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Abstract: Heavy metals are toxic and non-biodegradable environmental contaminants that seriously
threaten human health. The remediation of heavy metal-contaminated water and soil is an urgent
issue from both environmental and biological points of view. Recently, nanomaterials with excellent
adsorption capacities, great chemical reactivity, active atomicity, and environmentally friendly
performance have attracted widespread interest as potential adsorbents for heavy metal removal.
This review first introduces the application of nanomaterials for removing heavy metal ions from
the environment. Then, the environmental factors affecting the adsorption of nanomaterials, their
toxicity, and environmental risks are discussed. Finally, the challenges and opportunities of applying
nanomaterials in environmental remediation are discussed, which can provide perspectives for future
in-depth studies and applications.

Keywords: nanomaterials; heavy metals; remediation; nanotoxicity

1. Introduction

As a result of extensive industrialization and urbanization over the past century,
large amounts of heavy metal ions have been and continue to be discharged into the
environment by human activities, such as electroplating, mining, chemical manufacturing,
and the application of pesticides and fertilizers [1–3]. Heavy metal contamination in soil
and water has become a major problem for many countries throughout the world [4,5].
Because of the non-biodegradable, persistent, and toxic nature of heavy metals, such as
Cr(VI), Cd(II), Pb(II), Cu(II), and Hg(II), the ecological environment and human health
are seriously threatened [6–8]. For example, the microbial biomass of soils contaminated
with Cd, Pb, and Cr is seriously inhibited [9]. Moreover, even low concentrations of
heavy metals present in the environment may cause serious environmental and health
problems [10,11]. Therefore, in order to protect the ecological environment and public
safety, it is imperative to remove these heavy metal ions from contaminated environments.

During the past few decades, numerous treatment methods have been developed to
deal with heavy metal contamination, including physical methods, such as adsorption,
coagulation, evaporation, and filtration; chemical methods, such as chemical precipitation,
oxidation, ion exchange, and electrochemical processes; and biological methods, such
as biodegradation and phytoremediation [12–15]. However, most of these treatment
methods have significant drawbacks, such as high costs, complexity of operation, and
secondary pollution [16–18]. For instance, despite the great removal efficiency of chemical
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precipitation, its installation cost is quite high [19]. Of all of the known methods, adsorption
is widely used because of its low cost, high removal efficiency, strong practicality, high
applicability, and good operability [20,21].

Absorbency is a key factor of the adsorption method. Therefore, it is crucial to select
the most suitable adsorption material. A good adsorbent should have the advantages of
a large specific surface, great sorption sites, diverse surface interactions, fast adsorption
rates, and low costs [22–24]. Currently, the most commonly used adsorbents are biochar,
activated carbon, carbon film, biopolymers, clay materials, and nanomaterials [25–27].

Nanomaterials are defined as materials that contain particles measuring between 1.0
and 100 nm in at least one dimension [28,29]. Since the emergence of nanomaterials in the
1970s, an increasing number of researchers have focused on the application of nanomateri-
als in removing pollutants, such as heavy metals, organic pollutants, and pathogens, from
contaminated surface waters, groundwater, sediments, and soil [27,30,31]. Nanomaterials
are promising adsorbents and catalysts for the application of environmental remediation
because of their great chemical reactivity, large adsorption surface, low temperature modi-
fication, and active atomicity [32,33]. The small size of nanoparticles makes it easier for
the atoms at the surface to adsorb and have reactions with other atoms in order to achieve
charge stabilization [34]. The large specific surface area can greatly improve the adsorption
capacities of adsorbents [29,35]. In addition, because of the reduced size, nanomaterials
have surfaces that are very reactive [36]. Not only can they efficiently adsorb pollutants, but
they also have unique redox properties that are beneficial for the removal of redox-sensitive
pollutants via degradation [28,37]. Studies on the removal of heavy metals using nanoma-
terials are of increasing importance and academic interest, as can be seen from the number
of papers published every year, as shown in Figure 1. However, some of the commonly
used nanomaterials do have limitations, including high costs, potential toxicity, difficulty
in recycling, and an easy interaction with other media [16]. Even though nanomaterials
have been widely studied in the field of heavy metal remediation, a comprehensive and
systematic review of the application of nanomaterials for the removal of heavy metal ions
is relatively lacking.
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Therefore, this paper provides an overview of the application and related research of
nanomaterials for removing heavy metal ions from contaminated soil and water and their
performance in heavy metal remediation. Additionally, the environmental factors affecting
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the adsorption of nanomaterials, their toxicity, and environmental risks after application
are discussed in detail. This review provides a reference for future large-scale applications
of nanomaterials in remediation projects. Finally, the challenges and opportunities for the
researchers who are working hard in this promising field of study are discussed.

2. Types of Nanomaterials to Remove Heavy Metals

Nanomaterials are classified into carbon-based nanomaterials and inorganic nano-
materials [38]. They have been widely applied in the field of environmental remediation.
Among them, nano zero-valent iron (NZVI), carbon nanotubes (CNTs), and titanium
dioxide nanoparticles (TiO2 NPs) are the most frequently used and studied nanomate-
rials [39,40]. Table 1 summarizes the applications and the performance highlights of
nanomaterials for removing heavy metals from water and soil environments.

Table 1. Applications of nanomaterials in removing heavy metals from the environment.

Types of
Nanomaterials Environment Target Heavy Metals Performance

Highlights References

NZVI-HCS Water Pb(II), Cu(II), and
Zn(II)

The maximum
adsorption capacities
were 195.1, 161.9, and
109.7 mg·g−1 for Pb(II),
Cu(II), and Zn(II),
respectively

[41]

NZVI Sediment Cd(II)

The maximum
adsorption capacity of
for Cd(II) was
769.2 mg g−1 at 297 K

[42]

BC-NZVI Water Cr(VI)

The performance of
BC-NZVI was pH
dependent, with a
maximum Cr(VI)
removal efficiency of
98.71% at pH 2

[43]

BC-NZVI Soil Cr(VI)

The immobilization
efficiency of Cr(VI) and
total Cr reached 100%
and 92.9%, respectively,
when 8 g kg−1 of
BC-NZVI was applied
for 15 d

[44]

NZVI Water Pb(II)

The maximum
adsorption capacity of
NZVI was
807.23mg·g−1 at pH 6

[45]

OA-NZVI Soil Cd(II), Pb(II), and
Zn(II)

The highest Cd, Pb,
and Zn removal
efficiencies were
46.66%, 48.88% and
47.01%, respectively, for
farmland soil at the
NZVI concentration of
0.4 g L−1

[46]

MWCNTs Water Zn(II)

The maximum
adsorption efficiency
was 96.27% at pH 5 for
6 h

[47]
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Table 1. Cont.

Types of
Nanomaterials Environment Target Heavy Metals Performance

Highlights References

MWCNTs-COOH Water Hg(II) and As(III)

The maximum removal
efficiencies for Hg(II)
and As(III) were 80.5%
and 72.4% at the
adsorbent dose of
20 mg L−1 and pH
7.6–7.9, respectively

[48]

CNTs Water Zn(II)

The maximum
adsorption capacities of
Zn(II) were 43.66 and
32.68 mg g−1 by
SWCNTs and
MWCNTs, respectively

[49]

TiO2-NCH Water Cd(II) and Cu(II)

The maximum
adsorption efficiency of
Cu(II) and Cd(II) from
wastewater samples
were 88.01% and
70.67%, respectively

[50]

Mesoporous
carbonated
TiO2 NPs

Water Sr(II)

The maximum
adsorption capacity of
Sr(II) 204.4 mg g−1 at
the natural pH by
4C-TiO2

[51]

TiO2 NPs Soil Cd(II)

The greatest Cd
accumulation capacity
of Trifolium repens
reached 1235µg pot−1

with PGPR +
500 mg kg−1 TiO2 NPs
treatment

[52]

2.1. Nano Zero-Valent Iron (NZVI)

NZVI is the most widely studied and applied nanomaterial in environmental remedi-
ation and has been proven to be an effective adsorbent, reductant, and catalyst for a variety
of contaminants, such as heavy metal ions, halogenated organic compounds, organic dyes,
and pharmaceuticals [46–48]. NZVI has a typical core shell structure generated during the
synthesis process that contains a shell of Fe(II), Fe(III), and zero-valent iron [53]. As a result
of the unique structure, NZVI has the abilities of reduction, surface sorption, stabilization,
and precipitation of various contaminants [54–56]. Several studies have reported that
NZVI exhibited excellent performance for removing heavy metal(loid) ions from contam-
inated environments [41–44]. For instance, Yang et al. [41] applied a corn stalk-derived,
biochar-supported NZVI for the removal of heavy metal ions from water. The results
showed that the equilibrium adsorption capacities reached 195.1, 161.9, and 109.7 mg·g−1

for Pb(II), Cu(II), and Zn(II) after 6 h, respectively. Boparai et al. [42] reported that NZVI
could be applied as an efficient adsorbent to remove cadmium from contaminated wa-
ter. The maximum adsorption capacity of NZVI for Cd(II) was 769.2 mg g−1, which was
achieved at a temperature of 297 K. Su et al. [44] found that the immobilization efficiency of
Cr(VI) reached 100% when 8 g kg−1 of biochar-supported NZVI was applied in hexavalent
chromium-contaminated soil for 15 days. Acid mine water was treated using NZVI, and
this resulted in a significant decrease in the concentrations of microcontaminants, such
as U, V, As, Cr, Cu, Cd, Ni, and Zn [57]. Huang et al. [58] investigated the effects of
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different dosages of NZVI on plant growth and the Pb accumulation of Lolium perenne. The
Pb accumulation and plant biomass were significantly enhanced when the NZVI and Pb
accumulation in L. perenne reached a maximum of 1175.40µg per pot with the treatment
of 100 mg kg−1 NZVI. Vítková et al. [59] reported that NZVI application significantly
stabilized the As and Zn in As-rich and Zn-rich soils by the formation of Fe (hydr)oxides.
Han et al. [60] investigated the removal efficiency of permeable reactive barriers (PRBs)
filled with zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as a reactive medium
and discussed the reaction mechanism of Cr(VI), Cd(II), Ni(II), Cu(II), and Zn(II) with
ZVI/ZVAl. The main possible mechanisms were adsorption, formation of metal hydroxide
precipitates, and reduction, which are shown in Figure 2.
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2.2. Carbon Nanotubes (CNTs)

CNTs, which were first discovered in 1991, have a unique chemical structure that
consists of a graphitic sheet rolled up in a cylindrical shape [61,62]. CNTs are very strong
materials that are over 100 times more resistant and six times lighter than steel [63]. De-
pending on the number of cylindrical shells, CNTs are classified into two categories: single
wall CNTs (SWCNTs) and multi-wall CNTs (MWCNTs). Because of their extraordinary
characteristics, such as a large specific surface area, unique morphology, and high reactivity,
CNTs are considered to be an excellent nanomaterial for the removal of various organic
and inorganic pollutants [64,65]. CNTs can be produced via methods such as chemical
vapor deposition, laser ablation, and arc discharge. The adsorption capacity of CNTs is
greatly affected by the methods by which they are synthesized with different reactants and
catalysts [66]. For instance, Mubarak et al. [67] studied the effect of microwave-assisted
MWCNTs on the removal of Zn(II) from wastewater. The results showed that the highest
removal rate (99.9%) was achieved at pH 10 and a CNTs dosage of 0.05 g. Sun et al. [68]
found that the removal efficiency of Cd(II) by CNTs increased at pH 3. Osman et al. [69]
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reported that CNTs synthesized from potato peel-waste material removed up to 84% of
Pb(II) within 1 h of the CNTs’ application. Yaghmaeian et al. [70] used MWCNTs as a
sorbent to remove Hg(II) from wastewater. The results showed that an adsorption capacity
of 25.64 mg g−1 and a removal rate of greater than 85% were achieved when operated at
25 ◦C, pH 7, with a contact time of 120 min. Sobhanardakani et al. [71] prepared oxidized
MWCNTs and used it as an adsorbent for the removal of Cu(II) from an aqueous solution.
The maximum removal rate for Cu(II) was 99.5% at the optimum temperature (25 ◦C) and
the most suitable pH value (6.0). There may be various pathways for heavy metal removal
by CNTs, including adsorption, electrostatic interaction, reduction, and ion exchange,
depending on the novel properties provided by functionalization and the heavy metal ions
(Figure 3).
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2.3. Titanium Dioxide Nanoparticles (TiO2 NPs)

Among the nanomaterials used for environmental remediation, TiO2 NPs have been
extensively studied [73]. TiO2 NPs show good abilities for photocatalysis, high reactivity,
and chemical stability, and they have been successfully applied for modifying the mobility
and toxicity of heavy metals in water, soil, and sediment [74,75]. In addition, another
advantage of TiO2 NPs is their ease of synthesis. Goutam et al. [76] synthesized TiO2
NPs using a leaf extract and used it to treat tannery wastewater. The results showed that
76.48% of the Cr was removed from the wastewater using green-synthesized TiO2 NPs.
Mahmoud et al. [77] reported that the microwave-synthesized TiO2 NPs bonded with
the chitosan nanolayer and removed 88.01% of the Cu (II) and 70.67% of the Cd (II) from
wastewater when the pH value was 7.0. Gebru et al. [78] synthesized cellulose acetate
(CA)/TiO2 NPs using a new electrospinning technique and tested its adsorption capacity
for removing Pb(II) and Cu(II) ions from water. The CA/TiO2 adsorbent removed 99.7%
and 98.9% of Pb(II) and Cu(II) ions under the most optimized conditions. Fan et al. [79]
reported that the concentrations of exchangeable, carbonate, and iron-manganese oxide of
As and Pb in the sediments decreased with an increasing amount of TiO2 NPs. Singh and
Lee [80] investigated the effect of TiO2 NPs on Cd phytoremediation in Glycine max. The
results showed that the Cd accumulation in the aerial portions of the plants increased by ap-
proximately 2.6 times when 300 mg kg−1 TiO2 NPs were added to the soil. Zhao et al. [81]
proposed the possible removal mechanisms of Cr(VI) by reduced graphene oxide deco-
rated with TiO2 NPs (TiO2-RGO), which is shown in Figure 4. It was speculated that the
negatively charged Cr(VI) was bound to the surface of TiO2-RGO, which had a positive
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charge and was reduced to Cr(III). Then, the Cr(III) species was released into the solution
due to electrostatic repulsion with the surface of TiO2-RGO.
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3. Environmental Factors Affecting the Performance of Nanomaterials
3.1. The Effect of pH

The solution pH is an important parameter in the reactions of nanomaterials with
heavy metal ions [25]. The solution pH value affects the surface charge of the nanomaterial
and thus affects its adsorption ability. In addition, the pH determines the bioavailability
and existent forms of heavy metal ions [82]. At a lower pH, more protons react with nano-
materials, such as NZVI, and the conversion of H+ to H2 can result in more reactive atomic
hydrogen and a faster reduction rate. The surface coordination, electrostatic sorption,
and precipitation become stronger under neutral pH conditions, which leads to a higher
removal rate [83]. For example, Zhao et al. [84] reported that the adsorption ability of NZVI
decreased significantly under strong alkaline or acidic conditions. The NZVI corrosion was
affected by the pH, and thus affected its reactive lifetime. Liu et al. [85] investigated the
effects of the pH on the removal efficiency of Hg(II) and Cr(VI) by a pumice-supported
NZVI from an aqueous solution. The results showed that when the pH increased from
3.1 to 8.1, the Hg(II) removal rates increased, while the Cr(VI) removal rates decreased.
Wu et al. [86] found that the Cr(VI) removal rate of FeS nanoparticles stabilized by sodium
alginate increased from 92.51% to 99.65% when the pH was increased from 4.0 to 6.0,
while the Cr(VI) removal rate decreased to 65.37 when the pH was 10.0. Xu and Zhao [87]
investigated the effect of the pH on the Cr(VI) immobilization in contaminated soil using
carboxymethyl cellulose-stabilized NZVI. The results showed that the Cr(VI) leached from
the soil reduced from around 30% to 20%, with the soil pH decreasing from 9.0 to 5.0.

3.2. The Effect of the Contact Time

Generally, the contact time between nanoparticles and heavy metal ions can signifi-
cantly affect the removal rates during the adsorption and redox process [88]. Several studies
have investigated the effects of contact time by applying models such as the pseudo-first-
order, the pseudo-second-order, the Zeldowitsch, and the Lagergren kinetic models [89].
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Typically, the adsorption rate of heavy metal ions onto nanomaterials quickly reached the
highest point in the beginning phase and then slowed down with time until the sorption
equilibrium was reached. Specifically, Gong et al. [90] found that the Hg(II) removal rate by
the sodium carboxymethyl cellulose-stabilized FeS nanoparticles reached the highest point
within 30 minutes and slowly decreased until equilibrium was achieved at approximately
6 h. It was reported by Lv et al. [91] that Cr(VI) was removed rapidly by NZVI–Fe3O4
nanocomposites within 2 h and then slowed down until equilibrium. The kinetics model
was described well by the pseudo-second-order model. Cao et al. [46] investigated the
removal efficiency of Cd(II), Pb(II), and Zn(II) from mine- and farmland-contaminated
soils using the soil-washing method with the application of NZVI combined with low-
molecular-weight organic acids. The results showed that the removal efficiency of heavy
metals increased rapidly in the first 2 h and then slowed down until equilibrium. The
initial process of 2 h was described by the pseudo-first-order model, and the whole process
of 12 h was described by the pseudo-second-order model.

3.3. The Effect of the Adsorbent Dosage

The dosage of the nanomaterials used is another key factor that affects the removal
capacities of heavy metal ions. Many publications have selected the optimum dosage of
adsorbents that can achieve the desired removal efficiency, which is useful for the cost-
effective application of nanomaterials. Arshadi et al. [92] reported that the Pb(II) removal
rate by immobilized NZVI on the sineguelas waste biomaterial increased from 15.6% to
89% when the adsorbent dosage increased from 0.05 to 0.15 g. However, a higher adsorbent
dosage did not result in a significant increase in the removal rate of 89%. Fu et al. [32]
investigated the removal efficiency of Cr(VI) and Pb(II) from groundwater by sepiolite-
supported NZVI. The results showed that when the adsorbent dosage was increased from
0.05 to 3.2 g L−1, the Cr(VI) removal rate was raised from 45.1% to 99.2%, and the Pb(II)
removal rate was raised from 56.2% to 99.9%. However, a dosage of 1.6 g L−1 sepiolite-
supported NZVI was selected as the optimal dosage because the pseudofirst-order rate
constants of Cr(VI) and Pb(II) did not increase significantly after the adsorbent dosage of
1.6 g L−1. Zand et al. [52] investigated the phytoremediation of the Cd contaminated soil
with the application of different doses of TiO2 NPs. The results showed that the Cd uptake
by Trifolium repens was significantly enhanced when the application dosage of TiO2 NPs
was increased from 0 to 500 mg kg−1. The application of 1000 mg kg−1 TiO2 NPs resulted
in a significant reduction of plant biomass due to toxic effects.

3.4. The Effect of Temperature

The temperature determines the energy of reaction activity and thus plays key roles in
the adsorption process. The increase or decrease in temperature can alter the equilibrium
adsorption capacity of nanomaterials. Furthermore, the higher temperature can reduce
the distance between nanoparticles and increase the redox reaction rate. Dubey et al. [93]
studied the removal efficiency of Hg(II) by chitosan–alginate nanoparticles when the tem-
perature ranged from 10 to 40 ◦C. The results showed that the removal efficiency increased
with the increasing temperature until 30 ◦C and then started to decrease. Similar results
were also reported elsewhere [94]. Nassar [95] reported that the Pb(II) adsorption by
Fe3O4 nanomaterials increased with the increase of temperature from 298 to 328 K, which
indicated that the adsorption process was endothermic. Liu et al. [96] investigated the
immobilization efficiency of Re(VII) using starch-stabilized NZVI in soil and groundwa-
ter. The results showed that the immobilization efficiency of Re(VII) increased with the
increasing temperature from 15 to 45 ◦C. The results can be explained by the classical
Arrhenius equation.

4. Environmental Impacts of Nanomaterials

Nanomaterials have provided a wide range of applications for reducing/immobilizing
metal(loid)s in contaminated water and soil [96,97]. However, the massive use of nano-
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materials will inevitably result in their elevated concentrations in the environment, which
may affect ecological security and human health [98–104]. The toxicity of nanomaterials
and their ability to change the bioavailability of toxic contaminants such as heavy metals
should not be neglected [105–107]. It is of great importance to investigate the environmen-
tal impacts of nanomaterials due to their increasing use in the remediation of contaminated
water and soil. Lu et al. [106] reported that the toxicity of Cd(II) for Artemia salina, a
model marine zooplankton, increased by 12.2% when 5 mg L−1 of TiO2 NPs was added.
However, when the concentration of TiO2 NPs was increased to 400 mg L−1, the toxicity
of Cd(II) was reduced to 57.1%, which indicated a concentration-dependent toxicity of
nanomaterials. Deng et al. [107] investigated the physiological and biochemical responses
of Phaeodactylum tricornutum to TiO2 NPs. The results showed that the growth inhibition
rate of P. tricornutum increased from 5.46% to 27.31% when the dosage of TiO2 NPs in-
creased from 2.5 to 40 mg L−1 at an exposure of 96 h. Lam et al. [108] found that the
mice treated with high dosages of single-wall carbon nanotubes revealed peribronchial
inflammation, while the mice treated with carbon black were normal. Lindberg et al. [109]
revealed that CNTs induced a dose-dependent increase in DNA damage assessed by a
single cell gel electrophoresis assay and a micronucleus assay in human bronchial epithelial
BEAS 2B cells. A study showed that a dosage of NZVI up to 10 mg L−1 resulted in a
doubling of the decrease in fertilization success of marine organisms including mussels,
sea squirts, and urchins [110]. El-Temsah and Joner [111] reported that NZVI had toxicity
effects on soil microorganisms (ostracods and collembola), especially after a 7-d incubation.
However, the toxicity effect was observed to be alleviated with the increase in incubation
time. Fajardo et al. [112] investigated the impacts of NZVI on soil microbial structures
and functionality. The results showed that the application of 10 mg mL−1 NZVI had no
significant effect on the cellular viability and biological activity of the soil microorganisms.
The FISH assays showed that NZVI promoted the dominance of some microbial groups
and thus changed the soil microbial structure. As discussed in Section 3.3, the dosage of
nanomaterials is a key factor for removing heavy metals from the environment. However,
the toxicity of nanomaterials has also been shown to be dosage dependent [113]. In conclu-
sion, previous studies showed that nanomaterials had toxicity effects on microorganisms,
aquatic organisms, and plants [106–113]. The feasibility of applying nanomaterials in the
remediation of contaminated water and soil should be questioned. However, it is worth
noticing that the toxicity of nanomaterials is affected by the tested organism species, the
dosage of nanomaterials, and the environmental factors. Therefore, it is difficult to conduct
a comprehensive and in-depth analysis of the toxicity effects of nanomaterials. Moreover,
the selection of a suitable modification method, synthesis method, and the dosage of
nanomaterials can minimize the adverse effect on the environment.

5. Conclusions and Future Perspectives

Nanomaterials are revolutionary materials with properties that include nanoscale
size, large specific surface area, and great reactivity. According to the current knowledge,
nanomaterials have substantial potential for remediating heavy metal-contaminated water
and soil. In this review, the applications, environmental factors, toxicity, and future
perspectives of nanomaterials on heavy metal remediation were discussed, as shown in
Figure 5. Their applications in the field of environmental pollution control, especially
in heavy metal remediation will certainly continue to be studied. Despite the many
advantages of nanomaterials, there are still several challenges in their application for heavy
metal remediation that require attention in future studies, including: (1) the toxicity of
nanomaterials on the plants, animals, and the microbial community; (2) the management
and regeneration of nanomaterials; (3) the recovery of heavy metal ions from saturated
nanomaterials; (4) the methods to decrease the aging of nanomaterials; (5) the combined
application of nanomaterials with other treatments such as phytoremediation; (6) the
synergistic or antagonistic effects of nanomaterials and microbial activities; and (7) the
long-term stability of heavy metal remediation by nanomaterials, especially in field studies.
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