𝐸 (4)

where SEi is the soil erosion level in province i, it should be noted that soil erosion data 

are available merely for 1995 in this study, thus, 𝑆𝐸 is the average of national soil erosion 

level in 1995. According to RESDC’s classification, soil erosion is divided into 6 levels 

(from 1 to 6, the higher the value, the severer the erosion is). We applied the Zonal 

Statistics tool in ArcGIS 10.5 to calculate average erosion level as described in the literature 

[28]. 

Table 1. Table of equivalent factors for China’s terrestrial ecosystem provided by the reference [33]. 

Ecosystem Classification  Provisioning Services  Regulating Services  Habitat Services  CAS 

Primary  Secondary  FP  MS  WS  GR  CR  WT  WFR  EP  MSF  BC  CAS 

Cultivated land 
Dry land 0.85 0.40 0.02 0.67 0.36 0.10 0.27 1.03 0.12 0.13 0.06 

Paddy land 1.36 0.09 −2.63 1.11 0.57 0.17 2.72 0.01 0.19 0.21 0.09 

Forest Forest 0.25 0.58 0.30 1.91 5.70 1.67 3.73 2.32 0.18 2.11 0.93 

Grassland Grassland 0.23 0.34 0.19 1.21 3.19 1.05 2.34 1.47 0.11 1.34 0.59 

Wetland Wetland 0.51 0.50 2.59 1.90 3.60 3.60 24.23 2.31 0.18 7.87 4.73 

Barren land 
Desert 0.01 0.03 0.02 0.11 0.10 0.31 0.21 0.13 0.01 0.12 0.05 

Barren 0.00 0.00 0.00 0.02 0.00 0.10 0.03 0.02 0.00 0.02 0.01 

Water area Water 0.8 0.23 8.29 0.77 2.29 5.55 102.24 0.93 0.07 2.55 1.89 

 Glacier and snow 0.00 0.00 2.16 0.18 0.54 0.16 7.13 0.00 0.00 0.01 0.09 

Notes: FP, MS, WS, GR, CR, WT, WFR, EP, MSF, BC, and CAS refer to the ecosystem service (ES) functions of food 

production, materials supply, water supply, gas regulation, climate regulation, waste treatment, water flow regulation, 

erosion prevention, maintenance of soil fertility, biodiversity conservation, and cultural and amenity service. 
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2.2.2. Economic Value of Standard Equivalent Factor 

We took the economic value of the average annual grain yield as a standard 

equivalent value. In this study, we included three main grain crops, namely rice, wheat, 

and corn. Furthermore, to eliminate the influence of human factors on grain output, we 

used the net profits of grain production to measure standard equivalent value. Finally, the 

value of standard equivalent factor can be obtained by the following formula: 

𝑆𝐸𝑉
1
5

𝑟 𝑆 𝑁𝑃 𝑆 𝑁𝑃 𝑆 𝑁𝑃  (5)

where SEV is the calculated value of standard equivalent factor (yuan/km2). 𝑆 , 𝑆  and 

𝑆  are the proportions of rice, wheat, and corn in their total cultivated area. 𝑁𝑃 , 𝑁𝑃  

and 𝑁𝑃  are net profit per unit area of rice, wheat, and corn (yuan/km2), respectively. i is 

the year from 2010 to 2014. Agricultural price index r was used to convert the price in 

2000. Finally, SEV was estimated at 1612.08 yuan/km2 at the price of 2000. 

2.2.3. Evaluation of ESV 

Finally, provincial and national ESV can be obtained by the following formulas: 

𝐸𝑆𝑉 𝑆𝐸𝑉 𝐸𝐹 𝐴  (6)

𝑇𝐸𝑆𝑉 𝐸𝑆𝑉  (7)

where 𝐸𝑆𝑉  is the ESV in province i (yuan). 𝐴  is the area of land use type k in province 

i (km2). 𝐸𝐹  is the adjusted factor for function f of a certain land use type k in province 

i. 𝑇𝐸𝑆𝑉 is total ESV in China (yuan). m is the number of provinces. 

2.3. Evaluation of Land‐Use Eco‐Efficiency 

2.3.1. Input–Output Index System 

The construction of the index system is the key to accurate evaluation of the land‐use 

eco‐efficiency. In this study, we selected capital stock per unit of built‐up land (SCPBA), 

labor input per unit of built‐up land (LIPBA), and energy consumption per unit of built‐

up land (ECPBA) as the inputs, meanwhile, pollutant discharge per unit of built‐up land 

(PDPBA), GDP per unit of built‐up land (GPBA), and ESV per unit of built‐up land (EPBA) 

are taken as the outputs. In addition, due to the data availability, Tibet, Macao, Hong 

Kong, and Taiwan are not considered in this study. The specific data processing is 

described as follows: 

(1) SCPBA: This study employed perpetual inventory method to calculate the capital 

stock, and the formula is 𝐾 𝐾 1 𝛿 𝑃𝐴 𝐼 . Thereinto, 𝐾  is the capital 

stock in period t, which is made up of the fixed asset investment in period t and 

the depreciated value of cumulative investment in period t  −  1. 𝛿   is the 

depreciation rate, which was provided by [40]. 𝑃𝐴  is the fixed asset investment 

in year t. The initial capital stock of each province in 2000 was estimated by [41]. 

Finally, the capital stock in 2000, 2005, 2010, and 2015 was determined by the 

formula of 𝐾 𝐾 1 𝛿 ∑ 1 𝛿 𝑃𝐴 𝐼  (n = 0, 5, 10 

and 15). 

(2) LIPBA: Following [42], we used the total number of employees in each province 

to represent the labor input. 

(3) ECPBA: The total energy consumption represented as standard coal equivalent 

was used to measure energy input in each province [43]. 

(4) PDPBA: This study selected sewage, exhaust, and solid waste to describe the 

undesirable outputs [24]. In addition, entropy method was used to obtain a single 
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comprehensive environmental indicator [44]. 

(5) GPBA: Routinely, the GDP of each province was used to describe the desirable 

output. The GDP was converted to the price of 2000 by the equation of 𝐺𝐷𝑃
𝑃𝐺 𝐺𝐷𝑃 . 𝑃𝐺  is the consumer price index in year i. 

(6) EPBA: Different from pervious researches, this study further considered the 

impact on ESV resulting from the land exploitation. Therefore, this study 

incorporated the ESV into the evaluation of land‐use eco‐efficiency. 

It should be noted that all inputs and outputs mentioned above were divided by the 

area of built‐up land in each province. By doing so, we can portray the land‐use based 

production process. On the one hand, SCPBA, LIPBA, and ECPBA can reflect economic 

activity intensity. On the other hand, GPBA and PDPBA are used as the desirable and 

undesirable output, respectively. These two indicators have been routinely incorporated 

in traditional eco‐efficiency evaluation [10,15,45]. Furthermore, the EPBA was also 

considered. To some extents, this indicator represents an ecological carrying capacity 

(ECC), the higher the indicator is, the better ECC is. In sum, on a comparable spatial unit, 

a region that consumes fewer resources, producing more desirable outputs, and 

simultaneously sustaining better ECC can be viewed as good performance, thus has 

higher land‐use eco‐efficiency. Table 2 shows the detailed description of the above 

variables. 

Table 2. The summary of the input–output indicators. SCPBA: Capital stock per unit of built‐up 

land; LIPBA: Labor input per unit of built‐up land; ECPBA: Energy consumption per unit of built‐

up land; PDPBA: Pollutant discharge per unit of built‐up land; GPBA: GDP per unit of built‐up 

land; EPBA: ESV (ecosystem services value) per unit of built‐up land. 

Type  Variable  Units  Obs  Mean  Std. Dev  Min  Max 

Inputs 

SCPBA 109 yuan/km2 120 6.17 5.99 0.22 30.33 

LIPBA 104 person/km2 120 0.51 0.67 0.03 3.81 

ECPBA 104 ton/km2 120 2.15 1.61 0.35 11.47 

Outputs 

PDPBA ‐ 120 0.80 0.15 0.26 0.99 

GPBA 109 yuan/km2 120 0.86 0.64 0.12 3.22 

EPBA 109 yuan/km2 120 2.67 3.51 0.08 17.71 

2.3.2. Super‐SBM Model 

SBM and stochastic frontier function (SFA) are two widely used methods for 

efficiency evaluation [46]. SBM is a non‐parametric approach that can evaluate the 

efficiency of multiple decision making units (DMUs) with multiple inputs and outputs 

[47]. SFA needs to set up the production function in advance, which is more suitable for a 

large sample estimation [48]. In this study, we used a SBM model to evaluate the land‐use 

eco‐efficiency. 

Traditional CCR model (developed by Charnes, Cooper, and Rhodes) evaluates the 

efficiency of a DUM between 0 to 1 [47]. The value of a DUM at the production frontier is 

equal to 1, and it can be considered efficient, while the DMU away from the frontier means 

that it is less efficient. A drawback of CCR model is that it cannot further distinguish the 

performances of the DMUs at the frontier. To address this issue, we applied an improved 

supper‐efficiency model [49]. This method can be used to compare and distinguish the 

efficient DMUs. The higher the value of a DMU is, the better the efficiency is. In addition, 

the CCR model is a radial model, which cannot capture the slacks, resulting in 

overestimation of the efficiency [50]. Therefore, in the present study, we employed the 

Super‐SBM model to evaluate the eco‐efficiency. The Super‐SBM model is given as 

follows: 
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𝑚𝑖𝑛𝜌
1

1
𝑚∑ 𝑠 𝑥⁄

1
1
𝑠 ∑ 𝑠 𝑦⁄

 

(8)

s.t.  ∑ 𝑥 𝜔, 𝑠 𝑥  

𝑦 𝜔
,

𝑠 𝑦  

𝜔 , 𝑠 , 𝑠 0 

where, we consider n DMUs with m inputs and s outputs. The vector form can be 

respectively expressed as 𝑥 ∈ 𝑅 ,𝑦 ∈ 𝑅 . The matrices of 𝑋 0 and 𝑌 0 are defined 

as 𝑋 𝑥 , , 𝑥 ∈ 𝑅  and 𝑌 𝑦 , ,𝑦 ∈ 𝑅 . 𝜔  is a weighting factor, and 𝑠  

and 𝑠  are the slacks of inputs and outputs. When 𝜌 1, it means the evaluated DMU is 

less efficient, while 𝜌 1 means the DMU is efficient. 

2.4. Influential Factor Analysis of Land‐Use Eco‐Efficiency 

In order to explore the driving factors of the land‐use eco‐efficiency, this study used 

a widely accepted environmental attribution model, the STIRPAT model, to analyze the 

impacts of driving factors on land‐use eco‐efficiency. The general form of this model is 

shown as follows: 

𝐼 𝑎𝑃 𝐴 𝑇 𝜀 (9)

for the sake of reducing heteroscedasticity, we took the logarithm of formula (9), as 

follows: 

𝑙𝑛𝐼 𝐶 𝛼𝑙𝑛𝑃 𝛽𝑙𝑛𝐴 𝛾𝑙𝑛𝑇 𝜀  (10)

where I is the environmental impact. P is the population. A is the wealth level. T is the 

technical progress. C is the constant term. 𝜀  is the error term. In our case, the variable I 

refers to the land‐use eco‐efficiency. Moreover, we introduced the indicators of land 

urbanization and its quadratic term in our empirical model [51]. For the sake of 

robustness, we perform three empirical models, model (1–3), which are given as follows: 

lnLUEE A α lnLU α lnPD α lnPGDP α lnTEC u ε  (11)   

lnLUEE A β lnLU β lnLU β lnPD β lnPGDP β lnTEC u ε  (12)   

lnLUEE A θ lnLU θ lnLU θ lnPD θ lnPGDP θ lnTEC u v ε  (13)   

where LUEE is the calculated land‐use eco‐efficiency. PD refers to population density, 

which was calculated by dividing the total population by the total area. PGDP refers to 

GDP per capita. TEC was the technology level. Referring to previous studies [15], we used 

energy consumption per unit of GDP as a proxy for TEC. The lower the TEC is, the higher 

the technology level is. In addition, to explore urbanization impacts on land‐use eco‐

efficiency, land urbanization (LU) was introduced, which was calculated by dividing the 

built‐up land area by the total area. 𝑢  and 𝑣  are provincial and year effect, and 𝜀  is 

the error term. 𝛼, 𝛽, and 𝜃 are regression results. The descriptions of the variables are 

shown in Table 3. 
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Table 3. The summary of the variables. 

Type  Variable  Units  Obs  Mean  Std. Dev Min  Max 

Dependent variable LUEE  ‐ 120 0.81 0.41 0.04 1.88 

Independent variable LU  % 120 5.56 6.34 0.14 28.95 

 PD  person/km2 120 403.10 495.04 7.42 3036.88 

 PGDP  yuan/person 120 9860.31 5771.05 2662 34547 

 TEC  10−4 ton/yuan 120 2.98 1.80 0.75 9.57 

3. Results 

3.1. Spatial–Temporal Changes of ESV 

Figure 1 and Table 4 show the overall variations of the ESV in China. For temporal 

changes, during the whole study period, the ESV was reduced by 1.5 billion yuan. 

Specifically, the ESV increased during the period of 2000–2005. This is because multiple 

major ecological protection projects were implemented around 2000, such as Grain for 

Green Project and the Sloping Land Conversion Program [52]. A remarkable achievement 

is the continuous conversion from the unused land and cultivated land to the forest. The 

total ESV experienced dramatic declines during the following two periods of 2005–2010 

and 2010–2015. With the acceleration of urbanization, the huge demand for built‐up land 

resulted in rapid loss and degradation of the natural or semi‐natural land [39]. On average, 

the eastern and central region presented a similar inverted U‐shaped trend (Table 4), while 

the western region maintained a growth trend across the whole period, demonstrating 

that the ecological protection projects are well effective in the western area [52]. However, 

the northeastern provinces experienced a significant decrease from 1864.20 billion yuan 

in 2000 to 1853.81 billion yuan in 2015. 

 

Figure 1. The spatial distribution of ESV in 2015 (a); and the temporal changes of ESV during 2000‐2015 (b). 

Table 4. Changes in ESV from 2000 to 2015 in different regions (billion yuan). 

Region  2000  2005  2010  2015 

Eastern 563.21 564.36 563.58 561.20 

Central 1010.04 1017.27 1014.06 1012.62 

Western 982.56 983.59 984.77 985.68 

Northeastern 1864.20 1860.05 1858.91 1853.81 

Total 28093.17 28147.01 28129.48 28091.67 

Notes: Eastern region includes Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, 

Shandong, Guangdong, and Hainan. Central region includes Shanxi, Anhui, Jiangxi, Henan, 

Hubei, and Hunan. Western region includes Inner Mongolia, Guangxi, Chongqing, Sichuan, 

Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang. Northeastern region includes 

Liaoning, Jilin, and Heilongjiang. 
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For spatial distribution, benefitting from the vast forest cover, the southern and 

northeastern areas presented high ESV per unit area (Figure 1). Fujian, Zhejiang, and 

Guangdong were the highest provinces with 11.76 million yuan/ha, 10.16 million yuan/ha, 

and 9.99 million yuan/ha, respectively. While the northwestern five provinces had the 

lowest value, specifically referring to Xinjiang (0.15 million yuan/ha), Ningxia (0.52 

million yuan/ha), Qinghai (0.62 million yuan/ha), Gansu (0.78 million yuan/ha), and Inner 

Mongolia (1.00 million yuan/ha). This is because these areas are dominated by low 

ecological value land, such as the Gobi desert, bare land, degraded grassland, etc. In 

addition, the northern and southeastern provinces presented a declining trend, such that 

Tianjin and Shanghai exhibited the most declines, with the decline by 8.27% and 6.48%, 

respectively. Most of the growth was found in the Midwest. Shandong, Henan, and 

Ningxia increased the most, with the increase by 2.90%, 2.75%, and 2.02%, respectively. 

3.2. Analysis of Land‐Use Eco‐Efficiency 

3.2.1. Spatial–Temporal Changes of Land Use Eco‐Efficiency 

We selected SCPBA, LIPBA, and ECPBA as the inputs, and PDPBA, GPBA, and EPBA 

as the outputs. The Super‐SBM model was used to calculate provincial land‐use eco‐

efficiency. The detailed results are given in Table 5, and the spatial–temporal distributions 

are presented in Figure 2. 

Table 5. Land‐use eco‐efficiency changes of provinces from 2000 to 2015. 

Region  Province  2000  2005  2010  2015  Annual Change Rate (%) 

Eastern Beijing 0.20 1.08 1.11 1.16 12.43 

 Tianjin 1.01 1.05 1.04 1.17 0.97 

 Hebei 0.13 0.12 0.12 0.11 −1.59 

 Shanghai 1.24 1.18 1.16 1.10 −0.76 

 Jiangsu 1.00 0.23 0.15 0.12 −13.36 

 Zhejiang 0.66 0.61 0.58 0.45 −2.42 

 Fujian 1.13 1.03 0.85 0.73 −2.88 

 Shandong 1.09 1.00 1.00 0.04 −19.15 

 Guangdong 1.00 1.05 1.09 1.05 0.31 

 Hainan 1.06 1.11 1.07 1.03 −0.19 

 Meana  0.85  0.85  0.82  0.70  −1.33 

Central Shanxi 0.20 0.19 0.20 0.15 −1.78 

 Anhui 0.43 1.16 1.17 1.09 6.41 

 Jiangxi 1.00 0.82 0.80 0.62 −3.17 

 Henan 0.14 1.00 0.18 0.13 −0.46 

 Hubei 1.09 0.69 0.65 0.53 −4.68 

 Hunan 1.01 1.03 1.01 0.81 −1.47 

 Meanb  0.64  0.82  0.67  0.56  −0.99 

Western Inner Mongolia 1.88 1.48 1.35 1.00 −4.14 

 Guangxi 1.14 1.06 1.01 0.73 −2.92 

 Chongqing 1.05 0.76 0.57 0.39 −6.35 

 Sichuan 0.56 0.64 0.59 0.60 0.54 

 Guizhou 1.20 1.28 1.34 0.66 −3.86 

 Yunnan 1.18 1.20 1.19 1.21 0.16 

 Shaanxi 0.46 0.41 0.43 0.39 −1.18 

 Gansu 1.00 1.01 1.01 0.33 −7.18 

 Qinghai 1.03 1.02 1.03 0.53 −4.37 

 Ningxia 0.13 0.13 0.10 1.01 14.81 

 Xinjiang 1.00 1.01 1.03 0.16 −11.43 
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 Meanc  0.97  0.91  0.88  0.64  −2.74 

Northeastern Liaoning 1.03 0.30 0.27 0.24 −9.20 

 Jilin 0.89 1.07 1.05 1.05 1.07 

 Heilongjiang 1.22 1.28 1.42 1.87 2.88 

  Meand  1.05  0.88  0.91  1.05  0.04 

Total Meane  0.87  0.87  0.82  0.68  −1.62 

Notes: The superscript a, b, c, d and e refer to the mean of eastern region, central region, western 

region, northeastern region and the whole country. 

 

Figure 2. The spatial distribution of land‐use eco‐efficiency in 2015 (a); and the temporal changes of land‐use eco‐efficiency 

during 2000‐2015 (b). 

Our results showed that the average of land‐use eco‐efficiency in China was 0.68 in 

2015. From the perspective of the four regions, the northeastern region was the highest 

(1.05), then followed by the eastern region (0.70), the western region (0.64) and the central 

region (0.56) (Table 5). Specifically, Heilongjiang had the highest value of 1.87 in 2015, 

followed by Yunnan (1.21), Tianjin (1.17), and Beijing (1.16). Conversely, Shandong was 

evaluated as the lowest of 0.04, Hebei (0.10), Jiangsu (0.11), and Henan (0.13) were also at 

the bottom of the evaluated provinces. For spatial distribution (Figure 1a), in the 

southeastern region, only Beijing, Tianjin, Shanghai, Guangdong, and Hainan presented 

high land‐use eco‐efficiency. Previous studies have shown a gradual decline trend from 

the east to the west in China [24]. However, after considering the ESV, low values were 

found in the North China Plain and the northwest region (Figure 1a). This is because these 

areas are dominated by low ecological value land, such as the desert and cultivated land. 

From the perspective of temporal changes, China’s land‐use eco‐efficiency presented 

a downward trend during 2000–2015. As shown in Table 5, the average land‐use eco‐

efficiency in China was 0.87 in 2000, and dropped to 0.68 by 2015. The annual change rate 

during the period was −1.61%. Specifically, except for the northeastern region, the eastern, 

central, and western regions showed downward trends. For example, the western region 

had the highest drop (2.74%), followed by the eastern (1.33%) and central (0.99%) regions. 

As shown in Figure 2b, 9 provinces had experienced the growth. Of them, Ningxia 

increased the most by 14.81%, followed by Beijing (12.43%), Anhui (6.41%), Heilongjiang 

(2.88%), Jilin (1.07%), Tianjin (0.97%), Sichuan (0.54%), Guangdong (0.31%), and Yunnan 

(0.16%). These provinces had at least one prominent feature: The rapid economic growth 

or the ESV growth. These results confirmed the importance of ESV in the evaluation of 

eco‐efficiency. 
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3.2.2. Comparison of Land Use Eco‐Efficiency with and without ESV 

As mentioned above, previous studies did not consider the ESV in the eco‐efficiency 

evaluation, and this may lead to unreliable results. In the present study, we further 

analyzed how the eco‐efficiency was affected by ESV. 

Figure 3 presents the rank changes of the provinces in 2015 with and without ESV. In 

general, southwestern areas in China showed positive changes, while most provinces in 

the northeast had negative changes. Specifically, Yunnan and Guizhou experienced a 

significant increase of their ranks, from 22th and 26th to 2th and 15th, respectively. 

Because of their high EPBA, the EPBAs of Yunnan and Guizhou were 1001.55 million 

yuan/ha and 624.19 million yuan/ha, which were the two highest provinces. In other 

words, the ECC levels in these two provinces were relatively high. Besides the two 

provinces, the ECC levels in Chongqing, Sichuan, and Jiangxi also showed substantial 

improvements. On the contrary, the rankings of Henan, Gansu, and Xinjiang were found 

to reduce by 16, 11, and 9, respectively. The EPBAs of the three provinces were 15.23 

million yuan/ha, 71.28 million yuan/ha, and 37.10 million yuan, respectively. It can be seen 

that these provinces had relatively poorer ecological conditions. 

 

Figure 3. The rank change of land‐use eco‐efficiency in 2015 with and without ESV. 

To further explore policy implications, the slacks of the inputs and outputs were 

given in Table 6. First, we can observe that the proportion of total slacks in EPBA was the 

most, reaching 103.02%. It has been suggested that the loss and degradation of ESV are an 

unneglected problem in eco‐efficiency evaluation. According to the average of four 

regions, western and central provinces exhibited higher shortages, which is mainly 

determined by the vast low‐value land type cover in these provinces. In addition, the 

proportion of GPBA was the lowest due to the rapid economic development, resulting in 

the excess production [53]. Finally, the proportions of the three inputs were basically the 

same. However, the inputs in the central, western, and northeastern regions were 

significantly higher than those in the eastern region, suggesting that the excess 



Sustainability 2021, 13, 728 12 of 16 
 

investments in the midwestern area resulted in a certain level of production inefficiency 

[54]. 

Table 6. The slacks of four regions in China for 2015. 

  S − (1)  S − (2)  S − (3)  S + (1)  S + (2)  S + (3) 

Average·E 0.02 0.06 1.16 0.19 0.18 1.78 

Average·C 0.03 0.53 2.04 0.14 0.002 2.07 

Average·W 0.04 0.75 3.14 0.02 0.03 2.20 

Average·NE 0.002 0.42 1.37 0.17 0.04 1.95 

Average·T 0.03 0.44 2.08 0.12 0.08 2.01 

% 16.05 17.33 16.44 15.71 9.35 103.02 

Note: S − (1), S − (2), S − (3), S + (1), S + (2) and S + (3) refer to the slacks of LIPBA, ECPBA, SCPBA, 

PDPBA, GPBA, and EPBA, respectively. Average·E, Average·C, Average·W, Average·NE, and 

Average·T refer to the average slacks of the eastern, central, western, and northeastern regions, 

respectively. % refers to the proportion of total slacks in total inputs/outputs. 

3.3. Influential Factors of Land‐Use Eco‐Efficiency 

First of all, according to the results of Hausman Test, we applied a fixed effect model 

to analyze the influential factors of land‐use eco‐efficiency. Based on the results of Table 

7, the monomial term was negative, and the quadratic term was positive. This means that 

the relationship between land urbanization and land‐use eco‐efficiency follows a “U” 

shaped curve. This is due to extensive and inefficient exploitation resulting from the initial 

phase of urbanization, the unregulated, unordered, and blind urban expansion. However, 

with the continued urbanization, the government and the public have focused more on 

the quality of urban development [51]. For example, green infrastructures are planned 

and constructed during urban expansion, and the encroachment on natural and semi‐

natural land is strictly prohibited [51]. Moreover, the turning point of the “U” shaped 

curve was 1.47%, which has been achieved in 33 provinces in 2015. In addition, the GDP 

was a critical input in the evaluation of eco‐efficiency, meanwhile, the per capita GDP was 

taken as a potential driving factor for the eco‐efficiency variations. This treatment may 

result in biased estimation problem. Thus, for the sake of robustness, we selected another 

indicator of per capita income as the proxy in our empirical model. Results are shown in 

model (4) (Table 7), we can find that the basic results were unchanged, indicating that the 

estimation results were robust. 

Table 7. Regression results for driving factors of land‐use eco‐efficiency. 

Variables  Model (1)  Model (2)  Model (3)  Model (4) 

lnLU  −0.57 (−1.35) −0.61 (−1.47) −0.31 (−0.68) −0.29 ** (−2.24) 

(lnLU)2   0.39 ** (2.35) 0.40 ** (2.35) 0.32 * (1.97) 

lnPD  1.53 * (1.73) 0.52 (0.54) 1.73 (1.33) 0.16 (0.15) 

lnPGDP  0.50 (1.09) 0.91 * (1.90) 1.51 ** (2.09) 0.86 ** (2.19) 

lnTEC  −0.40 ** (−2.52) −0.60 ** (−3.40) −0.54 ** (−2.37) −0.63 *** (−2.70) 

Province fixed effects Yes Yes Yes Yes 

Year fixed effects No No Yes Yes 

Constant 1.40 (0.32) −7.19 (−1.29) −8.16 (−1.45) −0.55 (−0.07) 

Adj‐R2 0.13 0.18 0.25 0.21 

Observations 120 120 120 120 

Note: *, **, *** represent the significance level at 10%, 5%, and 1%. t‐value is in the parentheses. In 

model (4), the variable of lnPGDP was replaced by per capita income. 

Regarding other driving factors, the population density and GDP per capita were 

positive (Table 7). However, only GDP per capita was significant, with the coefficient of 

1.51. With the economic development, the improvements of production and energy 

efficiency as well as industrial structure lead to the promotion of eco‐efficiency [51]. The 
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coefficient of the technology level was negative (Table 7). In our study, we found that 

every 1% increase in the technology level can bring an increase in eco‐efficiency by 0.54%. 

4. Discussion and Policy Implication 

Due to the rapid urbanization, the loss and degradation of ES has become an urgent 

problem. However, there is still a lack of effective methods to guide sustainable 

development. This study proposed a land use‐based input–output index system, which 

incorporated the important ecological factor of ESV, and further, by employing the Super‐

SBM and STIRPAT model, we calculated and explored the spatial–temporal changes and 

driving factors of this creative eco‐efficiency. 

In the present study, we evaluated the ESV in China from 2000 to 2015. We found 

that the evaluated ESV was 28.09 trillion yuan (at the price of 2000) in 2015. One important 

finding in the present study is that only the western region exhibited a steady growth 

during the 15 years, while the eastern, central, and northeastern regions showed dramatic 

declines after 2005 according to the spatial–temporal changes in ESV. On the one hand, 

our results demonstrated that the major ecological protection projects were highly 

effective in the western region, e.g., the Grain for Green Project. On the other hand, rapid 

urban expansion in the mid‐eastern region has encroached on a great deal of natural or 

semi‐natural land, resulting in significant declines of the ESV in these areas. Therefore, in 

the future, more ecological conservation projects should be initiated and strengthened in 

the western region [52], and further extended to the mid‐east. Moreover, strict restrictions 

on protection of cultivated land and urban development should be implemented, 

especially in central eastern areas. 

The land‐use eco‐efficiency in China’s provinces during 2000–2015 was calculated 

based on the built land use‐based input–output index system. A downward trend in eco‐

efficiency was identified. This result differed from most previous studies in which an 

upward trend in eco‐efficiency in recent years has been reported [24]. We demonstrated 

that the ESV has considerable impacts on the evaluation of land‐use eco‐efficiency (Table 

5 or Figure 2). Land‐use change is one of the most prominent features of urbanization, 

which directly or indirectly affects the supply of ecological service. Therefore, the 

consideration of the ESV is highly essential when evaluating regional land‐use eco‐

efficiency. In addition, an interesting finding is that some provinces with declining ESV 

showed eco‐efficiency improvement. Beijing, Tianjin, and Shanghai were typical 

examples (cf. Figure 1b and Figure 2b). Due to the remarkable economic growth in these 

provinces, the contribution of economic growth outweighs the ESV losses, thus leading to 

an upward trend in eco‐efficiency. However, it is worth noting that these provinces may 

be over‐consuming local natural resources, hence, the total scale of built‐up land should 

be strictly controlled, and more green infrastructures and ecological lands should be 

provided during urban development. 

Finally, we further explored the driving factors of land‐use eco‐efficiency using the 

STIRPAT model. Our results indicate a “U” shaped relationship between land‐use eco‐

efficiency and land urbanization in China. The improvement of the eco‐efficiency may 

result from the intensive land‐use and/or an increase in green infrastructure, as well as 

the extensive economic growth. Therefore, the underlying causes of this relationship need 

to be explored in the future. For policy makers, optimizing the spatial structure, 

promoting orderly development, and investing in green infrastructure are very important 

for sustainable urban development. In addition, the government should continue to 

strengthen its investment in the technology, especially in the field of green‐oriented 

technological innovation [55]. 

5. Conclusions 

This study evaluated the land‐use eco‐efficiency of China’s provinces from 2000 to 

2015. By incorporating the ESV into the input‐output index system, we explored spatial‐

temporal changes of the comprehensive land‐use eco‐efficiency, which could better reflect 
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regional sustainability level. A Super‐SBM model was applied to measure the efficiency, 

and then a panel STIRPAT model was employed to explore the driving factors of the 

efficiency. The results showed that the overall ESV experienced an inverted U‐shaped 

trend during 2000–2015, but with obvious regional differences. In the eastern and central 

regions, they had a similar inverted U‐shaped trend, while the western and northeastern 

regions presented a steady upward and downward trend, respectively. In addition, after 

incorporating regional ESV, the evaluated land‐use eco‐efficiency declined from 0.87 in 

2000 to 0.68 in 2015. For spatial distribution, the eco‐efficiency of the northeastern region 

was the highest, followed by the eastern region, the western region, and the central region. 

Finally, the results of the STIRPAT model indicated a U‐shaped relationship between 

land‐use eco‐efficiency and land urbanization, and a significant improvement of the eco‐

efficiency by the technological innovation. These findings indicate that ecosystem services 

are important determinants for regional sustainable development. Therefore, land 

development should pay additional attention to the land ecosystems, especially the 

closely related provisions of ecosystem services. 
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