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Abstract: Nowadays, energy management aims to propose different strategies to utilize available
energy resources, resulting in sustainability of energy systems and development of smart sustainable
cities. As an effective approach toward energy management, non-intrusive load monitoring (NILM),
aims to infer the power profiles of appliances from the aggregated power signal via purely analytical
methods. Existing NILM methods are susceptible to various issues such as the noise and transient
spikes of the power signal, overshoots at the mode transition times, close consumption values by
different appliances, and unavailability of a large training dataset. This paper proposes a novel
event-based NILM classification algorithm mitigating these issues. The proposed algorithm (i) filters
power signals and accurately detects all events; (ii) extracts specific features of appliances, such
as operation modes and their respective power intervals, from their power signals in the training
dataset; and (iii) labels with high accuracy each detected event of the aggregated signal with an
appliance mode transition. The algorithm is validated using REDD with the results showing its
effectiveness to accurately disaggregate low-frequency measured data by existing smart meters.

Keywords: demand-side management; clustering; event detection; non-intrusive load monitoring

1. Introduction

Due to the unpredictable nature of both generation, caused by renewable energy re-
sources, and consumer demand, maintaining the balance between generation and demand
is one of the main challenges in smart grids [1,2]. Residential demand-side management
programs have thus emerged as a promising set of methods to strike such balance [3].
In view of these programs, non-intrusive load monitoring (NILM), that is, the process of
extracting the power profile or operating pattern of each appliance from the aggregated
power signal of a house using purely analytical methods, has gained a great deal of at-
tention in recent years [4]. Practical and efficient, NILM provides consumers with an
opportunity to track the energy consumption of each appliance and voluntarily change
their usage patterns to save energy and reduce the cost while maintaining their comfort
which also results in higher stability and efficiency of the power grid [5,6].

The concept of NILM was first introduced in 1992 by Hart [7]. Since then, a variety of
analytical algorithms have been proposed to address the NILM problem. These algorithms
employ various features and parameters such as voltage, current, and active and reactive
power signals of a house. As measuring the active power is cost-efficient, a majority of
studies have focused on this feature alone [8]. NILM research based on the active power
signal diverged into two main lines of study: (i) state-based algorithms that consider each
appliance as a finite-state machine and disaggregate the total power signal based on the
learned model of state transitions of appliances [9] and (ii) event-based algorithms, which
are based on the edges or considerable variations of the signal caused by turning ON/OFF
of appliances or their other mode transitions [3]. Due to the low computational complexity
of event-based techniques, they have proved more popular than the state-based ones [10].
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In designing an event-based algorithm, multiple challenges are involved. The first
one lies in the event detection part caused by the presence of noise, spikes, uncertainties in
the voltage of the grid, and overshoots in appliances’ power signals. The second challenge
is closeness of different appliances’ consumption values which makes them somewhat
indistinguishable. The third and last challenge is that high volume training datasets and
ground-truth information about each appliance are scarce in practice, although a small
amount of data can perhaps be collected for each residential building. Overcoming these
challenges, this paper proposes an event-based NILM algorithm with competitive accuracy,
which, first, detects events in the power signals via a novel method, then extracts specific
features and information about appliances from their consumption profiles in a small
training dataset, and finally utilizes them to disaggregate the aggregated power signal.

1.1. Related Work

The most well-known state-based NILM algorithms are the Hidden Markov Model
(HMM) [11] and its variants such as Factorial HMM methods [12]. The main drawback
of these methods is the requirement for a large training dataset to construct and learn
the model. Computational complexities of these methods also increases exponentially by
adding a new appliance [13]. However, event-based NILM techniques which deal with
the detected events of the aggregated signal and classify them have lower computational
complexities in comparison with state-based ones [14]. Recent research of event-based
NILM falls into two main categories: unsupervised and supervised methods [15]. Un-
supervised NILM algorithms, tackling the so-called blind source problem, deal with the
case where no prior information about appliances is available. In these methods, events
are detected and different clustering algorithms such as subtractive clustering [16] and
k-means [17] are applied to them. They detect different clusters of appliances without
assigning a label to each cluster. Despite some success in the case where all appliances
have only two (ON and OFF) modes, these algorithms have been ineffective in dealing
with multi-mode appliances [17,18].

In contrast with unsupervised NILM methods, supervised algorithms such as NILM
classification algorithms require prior metadata information about the number of ap-
pliances and their operation modes as well as a training dataset containing appliances’
consumption profiles for a period of time. Considering modes of appliances as class labels,
various classification methods such as KNN [19], multi-label classification [20,21], and
deep learning [22] have been utilized in this field. These methods have proved to be signif-
icantly more accurate than their unsupervised counterparts, particularly in the presence of
multi-state appliances [22]. However, their main drawback is the need for an enormous
training dataset that is not in general feasible to collect [23]. Therefore, extracting useful
information from a small training dataset for the NILM classification problem has become
a topic of great interest in the past few years [24].

1.2. Contributions

This paper proposes a novel event-based NILM algorithm that minimizes the ground-
truth data required, performs well in analyzing real data measured by existing meters, and
remains efficient and accurate even for large numbers of appliances. Major contributions
of this work are detailed below.

(1) Event-based algorithms are highly dependent on detection of events. Therefore, the
event detection algorithm used for the NILM purpose should be accurate in the sense
that it should not miss any actual event or mistake fluctuations of the signal as an
event. We propose in Section 3 a novel statistics-based method that filters the signal
and does not require any predefined threshold.

(2) For NILM as a classification problem, the number of operation modes of appliances
and their respective consumption values are key to assigning labels. In most of the ex-
isting literature, these modes are obtained by visually analyzing the appliances’ power
signals in the training dataset. We introduce a clustering approach in Section 4.1, using



Sustainability 2021, 13, 693 3 of 20

in part the linkage-Ward algorithm, which automatically extracts appliances’ modes
and their respective consumption values. Then, in Section 5, a novel classification
technique, with competitive accuracy, is established for the NILM problem employing
previously extracted features.

(3) Existing classification algorithms consider appliances’ consumption values at each
mode as their main characteristics. However, the appliance consumption pattern, its
transitions between different modes, their ON duration period, and their probability
of occurrence are also key information that can be used to distinguish two appliances
with close consumption values. Analyzing the training dataset in Section 4, we extract
these features of appliances and utilized them for label refinement.

1.3. Paper Organization

The remainder of this paper is organized as follows. The terminology and problem
statement are presented in Section 2. In Section 3, the proposed signal filtering and event
detection techniques are described. The feature extraction methods are then detailed in
Section 4, followed by the proposed classification method in Section 5. The effectiveness and
accuracy of the proposed algorithms are evaluated and compared with other algorithms
using the REDD [25] in Section 6. Finally, Section 7 concludes the paper.

2. Terminology and Problem Statement

In this section, we present the terminology and the event-based NILM classification
problem considered in this paper.

2.1. Notions and Terminology

In this research, power refers to active power. Operation modes of an appliance refer
to a fixed set of modes, including the OFF mode, in which the appliance can operate.
Appliances are assumed to have two or more operation modes. The operating mode of an
appliance is the mode in which the appliance is operating at a specific point in time. When
no ambiguity results, the term mode is used to refer to an operation mode or operating
mode. A state of an appliance is defined as its power amount in one of its operation modes.
As this amount is assumed to vary at least slightly over time, a state is represented by a
fixed closed interval within the set R of real numbers. One notices that there exists a state
corresponding to each operation mode of an appliance.

The aggregated power signal, or simply the aggregated signal, refers to the sum of power
signals of all appliances of a house or specific appliances of interest. The term non-intrusive
load monitoring, or NILM, in this work is then defined as extracting the sequence of operating
modes of each appliance from the aggregated signal. This NILM problem is sometimes
referred to as the NILM classification problem. While deducing individual power signals
of appliances from the aggregated signal is also a NILM problem, that one views as a NILM
regression problem, it is not considered in this work.

Given the power signal of an appliance, an event is a change in the signal value caused
by a mode transition of the appliance. Similarly, an event of the aggregated signal is a
change in the signal value caused by a mode transition of any of the appliances contributing
to the aggregated signal.

2.2. Event-Based NILM Problem

The event-based NILM (classification) problem can be described as the process of
assigning proper labels to events of the aggregated power signal, where the set of labels
consists of all appliance mode transitions. It should be noted that a training set in the form
of a set or sequence of events and their corresponding labels is in general not immediately
available. Instead, it has to be derived from the given individual appliances’ power signals
over a period of time. No additional information, such as the number of modes of each
appliance or their nominal consumption values, is available. It is assumed throughout the
paper that the given signals are measured in discrete time.
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3. Signal Filtering and Event Detection

A fundamental part of event-based NILM is detecting events accurately. Event de-
tection should be executed on individual appliances’ power signals in the training set
as well as the aggregated signal in the test set. In the vast majority of the literature, an
event is detected based on the difference between two consecutive sampled values [6].
More precisely, if the absolute value of this difference is greater than a certain threshold,
an event is considered to have occurred between the two sampling times [26]. Existing
threshold-based event detection techniques rely heavily on the threshold that is selected
manually given the dataset in hand. Thus, they are not expected to perform as well on the
meter’s data of a different residential house. Beside this extensibility issue, there appears
to exist a fundamental limit on the accuracy of threshold-based event detection techniques,
which is caused by fluctuations of voltage in the power grid and noise, spikes, and the
various ranges of overshoots in the signal, as shown in Figure 1 [27]. In this section, we pro-
pose a novel statistics-based algorithm that overcomes all these challenges and accurately
detect events.

Figure 1. Typical outliers in power signal.

While the mainstream view of an event is a significant value change in the signal, our
view of an event is an uncommon value change. Thus, considering a set formed based on
value changes in the signal, we search for “outliers” of the set. As it will be explained later in
this section, this set consists of the min/max ratios between consecutive sampled values of
the signal, subtracted from 1. Of course, careful considerations should be made with regard
to transient spikes and lengthy overshoots during mode transitions, as they would also be
outliers of the formed set. Detecting these spikes and overshoots and filtering them will
also prove significant for getting more accurate results in the event-based NILM problem.

Our proposed event detection algorithm consists of three main steps: (1) outlier
detection, (2) filtered signal construction, and (3) event detection, which will be discussed
in the following subsections.

3.1. Outlier Detection

Different fields of research have been dealing with the outlier detection problem given
a dataset and different methods have been proposed to address it [28,29]. We herein extend
a statistics-based outlier detection method to suit the NILM problem. The algorithm starts
with calculating the min/max ratio between any two consecutive sampled values of signal
P(t) as (1), subtracting them from 1, and saving them in a vector M as (2).

S(t) =

{(
min(P(1), P(2))
max(P(1), P(2))

)
,

(
min(P(2), P(3))
max(P(2), P(3))

)
, . . . ,

(
min(P(T − 1), P(T))
max(P(T − 1), P(T))

)}
(1)

M(t) = {(1− S(1)), (1− S(2)), . . . , (1− S(T))} (2)
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Then, the standard deviation of M is computed based on (3) considering M̂ as the
average of M.

sd =

(
∑T

i=1(M(i)− M̂)2

T

) 1
2

(3)

Finally, for any t, if M(t) is greater than the calculated standard deviation, it is
considered an outlier, and t is saved as the outlier occurrence instance in vector Mo of outlier
instances. Algorithm 1 illustrates the procedure of the proposed outlier detection method.

Algorithm 1: Proposed algorithm for outlier detection.
Step 0: Initialize the parameters, i = 1, M(:) = 0 and Mo(:) = 0
Step 1: Get signal P(t), t = 1, . . . , T
Step 2: while t ≤ T − 1 do

S(t) = {P(t), P(t + 1)}
M(t) = 1− min(S(t))

max(S(t))
t = t + 1

end
Step 3: Compute sd as the standard deviation of M
Step 4: Extract outliers’ instances based on sd
while t ≤ T − 1 do

if M(t) > sd then
Mo(i) = t;
i = i + 1;

end
end

3.2. Filtered Signal Construction

Having performed outlier detection, outliers’ instances are obtained, as well as in-
stances that are not outliers, referred to as inlier instances. In this so-called filtering step, the
aim is to flatten spikes and overshoots of the signal. To achieve this aim, the signal value
at each outlier instance is substituted with the mean of the signal values at the following
consecutive inlier instances, as shown in Figure 2. You may note that, unlike for spikes and
overshoots, the signal values at actual event times will not experience significant change in
the filtering step.

Sample

A
ct

iv
e
 p

o
w

e
r 

(W
) substitute outliers with the average

 of their following inliers

Inliers

Outliers

Figure 2. Construction of the filtered signal.

3.3. Event Detection

In the final step, to detect events, Algorithm 1 is applied to the filtered signal. Now,
all detected outlier instances are considered as event instances. We note that transient
spikes and overshoots of the original signal have already been flattened in constructing the
filtered signal, meaning that they can no longer be mistaken for events.
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4. Feature Extraction

The most common specific feature of appliances utilized in NILM algorithms is their
consumption values at their operation modes. However, as different appliances may
have operation modes with close consumption values, an effective load disaggregation
algorithm should use additional appliance features broadly called finger prints in [30]. In
this section, we propose different methods to extract operation modes of appliances and
additional features from a small training dataset. The framework of this stage is illustrated
in Figure 3.

Consumption 

signal of 

appliances

Apply outlier detection and filter signals

Apply clustering and extract

 the probable transitions 

between operation modes

Detect events

Compute the participation index

Extract the intervals of transitionsExtract additional pattern-based features

Pre-processing phase

(Extract specific features

 of appliances)

Figure 3. Different stages of the proposed feature extraction method.

4.1. Modes and States of Appliances

The states of an appliance, defined as the power interval corresponding to its operation
modes, are its most useful features widely used for the NILM purpose. Therefore, detecting
the number of modes of an appliance and their corresponding states plays a crucial role
in the accuracy of NILM. As opposed to most of the existing literature that extracts an
appliance’s modes/states visually using its consumption values in the training set or by
using the datasheet of the appliance, we propose a novel clustering-based approach for
appliance modes/states extraction from its power signal in a systematic fashion.

Our approach is based on the linkage-Ward (LW) clustering algorithm [31]. The
objective function of the LW algorithm is the squared sum of distances between data points
and the their cluster centroids. The LW clustering algorithm first treats each data point
as a cluster of its own, which means that the initial value of the objective function is 0.
Then, clusters are merged together, one pair at every stage, based on the following merging
policy: clusters A and B are merged if ∆(A, B) is a minimum among all pairs of clusters,

∆(A, B) = ∑
p∈A∪B

‖p−mA∪B‖2

−∑
p∈A
‖p−mA‖2 −∑

p∈B
‖p−mB‖2

= nAnB
nA+nB

‖mA −mB‖2,

(4)

where mA, mB, and mA∪B are centroids of clusters A, B, and A ∪ B, respectively, and nA
and nB are the size of clusters A and B, respectively. One notices that ∆(A, B), which
is non-negative, is in essence the cost of merging clusters A and B. Thus, the value of
the objective function at any given stage is the total cost of all the merging up to that
stage. Analyzing the increasing objective function, the elbow method [14] is often used to
determine the optimal number of clusters, that is, to determine when to stop merging.
Roughly speaking, according to the elbow method, merging stops when it becomes too
costly compared to the merging at the previous stage.
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It can be seen from the definition of ∆(A, B) in (4) that the combination of the LW
algorithm and the elbow method is susceptible to unbalanced data. More precisely, when
the LW algorithm is close to reaching the optimal number of clusters, the elbow method
discourages stopping where two or more small clusters exist since merging them is now
not relatively “too costly” even though their centroids may be far apart. For the mode/state
extraction purpose, this could be a significant issue, as infrequently occurring modes of an
appliance may be lumped into one mode with a wide-ranging power, which would un-
dermine any attempt of NILM. Therefore, one should take advantage of the LW algorithm
in such a way to suit the NILM purpose by discouraging merging of clusters that are far
apart. Thus, the following algorithm is suggested for mode extraction.

After filtering the power signal of each appliance in the training dataset, the LW
algorithm is applied to the signal’s data considering K clusters, where K ≥ 10. The cluster
centroids are then computed and sorted in descending order. From this stage forward, a
different merging policy, entitled as distance-based policy, is adopted that only depends on
the distance between cluster centroids. It starts by considering the cluster with the highest
centroid as the root cluster. If its centroid’s distance to the next highest centroid is less
than 15% of the root cluster’s centroid, the two clusters merge and the step is repeated
considering the merged cluster as the new root cluster. Otherwise, the cluster with the next
highest centroid to the root cluster’s centroid is considered as the new root cluster and
the step is repeated. The algorithm terminates when no further merging can take place.
The flowchart of the proposed mode extraction method is illustrated in Figure 4, where
centroids of the root cluster and the cluster with the next highest centroid are denoted as
Cr and Cj, respectively.

Apply outlier detection

Construct the filtered signal

Compute the centroid of each cluster

Start

Get the consumption signal of training dataset

Apply LW clustering algorithm considering K=10 clusters

Sort centroids from highest one to the lowest one

(Sc = {C1,  C2, ...,CN})

Compute the distance of each cluster, Cl, form the Cr

Choose the highest centroid,  C1, as the  root centroid  entitled as Cr

min M lSave C

 Dist(Cr, Cl)<0.15Cr

l = l + 1

Omit the Mm from Sc

If size of Sc >0

Finish

Yes

Yes

No

No

l > Nc

Nc = size of Sc

l = 1

No

Yes

Modei = all members of respective clusters of the 

saved centorids in Mm

i = i + 1

i = 1

Figure 4. Flowchart for the proposed mode extraction algorithm.
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4.2. Transition Intervals of Appliances

Consider an arbitrary mode transition of an appliance from a (relatively) high state
H = [Hmin, Hmax] to a (relatively) low state L = [Lmin, Lmax]. Then, the interval of this
transition is defined as

[TL, TH ] = [Hmin − Lmax, Hmax − Lmin]. (5)

where TL and TH show the lowest and highest value of the specific transition of T, respectively.

4.3. Transition Participation Indices

Two appliances with some overlapping transition intervals can be difficult to separate
in the aggregated signal. The participation index of their transitions defined as (6), obtained
from each appliance’s usage pattern in the training set, may help separate these appliances.
Given a transition T of an appliance, its participation index Ppar is defined as

Ppar =
1

Ndays

Ndays

∑
day=1

number of T in day
number of events in day

. (6)

where Ndays is the total number of days of training dataset in which the transition T
happened. In other words, this parameter measures the daily average of contribution of a
specific transition of an appliance in events of the total signal.

4.4. Additional Features of Appliances

Analyzing the power signals of appliances in the training dataset, one observes that
some of the appliances exhibit very specific behavioral patterns. Some of these features,
which can further help improve the accuracy of load disaggregation, are listed below.

• As shown in Figure 5, the dishwasher exhibits the same pattern when it is ON. As
this pattern is complex, using it may reduce efficiency of NILM. However, one notices
that in any given day, the dishwasher operates in either all or non of its modes. This
simple characteristic will prove significant for NILM.

• One observes that not all possible mode transitions of multi-mode appliances can
ever occur.

• Some appliances appear to have unique mode transition overshoots in their signals.
• The time period between two consecutive ON samples (with OFF samples in between)

of different appliances are significantly different.

Figure 5. Daily usage pattern of the dishwasher.



Sustainability 2021, 13, 693 9 of 20

5. Classification

In this section, a novel classification algorithm is proposed to address the NILM
problem, that is, to determine each event in the aggregated power signal corresponds to
which appliance mode transition. Different steps of the proposed classification method is
displayed in Figure 6.

Filter the signal and detect events

Assign labels to events based on the 

intervals of transitions of appliances

Check compatibility

Apply specific features of appliances

Apply participation index

Get the test signal

Intervals of transitions of 

appliances

Additional pattern-based 

features of appliances

 Participation index of 

overlapped appliances

Figure 6. The procedure of the proposed classification method

Based on this method, to label a given event, the classifier first obtains all transition
intervals containing the value of that event. As a simple example, consider two ON/OFF
appliances 1 and 2, whose ON modes correspond to states [TL1 , TH1 ] = [890, 1000] and
[TL2 , TH2 ] = [970, 1050], respectively. Given an event with value 980 in the aggregated test
signal, the classifier first associates this event with OFF-to-ON transition of appliance 1 as
well as that of appliance 2. Afterward, taking other specific features of each appliance into
considering along with the test signal’s behavior near the event, a single label is assigned
to the event.

Defining Ne and NT as the total number of events in the test signal and the number of
all possible appliance mode transitions, respectively, let Le be an NT × Ne binary-valued
matrix, with columns corresponding to events and rows corresponding to mode transitions,
which represents predicted labels for events of the test signal. Obviously, an element 1 of
Le indicates that its row’s corresponding transition is the predicted label of its column’s
event. The proposed classification algorithm is detailed in 4 steps below.

Step 1: Given an event of the test signal and a mode transition of an appliance, if the event
value is within the transition interval, the respective element of Le is labeled 1. Otherwise,
it is labeled 0. It should be clear that as transition intervals may overlap, some events
may be assigned multiple labels in this step. We also point out that some events may
remain unlabeled, which means that matrix Le may have some all-zero columns. Each of
these unlabeled events is then labeled with the transition whose interval is closest to the
event value. We note that the distance between a value and an interval is calculated as the
minimum distance between the value and any point within the interval.
Step 2: Analyzing the daily aggregated signal, it can be observed that in the majority of
time samples, appliances are in their OFF modes. With that in mind, one should focus on
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parts of the aggregated signal where at least one appliance is ON. In particular, given the
aggregated signal, one obtains its cycles, where each cycle starts with an event succeeding
an all-OFF sample and ends with the nearest event preceding an all-OFF sample. Figure 7
illustrates how cycles of an aggregated signal are derived. Over each cycle, the labels
assigned to the events should be compatible.

Sample

A
ct

iv
e 

p
o

w
er

 (
W

)

Cycle 1

Cycle 2
Cycle 3 Cycle 4

Figure 7. Daily usage pattern of the refrigerator vs. its cycles.

To clarify what is meant by labels’ compatibility over a cycle, one thinks of an undi-
rected graph in which nodes represent all mode vectors θ, where each element θa of θ is
a mode of appliance a. Two nodes are then connected by an edge if their corresponding
vectors differ in exactly one element. It should be clear that an edge represents a single
appliance mode transition, while noting that two different edges may correspond to the
same transition. Now, a sequence of labels over a cycle are said to be compatible if starting
from the all-OFF node of the graph, one can walk according to the labels in the sequence
and terminate at the all-OFF node. In other words, labels/transitions over a cycle are
compatible if they form a cycle in the graph constructed above.

Using the compatibility condition described, the multiple labels assigned to some
events can be narrowed down as some labels are deemed inadmissible. More precisely, a
label within a cycle is removed if it is not part of any compatible sequence of labels over the
cycle. As an example, consider 3 type I (ON-OFF) appliances with the transition intervals
shown in Table 1.

Table 1. Transition intervals of appliances.

App

A B C

TL 140 W 800 W 170 W
TH 190 W 870 W 19 0W

Figure 8 shows a specific cycle of this dataset. Based on the event matching classifica-
tion in Step 1, the first event is assigned two labels: one a mode transition of appliance A
and one a mode transition of appliance C, while other events are assigned single labels.
Figure 9 displays the predicted graph based on assigning different labels to the first event.
As it is shown, the mode transition of appliance C is ruled out as a label of the first event
since it is not part of any compatible sequence of labels from Step 1 over the cycle. In other
words, appliance C cannot possibly be ON when the first event occurs.
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Figure 8. Specific cycle of total power signal vs. its events.

A: 
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A: 

OFF

B:
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B:

OFF
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C: 

OFF

B:

ON
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T = 820W
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T = 180W
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Figure 9. Predicted graph paths based on different label assignment, (a) Correct predicted paths,
(b) Incorrect predicted paths

In this case, to detect the incompatible predicted labels, a label matrix is computed
as Figure 10. In the matrix, the first row and column show the value of transitions and
appliances, respectively. If a positive transition belongs to an appliance, label = 1 is assigned
to the corresponding element of the matrix and for a negative transition, label = −1 is
assigned. As each transition is caused by an appliance, the sum of each column should
be 1 or −1. On the other hand, If an appliance is turned ON in a cycle, it should be
turned OFF in the same cycle. In this regard, the sum of each row should equal zero.
Otherwise, incompatible labels are assigned to transitions. As an example, in Figure 10 first
column and third row, show that appliance C should not be assigned to the first event. For
multi-mode appliances, the sum of rows is obtained based on probable transitions between
different operation modes.

Transitions 
Apps 

T= 860W T= 140W T=820W T=180W 

0  1 0 1 A 

 1 0 1 0 B 

0 0 0 1 C 
 

                                                                                                                                Sum = 0

                                                                                                                                Sum = 0

                                                                                                                                Sum = 1

Sum = 2 Sum = 1 Sum =  1 Sum =  1

- -

-

-

- -

Figure 10. Matrix of predicted labels.

Step 3: After Step 2’s cycle-based label refinement, each event may still be assigned
multiple labels. Considering extracted specific features of some appliances as described in
Section 4.4, some labels are removed from the multi-labeled events.
Step 4: Finally, based on participation indices of appliance transitions explained in Section 4.3,
the most probable label is chosen for the multi-labeled events.
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6. Simulation Study

In this section, the accuracy and effectiveness of our algorithms proposed in Sections 3–5
for the NILM purpose are evaluated by applying them to two low-frequency datasets,
the gathering of which is practical as it can be done using existing smart meters [14,32].
To measure the accuracy of the proposed classification, following evaluation metrics are
used [33],

Fmeasure =
2× TRP× RC

TRP + RC
, (7)

TPR =
TP

TP + FP
, RC =

TP
TP + FN

, (8)

where TRP and RC show the precision and recall, respectively; TP is true positive; FP
is false positive; TN is true negative; and FN is false negative. It should be noted that
for evaluation purposes, in line with the NILM literature, appliances with more than two
operation modes are treated as ON/OFF appliances. In other words, all non-OFF modes of
an appliance are lumped into an ON mode.

6.1. Evaluation on Residential Energy Disaggregation Dataset (REDD)

The dataset considered consists of 28 days of power data for seven appliances of
house 1 in the REDD [25]. These appliances are listed as oven (OV), microwave (MW),
kitchen outlets (KO), bathroom GFI (BGFI), washer/drier (W/D) with a high consumption
state, refrigerator (RFG), and dishwasher (DW). The first five listed appliance only have
ON and OFF modes, while the last two have more than two operation modes. Figure 11
shows the power signals of all seven appliances in one day of the dataset and the total
consumption of all individual appliances’ consumption. Three weeks of data from this
dataset is considered as the training dataset, and the rest is considered as the test dataset.

Figure 11. Total consumption vs. the consumption of each appliance in REDD.

In the following subsections, first the proposed filtering end event detection method
are applied to training and test dataset. Then, based on the filtered signal of each appliance,
their specific features are extracted. Finally, considering these features the proposed
classification technique is utilized to disaggregate the test signal.

6.1.1. Signal Filtering and Event Detection

The filtering and event detection method of Section 3 is applied to individual appli-
ances’ power signals in the training dataset as well as the aggregated signal in the test
dataset. As an example, Figure 12 illustrates the outliers of the signal, the overshoots and
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spikes in the signal, and the constructed filtered signal of the dishwasher for a period of
time, respectively.
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Figure 12. Filtering the dishwasher’s signal: (a) inliers (red circles) vs. outliers in 1-min/max ratios
of consecutive samples (green stars), (b) real signal (blue line) vs detected outliers in the power signal
(green stars), and (c) the orignal signal vs. the filtered signal.

6.1.2. Feature Extraction

Having individual appliances’ signals filtered, their features are extracted via methods
of Section 4 as discussed below.

States of Each Appliance: Applying the LW-based clustering method of Section 4.1 to the
filtered signal of each appliance, its modes and their corresponding states are obtained. One
recalls that the merging policy is that of the LW algorithm until 10 clusters are obtained,
then changes to that of distance-based policy. As an example, Table 2 shows the 10 obtained
clusters for modes/states of the dishwasher before the merging policy changes from the
LW method, and Table 3 shows the final obtained states of all appliances.

Table 2. Minimum, maximum, and centroid of the 10 LW-obtained clusters for dishwasher’s
modes/states.

Min Max Centroid

Active power (W)

154 183 168
198 208 205
210 231 219
236 261 236
398 420 449
416 496 489
500 598 589
643 737 680

1078 1110 1099
1115 1247 1173
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Table 3. States corresponding to non-OFF modes of appliances in REDD.

App States

DW [157, 183],[198, 261],[398, 496],[643, 737],[1078, 1247]
RFG [153, 183],[185, 260],[415, 425]
MW [1439, 1598]
BGFI [1580, 1620]
KO [1064, 1087]

W/D [2641, 3000]
OV [4138, 4157]

Transition Intervals of Appliances: Intervals of probable mode transitions of all appliances
are now derived using (5). When a mode transition is from or to the OFF mode of an
appliance, it simply coincides with the state corresponding to the other appliance mode
involved in that transition. Considering probable transitions of multi-mode appliances,
non-trivial transition intervals [TLDW , THDW ] = [817, 1049] and [TLRFG , THRFG ] = [155, 240]
should be considered for DW and RFG, respectively.
Transition Participation Index: One recalls that transition participation index is only used
to separate appliance transition with overlapping intervals. Table 4 shows participation
index for different groups of the overlapped appliances.

Table 4. Transition participation index.

Group Corresponding App Ppar

Overlapping
transitions

group

1 BGFI 0.11
MW 0.20

2 KO 0.17
DW 0.73

6.1.3. Classification

To apply the proposed classification method, events of the filtered test signal are
detected. Then, the classification-based algorithm is applied to detected events based on
the transition intervals of appliances. Table 5 illustrates the evaluation metrics after the
first step of the proposed classification method (event-matching step). As OV and W/D do
not have overlapping consumption values, they are detected accurately. However, as it is
shown in Figure 13, as BGFI and MW have overlapping consumption values, there exist
some events of MW which are incorrectly assigned to BGFI decreasing its Fmeasure. Finally,
after cycle-based label refinement, to refine the remained multiple labeled events and
choose the most probable label for each event, the following specific features of appliances
are considered.

Table 5. Evaluation metrics after event-matching classification.

App TPR RC Fmeasure

DW 0.72 0.91 0.80
RFG 0.56 0.93 0.68
MW 0.71 0.90 0.78
BGFI 0.25 1 0.40
KO 0.73 0.9 0.73

W/D 1 1 1
OV 1 1 1
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Figure 13. Misclassification of bathroom GFI (BGFI) events.

(1) Based on the power signal of the dishwasher, one observes that during every ON cycle,
all its modes occur. Thus, if the transition with interval [643–737] of the dishwasher,
which happens to not overlap with any other transition interval, is not detected, the
dishwasher can be assumed OFF during that whole day. Consequently, all candidate
labels/transitions involving a non-OFF mode of the dishwasher in that day can be
ruled out.

(2) Three modes for the refrigerator have been detected, namely, the OFF mode, the
lower ON mode, and the higher ON mode. It is observed in the training dataset that
the transition from the OFF mode to the higher ON mode never happens. Thus, all
candidate labels of such can be removed.

(3) Overshoot values appearing in the refrigerator’s signal are higher than 500 W as
opposed to those of the dishwasher. This can be used to separate transitions of the
refrigerator and dishwasher with overlapping intervals.

Applying aforementioned features, for each remaining event with multiple labels,
the participation index is calculated for overlapped appliances separately. The appliance
which has close Ppar to the calculated participation index of appliances in training dataset,
is assigned to events.

Table 6 shows the high accuracy of our classification method for each appliance in
comparison with the results of [24,34]. Keeping in mind that a higher number of appliances
should diminishes the accuracy of NILM, note that the number of appliances considered
in this work and in [24] are seven and six, respectively. On the other hand, considering
multi-mode appliances such as dishwasher increases the complexity of disaggregation.
However, the accuracy of our proposed method in which we have considered dishwasher
is higher than [34] which did not considered dishwasher in appliances’ set.
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Table 6. Fmeasure for different methods.

App [24] ML-KNN [34] Proposed Method

DW 0.59 - 0.96
RFG 1 0.88 0.81
MW 0.40 0.76 0.82
BGFI 0.97 0.88 0.91
KO 1 0.84 0.86

W/D 0.92 0.94 1
OV - 0.86 1

LIGHT - 0.76 -

AVERAGE 0.81 0.80 0.90

6.2. Evaluation on Almanac of Minutely Power Dataset (AMPds)

In this case study, we have considered six appliances from AMPds: fridge (FGE),
Basement plugs (BME), clothes dryer (CDE), dishwasher (DWE), heat pump (HPE), and
whole oven (WOE) [32]. Five-hundred-and-fifty days of data are considered as the training
dataset and 180 days of data as the test dataset. Figure 14 illustrates the consumption
pattern of these appliances in a day of this dataset, along with the aggregated consumption
which is the sum of the individual appliances’ consumption.

Figure 14. Total consumption vs. the consumption of each appliance in AMPds.

6.2.1. Signal Filtering and Event Detection

In the first stage of the proposed classification method, outlier detection and event
detection methods are applied to the power signal of each appliance in the training dataset
as well as the aggregated test signal. Figure 15 displays a day of the test signal versus its
filtered signal.
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Figure 15. Filtered total power signal of AMPds vs. its real signal
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6.2.2. Feature Extraction

The proposed state extraction method in Section 4.1 is applied to the filtered signal of
each appliance in the training dataset. Then, the intervals of the plausible transitions of
appliances is computed based on (5), as reported in Table 7. Finally, participation indices
are obtained via (6) for three overlapping transition groups, as provided in Table 8.

Table 7. Intervals of transitions of appliances in AMPds.

App Intervals of Transitions

FRG [122, 138], [213, 225], [122, 138]
BME [320, 375], [395, 450]
CDE [230, 250], [4460, 4650]
DWE [130,150], [580, 650], [730, 780]
HPE [1710, 1825], [2350, 2390]
WOE [125, 131], [2429, 2715], [2560, 2840], [3400, 3179], [3310, 3525]

Table 8. Transition participation index of overlapping appliances in AMPds.

Group Corresponding App Ppar

Overlapping
transitions

group

1
WOE 0.008
FEG 0.58
DWE 0.012

2 FRG 0.01
BME 0.40

3 FRG 0.02
CDE 0.08

6.3. Classification

The first step of proposed classification method (event matching step) is applied to
the events of the filtered test signal. As shown in Table 9, in this step, appliances which
do not have overlapping consumption values with others, such as HP, are disaggregated
more accurately. However, appliances such as BM which have overlapping intervals of
transitions have low Fmeasure. After conducting cycle-based label refinement, the following
pattern-based features are applied to multi-labeled events to role out the misclassified ones.

1. As shown in Figure 16, WO and DW have specific operation patterns, in which they
operate in either all or non of their operation modes.

2. FG shows specific overshoots which makes it distinguishable from BM and WO.
3. The ON durations of CD and FG differs considerably which make them distinguish-

able from each other.

Table 9. Evaluation metrics after event-matching classification.

App TPR RC Fmeasure

FGE 0.8 0.97 0.87
BME 0.2 0.95 0.33
CDE 0.80 0.85 0.82
DWE 0.3 0.94 0.45
HPE 0.95 0.9 0.91
WOE 0.36 0.95 0.56
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Figure 16. Daily usage pattern of the DW and WO.

In the last step, Ppar of appliances with overlapping consumption values are considered
to assign the most probable label to the remaining multi-label transitions. Table 10 displays
the Fmeasure of the proposed classification method in comparison with [35]. It should be
noted that in this paper, 14 operation modes which consist of multiple overlapping ones
are considered. However, the authors of [35] considered a total of nine operation modes
that do not have overlapping consumption values. This shows the effectiveness of our
proposed method in the disaggregating a high number of multi-mode appliances with
overlapping consumption values.

Table 10. Fmeasure for AMPds dataset based on different methods.

App Proposed Method [35]

HPE 0.91 0.97
DWE 0.88 0.72
CDE 0.82 0.29
FGE 0.93 0.88
FRE - 0.93

WOE 0.84 0.50
BME 0.83 0.86

AVERAGE 0.86 0.73

7. Concluding Remarks and Future Work

In this paper, we have proposed a novel classification method to address the NILM
problem given a small dataset. The proposed algorithm has three main phases: (1) filtering
training and test signals and accurately detecting their events using a statistics-based
method,; (2) extracting features of appliances, most notably their modes and states via
a clustering approach that in part uses the LW clustering method; and (3) proposing a
classification algorithm labeling events of the aggregated test signal with mode transitions
of appliances, where various features and techniques are utilized to enhance its accuracy.
The proposed event detection and modes/states extraction methods have been done in a
systematic fashion in such a way to perform well for any sets of power data. The proposed
filtering method, feature extraction techniques, and event-based NILM classification algo-
rithm have been validated using the REDD. Juxtaposing the results of our classification
algorithm with two recently introduced event-based NILM methods indicate a relatively
high accuracy of our algorithm.

Reconstructing the power signals of appliances, which can be cast as a regression
problem as opposed to the classification problem we considered in this work, is one of
the main challenges of event-based NILM problems. We aim to modify our presented
algorithm in Section 5, to address the reconstruction problem. Moreover, due to the lack
of a training dataset for each residential building, we wish to move a step further to use
transfer learning to bypass the training phase of the proposed method, with the practical
assumption that nominal values for appliances’ power are given.
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