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Abstract: The dimensions of a bearing structure tend to be designed as slender as possible to ensure
aesthetics and to save material, which makes the structure more susceptible to damage caused by
shear forces. When the structure is subjected to an earthquake, the shear failure is even the primary
mode of failure. Research on shear stress has always been of great interest to scientists. This paper
presents an efficient method for the assessment of the shear stress for prismatic beams with arbitrary
cross-section. The numerical method implemented in a MATLAB environment is validated by
analyzing five examples. The study shows the efficiency and reliability of the numerical method,
which allows for more precise analysis and design of cross-sections. Therefore, significant savings of
material can be reached, which will have a positive impact on our environment and which can help
sustainable growth.

Keywords: Gruttmann shear stress; Saint Venant torsion and torsionless bending; nine-noded
quadrilateral element

1. Introduction

Engineers tend to design the dimensions of load-bearing structural elements as slender
as possible to ensure aesthetic appearance and to reduce material consumption require-
ments. Considering the fact that nowadays most load-bearing systems of buildings and
bridges are created by reinforced prestressed concrete structures, the decrease of the need
for concrete would certainly reduce carbon dioxide (CO2) emissions and global warming
and, therefore, would contribute to keep economic development sustainable. On the other
hand, the effort to design slender and aesthetic structures makes them more susceptible to
damage by shear stress. Figure 1a shows the shear failure cases of the American Air force
warehouses in 1955 and 1956 [1]. Figure 1b depicts the shear failure of a squat bridge pier
during a Taiwan 1999 earthquake [2].

The accurate determination of shear stress is one of the factors to ensure the sustain-
ability of a structure, which is a problem that attracts researchers. Many scientists [3–23]
have studied numerical methods dealing with shear stress due to bending and torsion.

Gruttmann, F. et al. [3,4] used the finite element method to evaluate shear stress by
using the warping function, which is more convenient than using the Prandtl’s stress func-
tion [24,25] when considering multiply connected domain. Gruttmann, F. [4] introduced a
method for computing the shear correction factors for Timoshenko beams with arbitrary
cross-sections. Gruttmann’s numerical method has been implemented into an enhanced
version of the program FEAP [5,6,26] which used 4-noded isoparametric elements. Fialko,
S. Yu et al. [7] developed a numerical method using constant triangular elements to solve
the Saint Venant problem of torsion, and torsionless bending of prismatic bars is realized
in the SCAD software [8].
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Figure 1. (a) Shear failure of Air Force Warehouse beams [1]. (b) Shear failure of pier wall of the Wu-Shi Bridge in the Chi-
Chi earthquake [2]. 

Garcia, J.M.B. et al. [9,10] developed a method of analysis to deal with arbitrary cross-
section and general non-linear material (i.e., concrete). Poliotti, M. [11] improved Garcia’s 
method’s computation speed using b-spline interpolation to reduce unknowns when solv-
ing problems. Yoon, K. et al. [14] proposed a new efficient warping displacement model. 
The model can be used for discontinuously varying cross-section beams. However, the 
method does not take into account the multiply connected domains. A comparison of 
methods for the strength assessment of prestressed reinforced concrete cross-sections with 
respect to the interaction of tensile and shear forces and bending and torsional moments 
was performed by Navrátil, J. et al. [13]. Genoese, A. [14] proposed a method for deter-
mining only the shear stress for nonuniform torsion. Jog, C.S. [15] demonstrated a method 
for determining the shear stress due to bending and torsion for inhomogeneous materials. 
However, the coupling of bending and torsion was not considered. Urbański, A. [16] stud-
ied a finite element method considering the interaction of internal force components with 
arbitrary cross-section. However, the multiply connected domain was not considered. Be-
heshti, A. [17] contributed to a method of determining the shear stress due to torsion, 
including strain-gradient elasticity. 

Sapountzakis, E.J. et al. [18,19] proposed the nonuniform torsion solution and the 
general transverse shear loading problem of beams of the arbitrary cross-section with the 
boundary element method. Barone, G. [20] used the complex variable boundary element 
method to evaluate shear stress caused by torsion and flexure in beams. Paradiso, M. [21] 
introduced a numerical method based on the boundary element method to determine 
shear stress in the Saint Venant theory of beam. A boundary approach labeled line ele-
ment-less method was recently shown to solve the Saint Venant’s flexure–torsion problem 
for isotropic material and arbitrary cross-sections by Di Paola, M. et al. [22]. 

In summary, the existing literature has constructed a large number of numerical 
methods for the shear stress problem. All of the works demonstrate the feasibility and 
effectiveness only in academia. Currently, only Gruttmann’s method [3,4] has been devel-
oped into the FEAP program [6] of the University of California, Berkeley, and Allplan 
Bridge [23]. Fialko’s method [7] is similar to that of Grutmmann, which has been devel-
oped as a module in the SCAD commercial software [8]. It means the methods of 
Gruttmann and Fialko are practical. However, the authors found that using a 4-noded 
isoparametric element in FEAP and constant strain triangle element in SCAD takes a lot 

Figure 1. (a) Shear failure of Air Force Warehouse beams [1]. (b) Shear failure of pier wall of the Wu-Shi Bridge in the
Chi-Chi earthquake [2].

Garcia, J.M.B. et al. [9,10] developed a method of analysis to deal with arbitrary
cross-section and general non-linear material (i.e., concrete). Poliotti, M. [11] improved
Garcia’s method’s computation speed using b-spline interpolation to reduce unknowns
when solving problems. Yoon, K. et al. [14] proposed a new efficient warping displacement
model. The model can be used for discontinuously varying cross-section beams. However,
the method does not take into account the multiply connected domains. A comparison of
methods for the strength assessment of prestressed reinforced concrete cross-sections with
respect to the interaction of tensile and shear forces and bending and torsional moments was
performed by Navrátil, J. et al. [13]. Genoese, A. [14] proposed a method for determining
only the shear stress for nonuniform torsion. Jog, C.S. [15] demonstrated a method for
determining the shear stress due to bending and torsion for inhomogeneous materials.
However, the coupling of bending and torsion was not considered. Urbański, A. [16]
studied a finite element method considering the interaction of internal force components
with arbitrary cross-section. However, the multiply connected domain was not considered.
Beheshti, A. [17] contributed to a method of determining the shear stress due to torsion,
including strain-gradient elasticity.

Sapountzakis, E.J. et al. [18,19] proposed the nonuniform torsion solution and the
general transverse shear loading problem of beams of the arbitrary cross-section with the
boundary element method. Barone, G. [20] used the complex variable boundary element
method to evaluate shear stress caused by torsion and flexure in beams. Paradiso, M. [21]
introduced a numerical method based on the boundary element method to determine
shear stress in the Saint Venant theory of beam. A boundary approach labeled line element-
less method was recently shown to solve the Saint Venant’s flexure–torsion problem for
isotropic material and arbitrary cross-sections by Di Paola, M. et al. [22].

In summary, the existing literature has constructed a large number of numerical methods
for the shear stress problem. All of the works demonstrate the feasibility and effectiveness
only in academia. Currently, only Gruttmann’s method [3,4] has been developed into the
FEAP program [6] of the University of California, Berkeley, and Allplan Bridge [23]. Fialko’s
method [7] is similar to that of Grutmmann, which has been developed as a module in the
SCAD commercial software [8]. It means the methods of Gruttmann and Fialko are practical.
However, the authors found that using a 4-noded isoparametric element in FEAP and constant
strain triangle element in SCAD takes a lot of time for meshing to achieve optimal results.
So, the authors decided to develop a new numerical method (NMB) based on the work
of Gruttmann using the nine-noded isoparametric element. The validation examples were
performed to show the reliability and efficiency of the sustainability design of NMB.
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2. Solution Procedure by Numerical Method

Consider a prismatic bar with an arbitrary constant cross-section. The longitudinal
axis is the x-axis, and the cross-sections lie in the y–z plane, see Figure 2. The parallel system
y = y− yS and z = z− zS intersects at the centroid. The multiply connected domain Ω is
bounded by Γ1, Γ2, . . . Γn−1, Γn. On Γ1, Γ2, . . . Γn−1, Γn the right-handed orthogonal basis
system is defined with tangent vector t and outward normal vector n = [ny, nz]

T . With t,
the orientation of the associated coordinate s is uniquely defined.
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Figure 2. Cross-section of a prismatic bar.

2.1. Saint Venant Torsion Problem

The displacement field u = [ux, uy, uz]
T is given by

ux = αωT , uy = −βxz, uz = −βxy, (1)

where βx is torsion angle and α = dβx
dx , ωT(y, z) denotes warping function for torsion. Here,

the following constraint is required: ∫
Ω

ωTdA = 0. (2)

The shear stresses are defined by

τxy = Gα

(
∂ωT

∂y
− z
)

, τxz = Gα

(
∂ωT

∂z
+ y
)

. (3)

The polar second moment of area can read as

IT =
∫
Ω

[(
∂ωT

∂z
+ y
)

y−
(

∂ωT

∂y
− z
)

z
]

dA. (4)

The strong form of the boundary value problem is described by

∂2ωT

∂2y + ∂2ωT

∂2z = 0 in Ω,

ny
∂ωT

∂y + nz
∂ωT

∂z = nyz− nzy on ∂Ω,
(5)

where
ny =

dz
ds

,nz = −
dy
ds

. (6)
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Using the Galerkin method, with test function η ∈ V with V = {η ∈ H1(Ω), η = 0 on
∂ΩωT}, Gruttmann, F. [3] transformed the strong form (5) to the weak form as below:

G(ωT , η) =
∫
Ω

(
∂ωT

∂y
∂η

∂y
+

∂ωT

∂z
∂η

∂z

)
dA−

∮
∂Ω

(nyz− nzy)ηds = 0. (7)

2.2. Saint Venant Torsionless Bending Problem

From reference [4], the relation between shear forces Qy and Qz and the corresponding,
bending-related normal stress component, σx, is given in the format

∂σx

∂x
= f0(y, z) = a1y + a2z, (8)

where proportionality factors a1 and a2 are defined as[
a1
a2

]
=

1
Ayy Azz − A2

yz

[
Azz −Ayz
−Ayz Ayy

][
Qy
Qz

]
, (9)

where Qy and Qz are related to shear stress component via

Qy =
∫
(Ω)

τxydA, Qz =
∫
(Ω)

τxzdA, (10)

where Ayy, Azz, Ayz are the second-order area moments, defined by

Ayy =
∫
(Ω)

y2dA, Azz =
∫
(Ω)

z2dA, Ayz =
∫
(Ω)

yzdA. (11)

The shear stresses are defined by

τxy =
∂ωB

∂y
− f1(z), τxz =

∂ωB

∂z
− f2(y), (12)

where ωB is warping function due to torsionless bending. Furthermore, the functions

f1(z) = −
v

2(1 + ν)
a1(z− zo)

2, f2(y) = −
ν

2(1 + ν)
a2(y− y0)

2, (13)

where v is Poisson’s ratio. The parameters yo, zo are derived from the following formulations:

yo =
Byy

2By
, zo =

Bzz

2Bz
, (14)

where
By =

∫
(Ω)

(
∂ωT

∂z + y
)

ydA, Byy =
∫
(Ω)

(
∂ωT

∂z + y
)

y2dA,

Bz =
∫
(Ω)

(
∂ωT

∂y − z
)

zdA, Bzz =
∫
(Ω)

(
∂ωT

∂y − z
)

z2dA,
(15)

where ωT is warping function due to torsion.
The strong form of the boundary value problem is described by

∂2ωB

∂2y + ∂2ωB

∂2z + fo(y, z) = 0 in Ω,

τxyny + τxznz = 0 on ∂Ω,
(16)
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where
ny =

dz
ds

, nz = −
dy
ds

. (17)

Using the Galerkin method, with test function η ∈ V with V = {η ∈ H1(Ω), η = 0 on
∂ΩωB}, Gruttmann, F. [4] transformed the strong form (16) to the weak form as below:

G(ωB, η) =
∫
Ω

(
∂ωB

∂y
∂η

∂y
+

∂ωB

∂z
∂η

∂z

)
dA−

∫
Ω

(
f0η + f1

∂η

∂y
+ f2

∂η

∂z

)
dA = 0. (18)

2.3. Finite Element Discretization

Consider the cross-section divided by nine-noded isoparametric quadrilateral ele-
ments. x = [y, z]T and the unknown function ωT , ωB, and the test function η are interpo-
lated within a typical element using the same shape functions:

xh =
9
∑

I=1
NI(ξ, η)xI , (ωT)

h
=

9
∑

I=1
NI(ξ, η)ωT

I ,

(ωB)
h
=

9
∑

I=1
NI(ξ, η)ωB

I , (η)h =
9
∑

I=1
NI(ξ, η)ηI ,

(19)

where h denotes the approximate solution of the finite element method. NI(ξ, η) denotes the
shape function of the element. Figure 3 shows the nine-noded isoparametric quadrilateral
element used in NMB. From reference [27], the shape functions NI(ξ, η) of this element can
be described as follows:

N1(ξ, η) = ξ(ξ−1)η(η−1)
4 , N2(ξ, η) = (ξ+1)ξη(η−1)

4 , N3(ξ, η) = (ξ+1)ξ(η+1)η
4 ,

N4(ξ, η) = ξ(ξ−1)(η+1)η
4 , N5(ξ, η) = (ξ+1)(ξ−1)η(η−1)

−2 ,

N6(ξ, η) = (ξ+1)ξ(η+1)(η−1)
−2 , N7(ξ, η) = (ξ+1)(ξ−1)(η+1)η

−2 ,

N8(ξ, η) = ξ(ξ−1)(η+1)(η−1)
−2 , N9(ξ, η) = (ξ+1)(ξ−1)(η+1)(η−1)

1 .

(20)
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Inserting the derivatives of (ωT)
h, ηh and (ωB)

h, into the weak forms of (7) and (18),
respectively, yields the finite element equations

numel
∪

e=1

9
∑

I=1

9
∑

K=1
δωT

I (K
e
IKωT

K − Fe(T)
I ) = 0,

numel
∪

e=1

9
∑

I=1

9
∑

K=1
δωB

I (K
e
IKωB

K − Fe(B)
I ) = 0

(21)

.
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The operator ∪ describes the assembly and numel the total number of finite elements
to solve the problem. The stiffness part, Ke

IK, to the nodes I and K as well as the right hand

Fe(T)
I and Fe(B)

I yields

Ke
IK =

∫
Ωe

(
∂NI
∂y

∂NK
∂y + ∂NI

∂z
∂NK
∂z

)
dAe

=
1∫
−1

1∫
−1

(
∂NI
∂y

∂NK
∂y + ∂NI

∂z
∂NK
∂z

)
|J|dξdη

=
P
∑

p=1

Q
∑

q=1
wpwq

(
∂NI
∂y (ξp, ηq)

∂NK
∂y (ξp, ηq) +

∂NI
∂z (ξp, ηq)

∂NK
∂z (ξp, ηq)

)∣∣J(ξp, ηq)
∣∣,

(22)

Fe(T)
I =

∫
Ωe

(
∂NI
∂y z− ∂NI

∂z y
)

dAe

=
1∫
−1

1∫
−1

(
∂NI
∂y z + ∂NI

∂z y
)
|J|dξdη

=
P
∑

p=1

Q
∑

q=1
wpwq

(
∂NI
∂y (ξp, ηq)z− ∂NI

∂z (ξp, ηq)y
)∣∣J(ξp, ηq)

∣∣,
(23)

Fe(B)
I =

∫
Ωe

(
f0NI + f1

∂NI
∂y + f2

∂NI
∂z

)
dAe

=
1∫
−1

1∫
−1

(
f0NI + f1

∂NI
∂y + f2

∂NI
∂z

)
|J|dξdη

=
P
∑

p=1

Q
∑

q=1
wpwq

(
f0NI(ξp, ηq) + f1

∂NI(ξp ,ηq)
∂y + f2

∂NI(ξp ,ηq)
∂z

)∣∣J(ξp, ηq)
∣∣,

(24)

where J denoted as Jacobian matrix is defined as

J =

[ ∂y
∂ξ

∂z
∂η

∂y
∂ξ

∂z
∂η

]
, (25)

where wp and wq are the weights and ξp and ηq are the integration points of the Gaussian
integration technique.

We use 3 × 3 Gauss quadrature derived from the 1D case where the quadrature points
are located at −

√
3/5, 0, and

√
3/5, and the corresponding weights are equal to 5/9, 8/9,

and 5/9, respectively (see reference [26]).
The value ωT

I and ωB
I of one arbitrary nodal point I has to be value 0.

From reference [24], shear correction factor κ is the ratio of the average strain on a
section to the shear strain at the centroid. Gruttmann, F. [4] used it as the criterion to
evaluate the convergence solutions to the Saint Venant torsionless bending problem. The
shear correction factor κy, κz is computed as

κy = 1/αy, κz = 1/αz, (26)

where

αy = A
Qy

[
A

ωBy Azz−A
ωBz Ayz

Ayy Azz−A2
yz

+ ν
2(1+ν)

Czz Azz−Cyy Ayz

Ayy Azz−A2
yz

]
,

αz =
A

Qz

[
A

ωBz Ayy−A
ωBy Ayz

Ayy Azz−A2
yz

+ ν
2(1+ν)

Cyz Ayy−Czz Ayz

Ayy Azz−A2
yz

]
,

(27)

where
Cyy =

∫
(Ω)

τxz(y− y0)
2dA, Czz =

∫
(Ω)

τxy(z− z0)
2dA, (28)

AωBz =
∫
(Ω)

ωBzdA, AωBy =
∫
(Ω)

ωBydA. (29)
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3. Validation Examples

The objective of this section is to show the assessment of NMB and its performance.
For this purpose, five special problems derived from references [3,4,7,24] were studied and
their results compared with those predicted by NMB implemented in MATLAB R2015a.
The finite element discretization was realized by employing the SAP2000 software version
14.2 [28] and MATLAB of an in-house code. We used a part of the open-source library
presented in reference [29].

3.1. Rectangular Cross-Section

To test the problem of torsion, we considered a bar of square cross-section subjected
to the torsion moment MT = 1 [MN.m] with the length of the edge 1 [m]. The comparison
of the values of maximum shear stress and polar second moment of area obtained by
analytical solution [24] was performed. The visualization of the distribution of shear stress
was also displayed.

We checked the problem of the torsionless bending of a rectangular cross-section on
the basis of the comparison with the results of [3,4]. Shear correction factors κz = 1/αz
were the evaluated criteria. We investigated the rectangular cross-section due to Qz = 1
[kN] with the dimensions (h = 2 [m], b = 1 [m]), (h = 1 [m], b = 1 [m]), (h = 0.5 [m], b = 1
[m]), (h = 0.25 [m], b = 1 [m]) corresponding with the ratio (h/b = 2, 1, 0.5, 0.25) and with
different Poisson’s ratio ν = 0, 0.25, 0.5. The distribution of shear stress with two Poisson’s
ratios, ν = 0, 0.25, was also shown.

The maximum shear stress corresponding to the maximum slope of the membrane
is at the middle points of the long sides of the rectangle [24]. It means the distribution of
shear stress of the square section decreases from the middle point of the edge to the center.
Figure 4 shows a good agreement with the theoretical results.
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It is clear from Table 1 that the results of the maximum shear stress and the polar
second moment of area obtained from NMB are in good agreement with the theoretical
solution [24].

Table 1. Square section in torsion.

Factors Analytical [24] NMB Error, %

τmax [MPa] 4.80769 4.81162 0.082
IT [m4] 0.1406 0.14058 0.0142
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Figure 5 shows the distribution of the shear stress with Poisson’s ratios ν = 0; 0.25.
The stress concentration at z = 0, y = ±b/2 can be seen clearly. We can see the distribution
of stress over the width of the section is not constant when the Poisson’s ratio v 6= 0.
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It can be observed from Tables 2–5 that the results of shear correction factors κz
obtained from rectangular cross-section with different h/b and Poisson’s ratio ν from NMB
are in good agreement with FEAP results [4].

Table 2. Shear correction factors κz with h/b = 2.

Factors FEAP [4] NMB Error, %

ν = 0 0.8333 0.833335 0.0
ν = 0.25 0.8331 0.833041 0.0
ν = 0.5 0.8325 0.832519 0.0

Table 3. Shear correction factors κz with h/b = 1.

Factors FEAP [4] NMB Error, %

ν = 0 0.8333 0.833335 0.0%
ν = 0.25 0.8295 0.829486 0.0%
ν = 0.5 0.8228 0.822729 0.0%

Table 4. Shear correction factors κz with h/b = 0.5.

Factors FEAP [4] NMB Error, %

ν = 0 0.8333 0.833335 0.0
ν = 0.25 0.7961 0.796066 0.0
ν = 0.5 0.7375 0.737438 0.0

Table 5. Shear correction factors κz with h/b = 0.25.

Factors FEAP [4] NMB Error, %

ν = 0 0.8333 0.833335 0.0
ν = 0.25 0.6308 0.630724 0.0
ν = 0.5 0.4404 0.440378 0.0
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3.2. Cross-Section with Varying Width

The next example is performed with a cross-section with varying width [3,4]. Figure 6
shows the dimension of the cross-section.
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Figure 6. The dimension of cross-section with varying width in mm.

FEAP [3] used 480 elements to get the convergence values, while NMB used only 48
elements (225 nodes). Figure 7 shows the discretization of the cross-section with varying
width by NMB.
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Figure 7. The cross-section divided into 48 elements.

Tables 6–8 show the errors of the shear correction factors between FEAP and NMB are
under 0.33%. Figure 8 shows the distribution of the shear stress τxz and the resulting shear
stresses with Poisson’s ratio ν = 0.2 due to Qz = −1 [kN]. The maximum shear stress τxz
of FEAP and NMB is 2.321 KPa and 2.31 KPa, respectively.

Table 6. Shear correction factors κy, κz with ν = 0.

Factors FEAP [4] NMB Error, %

κy 0.7395 0.7409 0.19
κz 0.6767 0.6788 0.31

Table 7. Shear correction factors κy, κz with ν = 0.25.

Factors FEAP [4] NMB Error, %

κy 0.7355 0.7372 0.23
κz 0.6753 0.6774 0.31
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Table 8. Shear correction factors κy, κz with ν = 0.5.

Factors FEAP [4] NMB Error, %

κy 0.7294 0.7307 0.18
κz 0.6727 0.6749 0.33
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3.3. Crane Rail A100

The next example concerns crane rail section A100 according to German standard DIN
536. Figure 9 depicts the dimension of the cross-section. FEAP [3] used 66,934 elements to
get convergence values. NMB meshed the crane rail section by 172 elements (773 nodes) to
obtain the convergence result. Figure 10a,b illustrate the crane rail section’s discretization
by FEAP and NMB, respectively.
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In Table 9, we present a comparison of the polar second moment of area, the parameter
z0 between NMB with FEAP. The error is under 0.77%. Figure 11 shows the distribution of
the shear stress τxz and the resulting shear stresses due to MT = 1 [kN.m].
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Table 9. The polar second moment of area and the parameter z0

Factors FEAP [3] NMB Error, %

IT [cm4] 670.7 675.9 0.77
z0 [cm] 5.078 5.060 0.35

Figure 12 shows the distribution of the shear stress τxz and the resulting shear stresses
with Poisson’s ratio ν = 0.3 due to Qz = −1 [kN]. The maximum shear stress τxz of FEAP and
NMB is 0.41 MPa and 0.42 MPa, respectively. Figure 13 depicts the distribution of the shear
stress τxy and the resulting shear stresses with Poisson’s ratio ν = 0.3 due to Qy = 1 [kN].
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Figure 13. Shear stress τxy and resulting shear stresses for ν = 0.3 due to Qy = 1 [kN].

Tables 10 and 11 show the errors of the shear correction factors between FEAP and
NMB are under 0.71%.

Table 10. Shear correction factors κy, κz with ν = 0.

Factors FEAP [4] NMB Error, %

κy 0.6845 0.6867 0.32
κz 0.4474 0.4506 0.71

Table 11. Shear correction factors κy, κz with ν = 0.3.

Factors FEAP [4] NMB Error, %

κy 0.6836 0.6859 0.34
κz 0.4468 0.4499 0.69

3.4. Bridge Cross-Section with Doubly Connected Domain

We consider the bridge cross-sections with doubly connected domain according to
Figure 14. We divided the bridge cross-section into 16, 100, 1394, and 3534 elements to
check the convergence of NMB and select the value to compare with FEAP. Figure 15
shows the bridge cross-section divided into 100 elements. The comparison of the polar
second moment of area and the parameter z0 between the two methods was performed to
check the torsion problem. The resulting shear stress for the bridge-cross section under
torsion MT = 1 [kN.m] was visualized. In the torsionless bending, the shear correction
factors κy, κz and the resulting shear stress were compared between FEAP and NMB.
The resulting shear stress for the bridge-cross section under shear forces Qy = 1 [kN],
Qz = −1 [kN] were also displayed. The value of the polar second moment of area and z0
convergence with 3534 divided elements of bridge cross-section can be seen in Table 12. In
Table 13, we present a comparison of the polar second moment of area and the parameter
z0 between NMB with FEAP. The error is under 1.89%. Fifty thousand nodes and uniform
mesh were used to achieve the convergence results when using FEAP. The error of the
convergence is 0.0047% [3]. Meanwhile, NMB is convergent with 14,948 nodes. The error
of the convergence is 0.0027%, see Table 12. This result shows that the computation speed
of NMB is faster and more efficient than FEAP.
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Figure 15. The bridge cross-section divided into 100 elements.

Table 12. The polar second moment of area and z0 with number of elements and nodes of NMB.

Number of Elements Number of Nodes IT [m4] z0 [m]

16 96 43.583 1.771
100 506 43.3162 1.773
1394 6028 43.2953 1.773
3534 14,948 43.2941 1.773

Table 13. The polar second moment of area and z0 parameter.

Factors FEAP [3] NMB Error, %

IT [m4] 42.487 43.2941 1.89
z0 [m] 1.775 1.773 0.112

Figure 16 depicts the distribution of shear stress τxy and the resulting shear stresses of
the bridge cross-section under torsion MT = 1 [kN.m] of NMB. The maximum shear stress
τxy is 7.59× 10−2 [kPa].
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Figure 17 shows the distribution of shear stress τxy and the resulting shear stresses
due to Qy = 1 [kN]. The maximum shear stress τxy is 2.05× 10−1 [kPa]. Figure 18 displays
the distribution of shear stress τxz induced by Qz = −1 [kN]. The maximum shear stress
τxz of NMB and SCAD [7,8] is 4.15× 10−1 [kPa] and 4.03× 10−1 [kPa], respectively.
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Tables 14 and 15 show the errors of the shear correction factors between FEAP and
NMB are under 3.04%.

Table 14. Shear correction factors κy, κz with ν = 0.

Factors FEAP [4] NMB Error, %

κy 0.5993 0.587293 2.00
κz 0.2311 0.238114 3.04

Table 15. Shear correction factors κy, κz with ν = 0.2.

Factors FEAP [4] NMB Error, %

κy 0.5993 0.587292 2.00
κz 0.2312 0.238114 2.99

3.5. Bridge Cross-Section with Multiply Connected Domains

As a final example, we examined the bridge cross-section with multiply connected
domains according to Figure 19 [7]. Poisson’s ratio is taken as ν = 0.2. The comparison
between NMB and SCAD [7,8] was performed. Figure 20 depicts the bridge cross-section
divided into 23 elements.
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Figure 19. Bridge cross-section with dimensions in mm.
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Figure 20. The bridge cross-section divided into 23 elements.

Figure 21 shows the distribution of shear stress τxz and the resulting shear stress due to
Qz = −1 [kN]. The maximum shear stress τxz of NMB and SCAD [7,8] is the same value:
1.08 [kPa]. Figure 22 depicts the distribution of shear stress τxy induced by Qz = −1 [kN]. The
maximum shear stress τxy of NMB and SCAD [7,8] is 1.02 [kPa] and 0.96 [kPa], respectively.
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Figure 21. Shear stress τxz due to Qz = −1 [kN] by NMB.

Table 16 shows a comparison between SCAD and NMB. It is clear from Table 16 that
even when the mesh is not smooth enough (23 elements, 135 nodes), NMB still gives the
same results as SCAD using 539 nodes. When using NMB, 2593 nodes (570 elements) are
necessary for convergence, while SCAD is 6857 nodes.
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Table 16. The shear stress τxz due to Qz = −1 [kN], the polar second moment of area, and the shear
correction factors κy, κz.

Factors SCAD [7,8] NMB

539 Nodes 1817 Nodes 6857 Nodes 135 Nodes 2593 Nodes

max|τxz| [kPa] 1.00 1.04 1.08 0.994 1.08
IT [m4] 5.67 5.74 5.77 5.74 5.70

κy 0.655 0.647 0.644 0.649 0.646
κz 0.276 0.268 0.266 0.274 0.268

4. Conclusions

From Gruttmann’s articles [3,4], we developed the numerical method (NMB) by using
nine-noded quadrilateral elements to solve the shear stress for the prismatic beam with
arbitrary cross-section. The verification of NMB was carried out by analyzing five examples.

The first example was a simple rectangle cross-section. The comparison results show a
good agreement between NMB and FEAP. The second example with varying width cross-
section also shows the harmony of NMB and FEAP. However, NMB used a lower number
of nodes to achieve the convergence of the problem. The third and fourth examples clearly
demonstrate the efficiency of using NMB to achieve convergence results. The fifth example
comparing NMB with SCAD commercial software made the advantages of NMB clear.

In this paper, the shear stress problem is solved just for a single material. As a line of
further investigation, we intend to extend it to different materials. The study has shown
the efficiency and reliability of the method, which allows for more precise analysis and
design of cross-sections. Therefore, the development of the method helps engineers to
dare to design large span slender structures with reduced dimensions that are also safe.
Significant savings of material will have a positive impact on carbon footprint and will
enable the sustainable development of humankind.
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