
sustainability

Article

Early-Stage Neural Network Hardware Performance Analysis

Alex Karbachevsky 1,†, Chaim Baskin 1,*,†, Evgenii Zheltonozhskii 1,† , Yevgeny Yermolin 1, Freddy Gabbay 2 ,
Alex M. Bronstein 1 and Avi Mendelson 1

����������
�������

Citation: Karbachevsky, K.;

Baskin, C.; Zheltonozhskii, E.;

Yermolin, Y.; Gabbay, F.;

Bronstein, A.M.; Mendelson, A.

Early-Stage Neural Network

Hardware Performance Analysis.

Sustainability 2021, 13, 717. https://

doi.org/10.3390/su13020717

Received: 26 November 2020

Accepted: 10 January 2021

Published: 13 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Technion—Israel Institute of Technology, Haifa 3200003, Israel; alex.k@campus.technion.ac.il (A.K.);
evgeniizh@campus.technion.ac.il (E.Z.); yevgeny.ye@cs.technion.ac.il (Y.Y.); bron@cs.technion.ac.il (A.M.B.);
avi.mendelson@cs.technion.ac.il (A.M.)

2 Ruppin Academic Center, Emek Hefer 4025000, Israel; freddyg@ruppin.ac.il
* Correspondence: chaimbaskin@campus.technion.ac.il
† These authors contributed equally to this work.

Abstract: The demand for running NNs in embedded environments has increased significantly in
recent years due to the significant success of convolutional neural network (CNN) approaches in
various tasks, including image recognition and generation. The task of achieving high accuracy on
resource-restricted devices, however, is still considered to be challenging, which is mainly due to
the vast number of design parameters that need to be balanced. While the quantization of CNN
parameters leads to a reduction of power and area, it can also generate unexpected changes in the
balance between communication and computation. This change is hard to evaluate, and the lack
of balance may lead to lower utilization of either memory bandwidth or computational resources,
thereby reducing performance. This paper introduces a hardware performance analysis framework
for identifying bottlenecks in the early stages of CNN hardware design. We demonstrate how the
proposed method can help in evaluating different architecture alternatives of resource-restricted
CNN accelerators (e.g., part of real-time embedded systems) early in design stages and, thus, prevent
making design mistakes.

Keywords: neural networks; accelerators; quantization; CNN architecture

1. Introduction

Many domain-specific systems have been found to be efficient, in particular, when
developing low resource devices, for example, for IoT applications. A system architect
designing such devices must consider hardware limitations (e.g., bandwidth and local
memory capacity), algorithmic factors (e.g., accuracy and representation of data), and
system aspects (e.g., cost, power envelop, and battery life). Many IoT and other resource-
constrained devices provide support for applications that use convolutional neural net-
works (CNNs). CNNs can achieve spectacular performance in various tasks that cover a
wide range of domains, such as computer vision, medicine, autonomous vehicles, robotics,
etc. Notwithstanding, CNNs contain a vast number of parameters and they require a sig-
nificant amount of computation during inference, thus monopolizing hardware resources
and demanding massively parallel computation engines. These requirements have led
to great interest in using custom-designed hardware for the efficient inference of CNNs.
For example, such hardware allows for neural networks (NNs) to be used in real-life
applications, such as real-time monitoring system for human activities [1], autonomous
laparoscopic robotic surgery [2–4], or deployed on low-power edge devices or as part of an
IP in an SoC. Developing energy efficient CNN accelerators requires a new set of design
tools, due to the tight entanglement between the algorithmic aspects, the chip architecture,
and the constraints that the end product needs to meet. Great efforts have indeed already
been made for developing low-resource CNN architectures [5–8].

The splitting of the regular 3× 3 convolutions into a channel-wise 3× 3 convolution,
followed by a 1× 1 one, is one example of architectural changes. Another way to reduce

Sustainability 2021, 13, 717. https://doi.org/10.3390/su13020717 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-5400-9321
https://orcid.org/0000-0002-6549-7957
https://doi.org/10.3390/su13020717
https://doi.org/10.3390/su13020717
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13020717
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/13/2/717?type=check_update&version=1


Sustainability 2021, 13, 717 2 of 20

the computational burden is to quantize the CNN parameters (weights and activations),
employing low-bit integer representation of the data instead of expensive floating-point
representation. Recent quantization-aware training schemes [9–13] achieve near-baseline
accuracy for as low as 2-bit quantization. Quantizing the CNN parameters reduces both the
number of gates required for each multiply-accumulate (MAC) operation and the amount
of routing. In addition, quantization reduces the bandwidth requirements for external and
internal memory. The architect needs to make fundamental decisions early in the design
process (accuracy requirements, their impact on performance and power, and vis-á-vis
which algorithm is going to be used) and no existing tool can help predict the effect of
these design factors ahead of time. If the CNN is to be an asset to users, the impact of the
accelerator’s high-level architecture (e.g., the amount of layers, their size, and the bitwidth
of the operands), on the power, the area, and the performance of the final product needs to
be defined and predicted at an early stage of the project.

Recent research has shown that ASIC-based architectures are the most efficient so-
lution for CNN accelerators in both datacenters [14–19] and real-time platforms [20–22].
Accordingly, we employ an implementation of a streaming [23] ASIC-based convolutional
engine for our experiments. Nevertheless, our methodology can be applied when evaluat-
ing other types of architectures, such as FPGA-based accelerators [24–26]. In both cases,
the development process includes an important trade-off between the logical gates area,
local memory area, and their routing of the accelerator design versus the performance
and accuracy of the resulting system. This is especially true in an SoC IC, where the CNN
accelerator is a small part of the entire system, and the remaining silicon “budget” needs to
be divided between execution units and local memory; here, these trade-offs have great
impact. Moreover, all of these parameters also depend on the parameters’ quantization
level, and its impact on both communication and computation.

To date, there is no quantitative metric for this trade-off available at the CNN acceler-
ator design stage and no tool exists that can assist the architect in predicting the impact
of high level decisions on the important design implementation parameters. Ideally, the
designer would like to have an early estimation of the chip resources that are required
by the accelerator, as well as the performance, accuracy, and power that it can achieve. A
critical difficulty in trying to predict the design parameters for CNN-based systems is the
lack of a proper complexity metric. Currently, the most common metric for calculating the
computational complexity of CNN algorithms is the number of MAC operations, denoted
as OPS (or FLOPS in case of floating-point operations). However, this metric does not
take into account the data format or additional operations that are performed during
the inference, such as memory accesses and communication. For this reason, the number
of FLOPS does not necessarily correlate with run-time [27,28] or the required amount of
computational resources.

This paper proposes an adapted roofline analysis tool in order to accommodate
variable bitwidth configurations, and it views the entire network computation and commu-
nication needs on a single plot. We show how this analysis framework can be used in order
in the early stages of an accelerator design to analyze the trade-off between the number of
processing engines (PEs) and the quantization of parameters. Moreover, we demonstrate
the performance analysis of CNN architecture (VGG-16) on an existing accelerator.

1.1. Contribution

This paper makes several contributions. Firstly, we study the impact of CNN quanti-
zation on the hardware implementation of computational resources.

Secondly, we extend the previously proposed computation complexity for quantized
CNNs, termed BOPS [29], while using a communication complexity analysis. We assist
in identifying the performance bottlenecks that may arise from the data movement by
extending the roofline model [30]. We also demonstrate how the proposed tool can be used
to assist architecture-level decisions in the early design stages.



Sustainability 2021, 13, 717 3 of 20

Finally, we demonstrate the efficiency of performance bottlenecks analysis while using
the proposed method on a basic quantized convolution accelerator that we have created
for this purpose, and on an existing machine learning hardware accelerator, Eyeris [20].

1.2. Related Work

In this section, we provide an overview of prior work that proposed metrics for es-
timating the complexity and power/energy consumption of different workloads, while
focusing on CNNs. FLOPS is the most commonly used metric for evaluating computa-
tional complexity [31]: the amount of floating-point operations required to perform the
computation. In the case of integer operations, the obvious generalization of FLOPS is OPS,
which is just the number of operations (not necessarily floating point). A fundamental
limitation of these metrics is the assumption that the same data representation is used
for all operations; otherwise, the calculated complexity does not reflect the real hardware
resource complexity. Wang et al. [32] claimed that FLOPS is an inappropriate metric for
estimating the performance of workloads executed in datacenters and proposed a basic
operations metric that uses a roofline-based model, while taking the computational and
communication bottlenecks into account for a more accurate estimation of the total perfor-
mance. Sze et al. [27] described the factors affecting efficiency and, in particular, showed
that the use of a peak performance metric (such as TOPS/W) is not enough. Rather, they as-
serted that measuring efficiency requires multiple metrics, including accuracy, throughput,
latency, energy consumption, power consumption, cost, flexibility, and scalability.

Parashar et al. [33] provided a system-level evaluation and exploration of architectural
attributes of CNN accelerators and a broad range of hardware typologies. They generated
an accurate estimation of performance and power while using a mapper that explores
the many ways to schedule the work on individual PEs to find the optimal solution. By
describing the accelerator structure, which includes compute elements, external and local
memory hierarchy, and the network between them, they determine the performance for
any network structure and, by utilizing Accelergy [34], the power usage. However, this
system level approach lacks the fine granularity of quantization.

In addition to general-purpose metrics, other metrics were specifically developed
for an evaluation of NN complexity. Mishra et al. [35] defined the “compute cost” as
the product of the number of fused multiply-add (FMA) operations and the sum of the
width of the activation and weight operands, without distinguishing between floating- and
fixed-point operations. While using this metric, the authors claimed to have reached a 32×
“compute cost” reduction by switching from FP32 to binary representation. Still, as we
further show on in our paper, this drop is not the real reduction in the hardware components.
Jiang et al. [36] noted that a single metric cannot comprehensively reflect the performance
of deep learning (DL) accelerators. They investigate the impact of various frequently-used
hardware optimizations on a typical DL accelerator and then quantify their effects on
the accuracy and throughput on under-representative DL inference workloads. Their
major conclusion is that hardware throughput is not necessarily correlated with the end-to-
end inference throughput of data feeding between host CPUs and AI accelerators. Finally,
Baskin et al. [29] proposed generalizing FLOPS and OPS by taking into account the bitwidth
of each operand as well as the operation type. The resulting metric, named BOPS (binary
operations), allows for the area estimation of quantized CNNs, including cases of mixed
quantization. The shortcoming of the aforementioned metrics is that they do not provide
any insight on the amount of silicon resources needed to implement them. Our work,
accordingly, functions as a bridge between the CNN workload complexity and the real
power and area estimation.



Sustainability 2021, 13, 717 4 of 20

2. Method

In this section, we describe our analysis framework. The framework provides the
tools for analyzing performance bottlenecks on quantized NNs with arbitrary bitwidth for
weights and activations, and a method for the accurate estimation of the silicon area in
the early stage of the design. We start by describing the impact on the silicon area when
switching from a floating-point representation to a fixed-point one. Subsequently, we
present our area estimation approach, which assesses three elements: the computational
complexity of the data path while using BOPS, which quantifies the hardware resources
needed to implement the CNN computation engine on the silicon; the amount of local
SRAM, which affects the area budget on the silicon; and the communication complexity,
which defines the memory access pattern and bandwidth. Lastly, we present a modified
roofline analysis tool for evaluating the performance bottlenecks of quantized networks.
The fixed-point multiplication results that are presented in this section are based on the
Synopsys standard library multiplier while using TSMC’s 28 nm process.

2.1. The Impact of Quantization on Hardware Implementation

Currently, the most common representation of weights and activations for training
and inference of CNNs is either 32-bit or 16-bit floating-point numbers. However, the
fixed-point MAC operation requires significantly fewer hardware resources, even for the
same input bitwidth. In order to illustrate this fact, we generated two multipliers: one for
32-bit floating-point operands (FPU100 from https://opencores.org/projects/fpu100) and
the other for 32-bit fixed-point operands. The results presented in Table 1 show that a fixed-
point multiplier uses approximately eight times fewer resources (area, gates, and power)
than the floating-point counterpart. Next, we generated a PE that calculates a convolution
with a 3× 3 kernel, a basic operation in CNNs consisting of 3× 3 = 9 MAC operations per
output value. After switching from floating-point to fixed-point, we studied the area of a
single PE with variable bitwidth. Note that the accumulator size depends on the network
architecture: the maximal bitwidth of the output value is bwba + log2(k

2) + log2(n), where
n is the number of input features. Because extreme values are very rare, it is often possible
to reduce the accumulator width without harming the network’s accuracy [16].

Table 1. Key characteristics of 32-bit floating-point and 32-bit fixed-point multiplier designs. The
fixed-point multiplier uses approximately eight times less area, gates, and power than the floating-
point one.

Multiplier Gates Cells Area [µm2]
Power [mW]

Internal Switching Leakage Dynamic

Floating-Point 40,090 17,175 11,786 2.76 1.31 0.43 10.53
Fixed-Point 5065 1726 1489 0.49 0.32 0.04 1.053

Figure 1 shows the silicon area of the PE as a function of the bitwidth; the layout
of the computation engine we built for this paper is shown in Figure 2. We performed a
polynomial regression and observed that the PE area had a quadratic dependence on the
bitwidth, with the coefficient of determination R2 = 0.9999877. This nonlinear dependency
between the PE’s area and operands’ bitwidth demonstrates that the quantization impact
on a network’s hardware resources is quadratic: reducing the bitwidth of the operands by
half reduces the area and, by proxy, the power by approximately a factor of four (contrary
to what is assumed by, e.g., Mishra et al. [35]).

https://opencores.org/projects/fpu100


Sustainability 2021, 13, 717 5 of 20

0 2 4 6 8 10 12 14 16
Bitwidth

0

1000

2000

3000

4000

A
re

a,
µm

2

Quadratic fit

PE area

Figure 1. Area vs. bitwidth for a 3 × 3 PE with a single input and output channel. All of the
weights and activations use the same bitwidth and the accumulator width is four bits larger, which is
enough to store the result. The quadratic fit is A = 12.39b2 + 86.07b− 14.02 with a goodness of fit
R2 = 0.9999877, where A is the area and b is the bitwidth of the PE.

Figure 2. Our 3× 3 kernel 8-bit processing engine (PE) layout using TSMC 28 nm technology. The
carry-save adder can fit 12-bit numbers, which is large enough to store the output of the convolution.

2.2. Data Path

We now present the BOPS metric that is defined in Baskin et al. [29] as our computation
complexity metric for the data path circuit. In particular, we show that BOPS can be used
as an estimator for the area of the PEs in an accelerator. The area, in turn, is found to be
linearly related to the power in case of the PEs.

The computation complexity metric describes the amount of arithmetic “work” that is
needed to calculate the entire network or a single layer. BOPS is defined as the number of
bit operations required to perform the calculation: the multiplication of n-bit number by
m-bit number requires n ·m bit operations, while addition requires max(n, m) bit opera-
tions. In particular, Baskin et al. [29] showed that a k× k convolutional layer with ba-bit
activations and bw-bit weights requires

BOPS = mnk2
(

babw + ba + bw + log2(nk2)
)

(1)

bit operations, where n and m are, respectively, the number of input and output features
of the layer. This definition takes the width of the accumulator required to accommodate
the intermediate calculations into account, which depends on n. The BOPS of an entire
network is calculated as a sum of the BOPS of the individual layers.



Sustainability 2021, 13, 717 6 of 20

In Figure 3, we calculated BOPS values for the PE design shown in Figure 1 and added
additional data points for the bitwidth of the weights and activation, including mixed
precision between the two and then plotted them against the area. We conclude that, for a
single PE with variable bitwidth, BOPS can be used in order to predict the PE area with
high accuracy.

0 500 1000 1500 2500 3000 35002000 
BOPS

0

1000

2000

3000

4000

A
re

a,
µm

2

Linear fit

bw = 4, ba = 2

bw = 6, ba = 4

bw = 8, ba = 6

bw = 10, ba = 8

bw = 12, ba = 10

bw = 16, ba = 14

bw = 4, ba = 4

bw = 6, ba = 6

bw = 8, ba = 8

bw = 10, ba = 10

bw = 12, ba = 12

bw = 16, ba = 16

Figure 3. Area vs. BOPS for a 3× 3 PE with a single input and output channel and variable bitwidth.
The linear fit is A = 1.694B + 153.46 with a goodness of fit R2 = 0.998, where A is the area and B
is BOPS.

Next, we tested the predictive power of BOPS scaling with the size of the design. We
generated several designs with variable bitwidths, bw = ba ∈ {4, 6, 8}, and variable num-
bers of PEs n = m ∈ {4, 8, 16}, connected together in a “weight stationary” architecture, in
which a set of weights is loaded and then kept in local memory, while the activations are
read from main memory, used to accommodate multidimensional inputs and outputs that
typically arise in real CNN layers. Figure 4 shows that the area linearly depends on the
BOPS for the range of two orders of magnitude of total area with goodness of fit R2 = 0.998.
We conclude that BOPS provides a high-accuracy approximation of the area and power
required by the hardware and, thus, can be used as an estimator in early design stages.
While the area of the accelerator depends on the particular design of the PE, this only
affects the slope of the linear fit, since the area is still linearly dependent on the amount
of PEs. An architect can use high level parameters, such as the number of input features
and output features, kernel size, etc., to obtain an early estimation of how much power and
silicon area are needed to run the network, without having any knowledge regarding VLSI
constraints.

104 105 106

BOPS

104

105

106

A
re

a,
µm

2

Linear fit

4 bit

6 bit

8 bit

n=m=4

n=m=8

n=m=16

n=m=32

Figure 4. Area vs. BOPS for a 3× 3 PE with variable input (n) and output (m) feature dimensions,
and variable bitwidth. Weights and activations use the same bitwidth and the accumulator width is
set to log2(9m) · bw · ba.



Sustainability 2021, 13, 717 7 of 20

2.3. Communication

Another important aspect of hardware implementation of CNN accelerators is mem-
ory communication. The transmission of data from the memory and back is often over-
looked by hardware implementation papers [20,25,37] that focus on the raw calculation
ability in order to determine the performance of their hardware. In many cases, there is a
difference between the calculated performance and real-life performance, since real-life
implementations of accelerators are often memory-bound [14,38,39].

For each layer, the total memory bandwidth is the sum of the activation and weight
sizes that are read and written from memory. In typical CNNs used, e.g., in vision tasks, the
first layers consume most of their bandwidth for activations, whereas in deeper layers that
have smaller but higher-dimensional feature maps (and, consequently, a greater number of
kernels), weights are the main source of memory communication.

We assume that each PE can calculate one convolution result per clock cycle and
the resulting partial sum is saved in the cache. In Figure 5, we present a typical memory
access progress at the beginning of the convolutional layer calculation. In the first stage,
the weights and first k rows of the activations are read from memory at maximal possible
speed, in order to start the calculations as soon as possible. After the initial data are loaded,
the unit reaches a “steady state”, in which it needs to read, from the memory, only one new
input value per clock cycle (other values are already stored in the cache). We assume that
the processed signals are two-dimensional (images), which further requires k new values
to be loaded at the beginning of each new row.

Weights
and

Activations

Bandwidth

Clock 
Cycles

Steady state - Activations

Figure 5. Per-layer memory access pattern.

Note that, until the weights and the first activations are loaded, no calculations can
be performed. The pre-fetch stage’s overhead bandwidth can be mitigated by doing work
in larger batch sizes, loading the weights once, and reading several inputs for the same
weights. Therefore, we minimize the penalty for reading the weights as compared to
reading the actual input data to perform the calculation. However, in the case of real-time
processing, larger batches are less feasible, because the stream of data needs to be computed
on-the-fly. An alternative solution is to use local memory (SRAM) for storing partial results,
weights, and fetched activations for the next cycle of input data. However, the required
amount of SRAM may not be available or significantly limit the amount of PEs that can be
placed on the same silicon area. This problem is especially relevant in the IPs used as a
part of SoCs, which have a highly limited amount of area. The trade-off of available area
versus the achievable performance is one of the most important issues in SoC design.

2.4. Local Memory

Local memory is used in order to store the weights or activations for further re-
use instead of fetching them repeatedly from the main memory. Recently, accelerator
designers started to increase the amount of local memory [17,18] in order to fit all of the
parameters and avoid using external memory during inference. While this allows for us to
avoid memory bottlenecks, local SRAM usage requires a significant amount of resources.
Nevertheless, even small amounts of SRAM can be used as cache to reduce the effective



Sustainability 2021, 13, 717 8 of 20

memory bandwidth by storing some input data. The trade-off between the area allocated
to local SRAM area and to PEs should be carefully evaluated for each design. SRAM area
is almost linear to the amount of bits used, with goodness of fit R2 = 0.998 and R2 = 0.916
for single-port RAM and dual-port RAM, respectively, as shown in Figure 6. Thus, this
linear relation can be used in order to accurately estimate the local SRAM area just from
the number of bits.

0 2500 5000 7500 10,000 12,500 15,000 17,500 20,000
Memory, bits

0

10,000

20,000

30,000

40,000

50,000

60,000

A
re

a,
µm

2

Linear fit

Single

0 1000 2000 3000 4000 5000
Memory, bits

0

5000

10,000

15,000

20,000

A
re

a,
µm

2

Linear fit

Dual

(a) (b)

Figure 6. SRAM area as a function of memory bits. The data was taken from Synopsys 28 nm Educational Design Kit SRAM
specifications. (a) Single-port RAM area (A) vs. amount of data bits (B). The linear fit is A = 2.94B + 3065 with a goodness
of fit R2 = 0.986. (b) Dual-port RAM area (A) vs. amount of data bits (B). The linear fit is A = 4.16B + 3535 with a goodness
of fit R2 = 0.916.

In order to compute the complete area of the accelerator, we can use the BOPS metric
to scale up our micro-design of the data path to obtain the area of the PEs and derive the
area coefficient for the BOPS, AD. For the SRAM, we can derive the relation AM between
the area and the number of bits from Figure 6 to construct the complete area equation:

Area = AD · BOPS + AM · BSRAM + BD + BM (2)

where BSRAM is the number of SRAM bits, and BD and BM are the free constants.

2.5. Roofline Analysis

So far, we discussed the use of BOPS for the prediction of the physical parameters of
the final product, such as the expected power and area. In this section, we extend the BOPS
model to the system level, by introducing the OPS-based roofline model. The traditional
roofline model, as introduced by Williams et al. [30], suggests depicting the dependencies
between the performance (e.g., FLOPS/second) and the operation density (the average
number of operations per information unit transferred over the memory bus). For each
machine, we can draw “roofs”: the horizontal line that represents its computational bounds
and the diagonal line that represents its maximal memory bandwidth. Figure 7 shows an
example of the roofline for three applications assuming infinite compute resources and
memory bandwidth. The maximum performance a machine can achieve for any application
is visualized by the area below both bounds, shaded in green.



Sustainability 2021, 13, 717 9 of 20

100 101

Operational intensity, FLOPS/byte

100

2× 100

3× 100

4× 100

6× 100

P
ef

or
m

an
ce

,
G

F
L

O
P

S
/s

Memory bound

Computation bound

App 1

App 2

App 3

Figure 7. Roofline example. In the case of App1, memory bandwidth prevents the program from
achieving its expected performance. In the case of App2, the same happens due to limited computa-
tional resources. Finally, App3 represents a program that could achieve its maximum performance
on a given system.

FLOPS cannot be used for efficient estimation of the complexity of quantized CNNs,
as indicated in Section 2.1. Therefore, we introduce a new model that is based on the
BOPS metric presented in Section 2.2. This model, to which we refer as the OPS-based
roofline model, replaces the GFLOPS/s axis of the roofline plot with a performance metric
that is more appropriate for NNs, e.g., the number of operations per second (OPS/s) and
the second metric that measures the computational complexity with operations per bit
(OPS/bit). Using generic operations and bits allows for us to plot quantized accelerators
with different bitwidths on the same plot.

Roofline Analysis Examples

In order to demonstrate the proposed approach, we use two different ResNet-18 layers
(a late layer, which is computationally-intensive, and an early one, which is memory-
intensive) on four different accelerator designs: 32-bit floating-point, 32-bit fixed-point,
and quantized 8-bit and 4-bit fixed-point. The accelerators were implemented while using
standard ASIC design tools, as detailed in Section 3 and built using TSMC 28 nm technology,
while using standard 2.4 GHz DDR-4 memory with a 64-bit data bus.

The first example employs an accelerator with a silicon area of 1 mm2 and 800 MHz
clock speed. The task is the 11th layer of ResNet-18, which has a 3× 3 kernel and 256 input
and output features of dimension 14× 14 each. Looking at Table 1, each floating-point
multiplier takes 11,786 µm. Thus, in 1 mm2, we can fit

1 mm2

11,786 µm2 = 84.85 ≈ 85 multipliers, (3)

which, since each PE includes nine multipliers, amounts to

85
9

= 9.44 ≈ 9 PEs. (4)

With the calculations that are shown in Equations (3) and (4) we can estimate the number of
PEs that can be placed on the silicon. Table 2 summarizes the results for different bitwidths,
calculated while using data from Figure 1.



Sustainability 2021, 13, 717 10 of 20

Table 2. Number of PEs with different bitwidths on 1 mm2 of silicon. Each PE can perform 3× 3
kernel multiplications.

32-Bit 32-Bit 16-Bit 8-Bit
Float Fixed Quant. Quant.

PEs 9 60 220 683

In order to calculate the amount of OPS/s required by the layer, under the assumption
that a full single pixel is produced every clock, we need to multiply the amount of MAC
operations required to calculate one output pixel (n × m × (k2 + 1)) by the accelerator
frequency. To calculate the OPS/bit for each design, we divide the amount of MAC
operations in the layer by the total number of bits transferred over the memory bus, which
includes the weights, the input, and the output activations. The layer requires 524.29 TOPS/s

to be calculated without stalling for memory access and computation. Table 3 summarizes
the available performance of the accelerators and visualized while using the proposed
OPS-based roofline analysis shown in Figure 8.

Table 3. The amount of computation (OPS/s) provided by the accelerators and memory throughput
(OPS/bit) required by the 11th layer of ResNet-18.

32-Bit 32-Bit 16-Bit 8-Bit
Float Fixed Quant. Quant.

GOPS/s 72.00 392.0 1568 5408
OPS/bit 5.82 5.82 11.63 23.26

100 101 102

OPS/bit

1011

1012

1013

1014

1015

O
P

S
/s

Memory bound

32 bits fp

32 bits

16 bits

8 bits

Figure 8. OPS roofline: 3× 3 kernel, input and output have 256 features of 14× 14 pixels, 1 mm2

accelerator with an 800-MHz frequency, and a DDR of 2.4 GHz with 64-bit data bus.

In this example, the application’s requirements are beyond the scope of the product
definition. On one hand, all of the accelerators are computationally bound (all of the
horizontal lines are below the application’s requirements), indicating that we do not have
enough PEs to calculate the layer in one run. On the other hand, even if we decide
to increase the computational density by using stronger quantization or by increasing
the silicon area (and the cost of the accelerator), we would still hit the memory bound
(represented by the diagonal line). In this case, the solution should be found at the
algorithmic level or by changing the product’s targets, e.g., calculating the layer in parts,
increasing the silicon area while decreasing the frequency in order not to hit memory wall,
or using another algorithm.

Our second example explores the feasibility of implementing the second layer of
ResNet-18 that has a 3× 3 kernel and 64 input and output features of dimension 56× 56.
For this example, we increase the silicon area to 6mm2 and lower the frequency to 100 MHz,



Sustainability 2021, 13, 717 11 of 20

as proposed earlier, and then add a 4-bit quantized accelerator for comparison purposes.
The layer requires 4.1 GOPS/s. Table 4 summarizes the accelerators results and they are
visualized with the OPS-based roofline analysis shown in Figure 9.

Table 4. The amount of computation (OPS/s) provided by the accelerators and memory throughput
(OPS/bit) required by the second layer of ResNet-18.

32-Bit 32-Bit 16-Bit 8-Bit 4-Bit
Float Fixed Quant. Quant. Quant.

GOPS/s 49.00 324.0 1296 3969 11,236
OPS/bit 9.16 9.16 18.32 36.64 73.27

100 101 102

OPS/bit

1011

1012

1013

O
P

S
/s

Memory bound

32 bits fp

32 bits

16 bits

8 bits

4 bits

Figure 9. OPS roofline: 3× 3 kernel, input and output have 64 features of 56× 56 pixels, 6 mm2

accelerator with with an 100-MHz frequency, and a DDR of 2.4 GHz with 64-bit data bus.

From Figure 9. we can see that our 32-bit and 16-bit accelerators are still computation-
ally bound, while the 8-bit and 4-bit quantized accelerators meet the demands of the layer.
In particular, the 8-bit accelerator is located at the edge of the computational ability, which
means that this solution has nearly optimal resource allocation, since the hardware is fully
utilized. Still, the final choice of the configuration depends on other parameters, such as
the accuracy of the CNN.

Both of the examples demonstrate that decisions made at early stages have a critical
impact on the quality of the final product. For example, applying aggressive quantization
to the network or increasing the silicon size may not improve the overall performance of
the chip if it is bounded by memory. From the architect’s point of view, it is important
to balance computation and data transfer. Nonetheless, this balance can be achieved in
different ways: at the micro-architecture level, at the algorithmic level, or by changing the
data representation. The architect may also consider: (1) changing the hardware to provide
faster communication (which requires more power and is more expensive), (2) applying
communication bandwidth compression algorithms [40,41], (3) using fewer bits to represent
weights and activations (using 3- or 4-bit representation may solve the communication
problem, at the cost of reducing the expected accuracy), or (4) changing the algorithm
to transfer the data slower (even though that solves the bandwidth issue, the possible
drawback is reduced throughput of the whole system). The proposed OPS-based roofline
model helps the architect to choose between alternatives. After making major architectural
decisions, we can use BOPS in order to estimate the impact of different design choices on
the final product, such as the expected area, power, optimal operational point, etc.

The next section examines these design processes from the system design point of view.



Sustainability 2021, 13, 717 12 of 20

3. Results

In this section, we show how the proposed method can be used as an estimator for
area changes in the early design stage. We conducted an extensive evaluation of the design
and implementation of a commonly used CNN architecture for ImageNet [42] classification,
ResNet-18 [43]. We also show an evaluation on existing hardware [20] whle using our
roofline model, and show how we can predict performance bottlenecks on a particular
VGG-16 implementation.

3.1. Experimental Methodology

We start the evaluation with a review of the use of BOPS as part of the design and
implementation process of a CNN accelerator. This section shows the trade-offs that are
involved in the process and verifies the accuracy of the proposed model. Because PEs
are directly affected by the quantization process, we focus here on the implementation
of a single PE. The area of an individual PE depends on the chosen bitwidth, while the
change in the amount of input and output features changes both the required number of
PEs and size of the accumulator. In order to verify our model, we implemented a weight
stationary CNN accelerator, which reads the input feature for each set of read weights and
can calculate n input features and m output features in parallel, as depicted in Figure 10.
For simplicity, we choose an equal number of input and output features. In this architecture,
all of the input features are routed to each of the m blocks of the PEs, each calculating a
single output feature.

input
features

PEs output
features

Figure 10. All-to-all topology with n × m processing elements.

The implementation was done for an ASIC while using the TSMC 28 nm technology
library, an 800 MHz system clock, and in the nominal corner of VDD = 0.81 V. We used
the value of 0.2 for the power analysis, input activity factor, and sequential activity factor.
Table 5 lists the tool versions.

Table 5. Computer-Aided Design (CAD) Design Tools.

Language Verilog HDL
Logic Simulation ModelSim 19.1
Synthesis Synopsys Design Compiler 2017.09-SP3
Place and route Cadence Innovus 2019.11

For brevity, we only present the results of experiments at the 800-MHz clock frequency.
We performed additional experiments at 600 MHz and 400 MHz. Because the main effect
of changing the frequency is reduced power usage and not the area of the cells (the same
cells that work for 800 MHz will work at 600 MHz, but not the other way around), we do
not show these results. Lowering the frequency of the design can help to avoid the memory
bound, but incurs the penalty of longer runtime, as shown in Section 2.5.

Our results show a high correlation between the design area and BOPS. The choice
of an all-to-all topology that is shown in Figure 10 was made because of an intuitive
understanding of how the accelerator calculates the network outputs. However, this choice



Sustainability 2021, 13, 717 13 of 20

has a greater impact on the layout’s routing complexity, with various alternatives incuding
broadcast or systolic topologies [16]. For example, a systolic topology, which is a popular
choice for high-end NN accelerators [14], eases the routing complexity by using a mesh
architecture. Although it reduces the routing effort and improves the flexibility of the
input/output feature count, it requires more complex control for the data movement to
the PEs.

In order to verify the applicability of BOPS to different topologies, we also imple-
mented a systolic array that is shown in Figure 11, where each PE is connected to four
neighbors with the ability to bypass any input to any output without calculations. The
input feature accumulator is located at the input of the PE. This topology generates natural
4× 1 PEs, but. with proper control, it is possible to create flexible accelerators.

FA

C
A

C
H

E

Conv.

1x1 conv.

Figure 11. Systolic array of PEs.

In the systolic design, we generated three square arrays of 4× 4, 8× 8, and 16× 16
PEs, with bw = ba ∈ {4, 6}. The systolic array area was found to be in linear relation with
BOPS, with the goodness of fit R2 = 0.9752, as shown in Figure 12.

104 105

BOPS

104

105

A
re

a,
µm

2

Linear fit

4 bit

6 bit

n=m=4

n=m=8

n=m=16

Figure 12. Area (A) vs. BOPS (B) for a systolic array of 3× 3 PEs with variable input (n) and output
(m) feature dimensions, and variable bitwidth. Weights and activations use the same bitwidth and
the accumulator width is set to log2(9m) · bw · ba.

3.2. System-Level Design Methodology

In this section, we analyze the acceleration of ResNet-18 while using the proposed
metrics and show the workflow for the early estimation of the hardware cost when designing
an accelerator. We start the discussion by targeting an ASIC that runs at 800 MHz, with
16 × 16 PEs and the same 2.4 GHz DDR-4 memory with a 64-bit data bus, as used in
Section 2.5. The impact of changing these constraints is discussed at the end of the section.
For the first layer, we replace the 7× 7 convolution with three 3× 3 convolutions, as proposed



Sustainability 2021, 13, 717 14 of 20

by He et al. [44]. This allows for us to simplify the analysis by employing universal 3× 3
kernel PEs for all layers.

We start the design process by comparing different alternatives while using the new
proposed OPS-based-roofline analysis, since it helps to explore the design trade-offs be-
tween the multiple solutions. We calculate the amount of OPS/s provided by 16× 16
PEs at 800 MHz and the requirements of each layer. In order to acquire the roofline, we
need to calculate the OPS/bit, which depend on the quantization level. For ResNet-18, the
current state-of-the-art [45] achieves 69.56% top-1 accuracy on ImageNet for 4-bit weights
and activations, which is only 0.34% less than the 32-bit floating-point baseline (69.9%).
Thus, we decided to focus on 2-, 3-, and 4-bit quantization both for weights and activations,
which can achieve 65.17%, 68.66%, and 69.56% top-1 accuracy, correspondingly.

For a given bitwidth, the OPS/bit is calculated by dividing the total number of
operations by the total number of bits transferred over the memory bus, consisting of
reading weights and input activations and writing output activations. Figure 13 presents
the OPS-based roofline for each quantization bitwidth. Note that, for each layer, we
provided two points: the red dots are the performance required by the layer, and the green
dots are the equivalent performance while using partial-sum computation.

101 102
OPS/bit

1011

1012

1013

1014

1015

1016

O
PS

/s

Computation bound
Memory bound
Single-clock calculation
Serial calculation

101 102
OPS/bit

101 102
OPS/bit

2 bit quantization 3 bit quantization 4 bit quantization

Figure 13. ResNet-18 roofline analysis for all layers. Red dots are the performance required by the layer, and green dots are
the equivalent performance using partial-sum computation. The blue curves connect points corresponding to the same
layer and they are only displayed for convenience.

Figure 13 indicates that this accelerator is severely limited by both computational
resources and a lack of bandwidth. The system is computationally bounded, which could
be inferred from the fact that it does not have enough PEs to calculate all of the features
simultaneously. Nevertheless, the system is also memory-bound for any quantization level,
which means that adding more PE resources would not fully solve the problem. It is crucial
to make this observation at the early stages of the design: it means that micro-architecture
changes would not be sufficient to obtain optimal performance.

One possible solution, as mentioned in Section 2.5, is to divide the channels of the
input and output feature maps into smaller groups, and use more than one clock cycle
in order to calculate each pixel. In this way, the effective amount of the OPS/s required
for the layer is reduced. When the number of feature maps is divisible by the number of
available PEs, the layer will fully utilize the computational resources, which is the case for
every layer except the first one. However, reducing the number of PEs also reduces the
data efficiency and, thus, the OPS/bit also decreases, shifting the points to the left on the
roofline plot.

Thus, some layers still require more bandwidth than the memory can supply. In
particular, in the case of 4-bit quantization, most of the layers are memory bounded. The
only option that properly utilizes the hardware is 2-bit quantization, for which all of the
layers except one are within the accelerator’s memory bound. If the accuracy for 2-bit
quantized network is insufficient and finer quantization is required, then it is possible
to reallocate some of the area used for the PEs to be used for additional local SRAM. By
caching the activations and output results for the next layer, we can reduce the required



Sustainability 2021, 13, 717 15 of 20

bandwidth from external memory at the expense of performance (i.e., increasing total
inference time). Reducing the PE count lowers the compute bound on the roofline, but, at
the same time, the use of SRAM increases operation density (i.e., moves the green dots
in Figure 13 to the right), possibly within hardware capabilities. Alternative solutions for
the memory-bound problem include changing the CNN architecture (for example, using
smaller amount of wide layers [46]), or adding a data compression scheme on the way to
and from the memory [40,41,47].

At this point, BOPS can be used in order to estimate the power and area of each
alternative for implementing the the accelerator while using the PE micro-design. In
addition, other trade-offs can be considered, such as the influence of modifying some
parameters that were fixed at the beginning: lowering the ASIC frequency will decrease
the computational bound, which reduces the cost and only hurts the performance if the
network is not memory bounded. An equivalent alternative is to decrease the number
of PEs. Both of the procedures will reduce the power consumption of the accelerator, as
well the computational performance. The system architect may also consider changing the
parameters of the algorithm, e.g., change the feature sizes, use different quantization for
the weights and for the activations, include pruning, etc.

It is also possible to reverse the design order: start with a BOPS estimate of the number
of PEs that can fit into a given area, and then calculate the ASIC frequency and memory
bandwidth that would allow for full utilization of the accelerator. This can be especially
useful if the designer has a specific area or power goal.

To summarize, it is extremely important, from an architectural point of view, to be
able to predict in the early stages of the design whether the proposed (micro)architecture is
going to meet the project targets. At the project exploration stage, the system architect can
choose from multiple alternatives in order to make the right trade-offs (or even negotiate
to change the product definition and requirements). Introducing such alternatives later
may be very hard or even impossible.

3.3. Evaluation of Eyeriss Architecture

In this section, we demonstrate the evaluation of existing CNN hardware architecture—
the Eyeris [20] implementation of VGG-16—while using our modified roofline analysis. We
visualized the required performance (compute and memory bandwidth) of each layer in
Figure 14. As earlier, red dots denote the required performance, the purple horizontal
line shows the available compute resource, and the diagonal orange line is the memory
bandwidth bound. The required performance is obviously compute bounded since PEs
are not enough to calculate all of the layers; the calculation is performed in cycles. The
required performance when calculating in cycles is plotted in green dots. If we compare
the Eyeriss roofline analysis to our architecture from Section 3, we can see a difference in
the movement of the required performance. This phenomenon is the result of the different
hardware architectural structures. Our example utilized weight stationary architecture,
which has an overhead when calculating in cycles: the input features are read multiple
times for each set of weights. Eyeriss architecture uses a row stationary approach and it
has enough local memory to re-use all of the weights and the activations before reading
additional data. It allows for the overhead of re-reading the activations for each set of
weights to be avoided. Because the roofline analysis shows asymptotical performance, data
compression and data-drop techniques [20] that may help reduce memory bandwidth and
compute requirements are excluded from the roofline analysis. While these approaches
can change the hardware requirements, it is infeasible to accurately estimate their impact
on the performance, due to their dependency on the data distribution.



Sustainability 2021, 13, 717 16 of 20

101 102

OPS/bit

109

1010

1011

1012

1013

1014

1015

O
P

S
/s

Computation bound

Memory bound

Single-clock calculation

Serial calculation

Figure 14. VGG-16 on Eyeriss [20] hardware. Red dots are the performance required by the layer,
and green dots are the equivalent performance using partial-sum computation. The blue curves
connect points corresponding to the same layer and they are only displayed for convenience.

Our analysis shows that VGG-16 on Eyeriss hardware has some memory bounded
layers. While two of these layers are close to the memory bound and can possibly get inside
the memory bound of the compression scheme [20], the first and the three last layers suffer
from poor performance compared to other layers. To evaluate the slowdown, in Table 6 we
show the real performance that is based on the roofline model as well as the amount of
time that is required for calculations (in the absence of a memory bound). Our prediction
of the performance is similar to the performance results that are shown by Chen et al. [20].

Table 6. Achievable performance of VGG-16 on Eyeriss hardware as seen from the roofline analysis.
The latency is the amount of time the execution units need to calculate the data in that layer.

Layer Latency Latency from Roofline
[ms] [ms]

conv1-1 7.7 158.9 (+1963.6%)
conv1-2 165.2 191.4 (+15.9%)
conv2-1 82.6 117.3 (+42%)
conv2-2 165.2 165.2
conv3-1 82.6 82.6
conv3-2 165.2 165.2
conv3-3 165.2 165.2
conv4-1 82.6 84.2
conv4-2 165.2 165.2
conv4-3 165.2 165.2
conv5-1 41.3 120.9 (+192.7%)
conv5-2 41.3 120.9 (+192.7%)
conv5-3 41.3 120.9 (+192.7%)

In the case of Eyeriss, adding more local SRAM cannot resolve the memory bound
issue. Eyeriss already re-uses the weights and activations (i.e., no data are read multiple
times), so the only option is to increase the memory speed. To conclude, the roofline analysis
results should be a tool for the architect to use during the planning process. Performance
degradation in some layers may be tolerable, as long as we have an appropriate metric to
accurately evaluate the impact on the entire network. The main benefit of using the roofline
analysis is that we can predict the areas where the network architecture is not optimal and
where we may need to focus on the design. It is up to the architect of the hardware to make
these decisions.



Sustainability 2021, 13, 717 17 of 20

4. Discussion
4.1. Conclusions

CNN accelerators are commonly used in different systems, starting from IoT and other
resource-constrained devices, and ending in datacenters and high-performance computers.
Designing accelerators that meet tight constraints is still a challenging task, since the current
EDA and design tools do not provide enough information to the architect. To make the
right choice, the architects need to understand the impact of their high-level decisions on
the final product in the early design stages as well as to be able to make a fair comparison
between different design alternatives.

In this paper, we introduced a framework for early-stage performance analysis that
works on any quantization level of the operands. We also presented the OPS-based
roofline model as a supporting tool for the architect. We showed that our framework
allows for a comparison of different design alternatives and an evaluation of the solution’s
feasibility. Utilizing BOPS [29] as the complexity metric, we can approximate changes
in accelerator resource requirements (area and power) that result from various possible
architectural changes. We evaluated the proposed method on several examples of realistic
designs, including the Eyeriss accelerator [20]. In particular, our analysis framework
confirms that CNN accelerators are more likely to be a memory rather than computationally
bound [14,39]. We conclude that, by using this analysis framework, architects will be able
to optimize their design performance in a fast development cycle.

Although this paper is mainly focused on ASIC-based architectures, the same method-
ology can be applied to many other systems, including FPGA-based implementations and
other system-specific domains that allow for trading-off accuracy and data representation
with different physical parameters, such as power, performance, and area.

4.2. Future Work

Creating a new hardware performance analysis framework for networks other than
CNNs, such as recurrent and graph neural networks, will be a powerful addition to ours.
We would like to explore new types of hardware accelerator architecture, such as the
“on-the-fly” variable quantization accelerator, where the same hardware elements can be
used for low bitwidth quantization layers or combined for high bitwidth quantization
layers in the same network. Developing novel machine learning hardware accelerators
based on “cache-less” architecture, where the area of the SRAM can be used for placing
more PEs on the silicon, and the activations and weights will flow inside between the PEs is
an interesting future direction. Such an architecture creates additional difficulties alongside
the problems of layout and routing on the silicon, and new algorithms will be needed in
order to map the massive PE array’s workload.

Author Contributions: Conceptualization, A.K., C.B. and A.M.; Formal analysis, A.K., C.B. and E.Z.;
Funding acquisition, A.M.B. and A.M.; Investigation, A.K., C.B., E.Z. and Y.Y.; Methodology, A.K.,
C.B. and Y.Y.; Project administration, A.M.B. and A.M.; Software, A.K. and Y.Y.; Supervision, F.G.,
A.M.B. and A.M.; Validation, A.K., C.B. and Y.Y.; Visualization, E.Z.; Writing—original draft, A.K.,
C.B. and E.Z.; Writing—review & editing, F.G., A.M.B. and A.M. All authors have read and agreed to
the published version of the manuscript.

Funding: The research was funded by the Hyundai Motor Company through the HYUNDAI-
TECHNION-KAIST Consortium, National Cyber Security Authority, and the Hiroshi Fujiwara
Technion Cyber Security Research Center.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2021, 13, 717 18 of 20

Abbreviations
The following abbreviations are used in this manuscript:

ASIC Application-Specific Integrated Circuit
CAD Computer-Aided Design
CNN Convolutional Neural Network
DDR Double Data Rate (Memory)
DL Deep Learning
EDA Electronic Design Automation
FLOPS Floating point Operations
FMA Fused Multiply-Add
FPGA Field Programmable Gate Array
GOPS Giga Operations
HDL Hardware Description Language
IC Integrated Circuit
IP Intellectual Property
MAC Multiply Accumulate
NN Neural Network
OPS Operations
PE Processing Engine
RAM Random Access Memory
SoC System on a Chip
SRAM Static Random Access Memory
TOPS Tera Operations
TSMC Taiwan Semiconductor Manufacturing Company
VLSI Very Large-Scale Integration

References
1. Qi, W.; Su, H.; Aliverti, A. A Smartphone-Based Adaptive Recognition and Real-Time Monitoring System for Human Activities.

IEEE Trans. Hum.-Mach. Syst. 2020, 50, 414–423. [CrossRef]
2. Su, H.; Hu, Y.; Karimi, H.R.; Knoll, A.C.; Ferrigno, G.; Momi, E.D. Improved recurrent neural network-based manipulator control

with remote center of motion constraints: Experimental results. Neural Netw. 2020, 131, 291–299. [CrossRef] [PubMed]
3. Su, H.; Qi, W.; Yang, C.; Sandoval, J.; Ferrigno, G.; Momi, E.D. Deep Neural Network Approach in Robot Tool Dynamics

Identification for Bilateral Teleoperation. IEEE Robot. Autom. Lett. 2020, 5, 2943–2949. [CrossRef]
4. Su, H.; Qi, W.; Hu, Y.; Karimi, H.R.; Ferrigno, G.; De Momi, E. An Incremental Learning Framework for Human-like Redundancy

Optimization of Anthropomorphic Manipulators. IEEE Trans. Ind. Inform. 2020. [CrossRef]
5. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for

MobileNetV3. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2
November 2019. [CrossRef]

6. Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; Keutzer, K. FBNet: Hardware-Aware Efficient
ConvNet Design via Differentiable Neural Architecture Search. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 10726–10734.

7. Sandler, M.; Howard, A.G.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22
June 2018; pp. 4510–4520.

8. Ridnik, T.; Lawen, H.; Noy, A.; Friedman, I. TResNet: High Performance GPU-Dedicated Architecture. arXiv 2020,
arXiv:2003.13630.

9. Gysel, P.; Motamedi, M.; Ghiasi, S. Hardware-oriented approximation of convolutional neural networks. arXiv 2016,
arXiv:1604.03168.

10. Yang, J.; Shen, X.; Xing, J.; Tian, X.; Li, H.; Deng, B.; Huang, J.; Hua, X.S. Quantization Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

11. Jin, Q.; Yang, L.; Liao, Z. Towards Efficient Training for Neural Network Quantization. arXiv 2019, arXiv:1912.10207.
12. Esser, S.K.; McKinstry, J.L.; Bablani, D.; Appuswamy, R.; Modha, D.S. Learned step size quantization. In Proceedings of the

International Conference on Learning Representations, Addis Ababa, Ethiopia, 26 April–1 May 2020.
13. Zhao, X.; Wang, Y.; Cai, X.; Liu, C.; Zhang, L. Linear Symmetric Quantization of Neural Networks for Low-precision Integer

Hardware. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26 April–1 May
2020.

http://doi.org/10.1109/THMS.2020.2984181
http://dx.doi.org/10.1016/j.neunet.2020.07.033
http://www.ncbi.nlm.nih.gov/pubmed/32841835
http://dx.doi.org/10.1109/LRA.2020.2974445
http://dx.doi.org/10.1109/TII.2020.3036693
http://dx.doi.org/10.1109/iccv.2019.00140


Sustainability 2021, 13, 717 19 of 20

14. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.A.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of the ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), Toronto, ON, Canada, 24–28 June 2017; pp. 1–12.

15. Raihan, M.A.; Goli, N.; Aamodt, T.M. Modeling deep learning accelerator enabled GPUs. In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), Madison, WI, USA, 24–26 March 2019; pp. 79–92.

16. Chen, Y.H.; Yang, T.J.; Emer, J.; Sze, V. Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile devices.
IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 292–308. [CrossRef]

17. Jiao, Y.; Han, L.; Jin, R.; Su, Y.J.; Ho, C.; Yin, L.; Li, Y.; Chen, L.; Chen, Z.; Liu, L.; et al. A 12 nm Programmable Convolution-
Efficient Neural-Processing-Unit Chip Achieving 825TOPS. In Proceedings of the IEEE International Solid-State Circuits
Conference-(ISSCC), San Francisco, CA, USA, 16–20 February 2020; pp. 136–140.

18. Abts, D.; Ross, J.; Sparling, J.; Wong-VanHaren, M.; Baker, M.; Hawkins, T.; Bell, A.; Thompson, J.; Kahsai, T.; Kimmell, G.; et al.
Think Fast: A Tensor Streaming Processor (TSP) for Accelerating Deep Learning Workloads. In Proceedings of the ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA), Valencia, Spain, 20 May–3 June 2020; pp. 145–158.

19. Jouppi, N.P.; Yoon, D.H.; Kurian, G.; Li, S.; Patil, N.; Laudon, J.; Young, C.; Patterson, D. A domain-specific supercomputer for
training deep neural networks. Commun. ACM 2020, 63, 67–78. [CrossRef]

20. Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE J. Solid-State Circuits 2017, 52, 127–138. [CrossRef]

21. Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A.; Dally, W.J. EIE: Efficient inference engine on compressed deep
neural network. In Proceedings of the ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA),
Seoul, Korea, 18–22 June 2016; pp. 243–254.

22. Rivas-Gomez, S.; Pena, A.J.; Moloney, D.; Laure, E.; Markidis, S. Exploring the Vision Processing Unit as Co-Processor for
Inference. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
Vancouver, BC, Canada, 21–25 May 2018. [CrossRef]

23. Reddi, V.J.; Cheng, C.; Kanter, D.; Mattson, P.; Schmuelling, G.; Wu, C.J.; Anderson, B.; Breughe, M.; Charlebois, M.; Chou, W.; et al.
MLPerf Inference Benchmark. arXiv 2019, arXiv:1911.02549.

24. Baskin, C.; Liss, N.; Zheltonozhskii, E.; Bronstein, A.M.; Mendelson, A. Streaming architecture for large-scale quantized neural
networks on an FPGA-based dataflow platform. In Proceedings of the IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), Vancouver, BC, Canada, 21–25 May 2018; pp. 162–169.

25. Ankit, A.; Hajj, I.E.; Chalamalasetti, S.R.; Ndu, G.; Foltin, M.; Williams, R.S.; Faraboschi, P.; Hwu, W.W.; Strachan, J.P.; Roy, K.; et al.
PUMA: A Programmable Ultra-Efficient Memristor-Based Accelerator for Machine Learning Inference. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS’19, Providence, RI, USA, 13–17 April 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 715–731.
[CrossRef]

26. Umuroglu, Y.; Fraser, N.J.; Gambardella, G.; Blott, M.; Leong, P.; Jahre, M.; Vissers, K. FINN: A Framework for Fast, Scalable
Binarized Neural Network Inference. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA’17, Monterey, CA, USA, 22–24 February 2017; Association for Computing Machinery: New York, NY, USA,
2017; pp. 65–74. [CrossRef]

27. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. How to Evaluate Deep Neural Network Processors: TOPS/W (Alone) Considered
Harmful. IEEE Solid-State Circuits Mag. 2020, 12, 28–41. [CrossRef]

28. Lee, J.; Won, T.; Lee, T.K.; Lee, H.; Gu, G.; Hong, K. Compounding the Performance Improvements of Assembled Techniques in a
Convolutional Neural Network. arXiv 2020, arXiv:2001.06268.

29. Baskin, C.; Schwartz, E.; Zheltonozhskii, E.; Liss, N.; Giryes, R.; Bronstein, A.M.; Mendelson, A. UNIQ: Uniform Noise Injection
for Non-Uniform Quantization of Neural Networks. arXiv 2018, arXiv:1804.10969.

30. Williams, S.; Waterman, A.; Patterson, D. Roofline: An insightful visual performance model for multicore architectures. Commun.
ACM 2009, 52, 65–76. [CrossRef]

31. McMahon, F.H. The Livermore Fortran Kernels: A Computer Test of the Numerical Performance Range; Technical Report; Lawrence
Livermore National Lab.: Livermore, CA, USA, 1986.

32. Wang, L.; Zhan, J.; Gao, W.; Jiang, Z.; Ren, R.; He, X.; Luo, C.; Lu, G.; Li, J. BOPS, Not FLOPS! A New Metric and Roofline
Performance Model For Datacenter Computing. arXiv 2018, arXiv:1801.09212.

33. Parashar, A.; Raina, P.; Shao, Y.S.; Chen, Y.H.; Ying, V.A.; Mukkara, A.; Venkatesan, R.; Khailany, B.; Keckler, S.W.; Emer, J.
Timeloop: A systematic approach to dnn accelerator evaluation. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), Madison, WI, USA, 24–26 March 2019; pp. 304–315.

34. Wu, Y.N.; Sze, V. Accelergy: An architecture-level energy estimation methodology for accelerator designs. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 4–7 November 2019.

35. Mishra, A.; Nurvitadhi, E.; Cook, J.J.; Marr, D. WRPN: Wide Reduced-Precision Networks. In Proceedings of the International
Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

36. Jiang, Z.; Li, J.; Zhan, J. The Pitfall of Evaluating Performance on Emerging AI Accelerators. arXiv 2019, arXiv:1911.02987.

http://dx.doi.org/10.1109/JETCAS.2019.2910232
http://dx.doi.org/10.1145/3360307
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1109/ipdpsw.2018.00098
http://dx.doi.org/10.1145/3297858.3304049
http://dx.doi.org/10.1145/3020078.3021744
http://dx.doi.org/10.1109/MSSC.2020.3002140
http://dx.doi.org/10.1145/1498765.1498785


Sustainability 2021, 13, 717 20 of 20

37. Shafiee, A.; Nag, A.; Muralimanohar, N.; Balasubramonian, R.; Strachan, J.P.; Hu, M.; Williams, R.S.; Srikumar, V. ISAAC: A
convolutional neural network accelerator with in-situ analog arithmetic in crossbars. In Proceedings of the 43rd International
Symposium on Computer Architecture, ISCA’16, Seoul, Korea, 18–22 June 2016; pp. 14–26. [CrossRef]

38. Morcel, R.; Hajj, H.; Saghir, M.A.R.; Akkary, H.; Artail, H.; Khanna, R.; Keshavamurthy, A. FeatherNet: An Accelerated
Convolutional Neural Network Design for Resource-constrained FPGAs. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 2019,
12, 6:1–6:27. [CrossRef]

39. Wang, E.; Davis, J.J.; Cheung, P.Y.; Constantinides, G.A. LUTNet: Rethinking Inference in FPGA Soft Logic. arXiv 2019,
arXiv:1904.00938.

40. Baskin, C.; Chmiel, B.; Zheltonozhskii, E.; Banner, R.; Bronstein, A.M.; Mendelson, A. CAT: Compression-Aware Training for
bandwidth reduction. arXiv 2019, arXiv:1909.11481.

41. Chmiel, B.; Baskin, C.; Banner, R.; Zheltonozhskii, E.; Yermolin, Y.; Karbachevsky, A.; Bronstein, A.M.; Mendelson, A. Feature
Map Transform Coding for Energy-Efficient CNN Inference. arXiv 2019, arXiv:1905.10830.

42. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 2015, 115, 211–252. [CrossRef]

43. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NY, USA, 26 June–1 July 2016; pp. 770–778.

44. He, T.; Zhang, Z.; Zhang, H.; Zhang, Z.; Xie, J.; Li, M. Bag of Tricks for Image Classification with Convolutional Neural Networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June
2019.

45. Gong, R.; Liu, X.; Jiang, S.; Li, T.; Hu, P.; Lin, J.; Yu, F.; Yan, J. Differentiable Soft Quantization: Bridging Full-Precision and
Low-Bit Neural Networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, 27
October–2 November 2019.

46. Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146.
47. Cavigelli, L.; Rutishauser, G.; Benini, L. EBPC: Extended Bit-Plane Compression for Deep Neural Network Inference and Training

Accelerators. IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 723–734. [CrossRef]

http://dx.doi.org/10.1109/ISCA.2016.12
http://dx.doi.org/10.1145/3306202
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/JETCAS.2019.2950093

	Introduction
	Contribution
	Related Work

	Method
	The Impact of Quantization on Hardware Implementation
	Data Path
	Communication
	Local Memory
	Roofline Analysis

	Results
	Experimental Methodology
	System-Level Design Methodology
	Evaluation of Eyeriss Architecture

	Discussion
	Conclusions
	Future Work

	References

