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Abstract: Landslides are one of the natural disasters that affect socioeconomic wellbeing. Accordingly,
this work aimed to realize a landslide susceptibility map in the coastal district of Mostaganem
(Western Algeria). For this purpose, we applied a knowledge-driven approach and the Analytical
Hierarchy Process (AHP) in a Geographical Information System (GIS) environment. We combined
landslide-controlling parameters, such as lithology, slope, aspect, land use, curvature plan, rainfall,
and distance to stream and to fault, using two GIS tools: the Raster calculator and the Weighted
Overlay Method (WOM). Locations with elevated landslide susceptibility were close the urban
nucleus and to a national road (RN11); in both sites, we registered the presence of strong water
streams. The quality of the modeled maps has been verified using the ground truth landslide map
and the Area Under Curve (AUC) of the Receiver Operating Characteristic curve (ROC). The study
results confirmed the excellent reliability of the produced maps. In this regard, validation based on
the ROC indicates an accuracy of 0.686 for the map produced using a knowledge-driven approach.
The map produced using the AHP combined with the WOM showed high accuracy (0.753).

Keywords: controlling-parameters; remote sensing; GIS; knowledge driven approach; analytical
hierarchy process; weighted overlay method

1. Introduction

Around the world and in the highlands, landslides are considered one of the most
complex geomorphological phenomena. They are recognized as one of the main threats
to human lives, both economically and environmentally [1–3]. Earth mass movements,
resulting from natural conditions linked to topography, geology and hydrogeology, are
defined as landslides [4,5]. Natural events, such as heavy rainfall, which increases the
amount of pore water in the rocks; earthquakes; and coastal erosion could contribute to
landslide triggering [5,6]. The pressure change of the interstitial water may lead to slope
instability and therefore to landslides [7,8]. Beyond natural conditions, human activities
related to construction, mining and deforestation could also contribute to landslides [9–11].
The East of Algeria is more exposed to landslide hazards than the other parts of the
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country. Historically, many important events were recorded, for instance, in the city of
Constantine, whose emblematic bridge suffered in 1935 from considerable damage caused
by a landslide. The Belouizdad-Kitouni district has also experienced several landslide
events. This phenomenon is intensified in Constantine due the chaotic growth of the
city. Ain Hammam, a town located in the region of Tizi-Ouzou (central-eastern region
of Algerian), is an unstable area of 23 hectares, which presents intense landslide activity
due to harsh winters [12,13]. Landslides represent an obstacle for the development of any
region since they cause economic losses. Consequently, the prevention of landslide hazards
has become an important tool in land use planning and management [14,15]. Landslide
susceptibility is known as the spatial prediction of landslide occurrence. Therefore, the
preparation of Landslide Susceptibility Zonation (LSZ) maps is an important tool. This map
indicates the areas prone to landslides and the safe zones [16]. The effective utilization of a
landslide map can reduce the potential damage of the event [17]. Landslide susceptibility
mapping is based on slope knowledge movement and its controlling factors. The reliability
of these maps mainly depends on the quantity and the quality of available data, the scale
of work, and the choice of the appropriate methodology [14,17–20].

Evaluation and mapping of landslide susceptibility has been developed during the
last decades using different methods [21,22]. Accordingly, the involved processes could
be categorized into qualitative and quantitative approaches. These techniques have been
attempted in order to produce more accurate results [18,23,24]. The qualitative methods
(heuristic) are relatively descriptive and subjective; they are based on expert knowledge of
landslide susceptibility and hazard mapping [25,26]. The qualitative approach is classified
into two groups: (1) the first category is geomorphologic analysis, which is a direct method
based on the recognition and experience of scientists in direct landslide susceptibility
mapping [27,28]; (2) the second category represents indirect methods, which are semi-
quantitative where all the parameters that influence the landslide occurrence are ranked
and a weight value is assigned based on expert knowledge. Furthermore, the ratings
and weights of the controlling parameters can be estimated using the expert’s opinion
(knowledge-driven approach) and the analytical hierarchy process (AHP). The AHP is a
multi-criteria decision approach that involves a matrix based on the pairwise comparison
of landslide-controlling parameters. The Weighted Linear Combination (WLC) method
has been used to combine different factors in which each parameter is multiplied by its
assigned weight. The results of qualitative approaches mainly depend on expert knowledge.
The qualitative method does not require any inventory map for landslide susceptibility
mapping [17,20,29,30].

In the quantitative approach, two methods are distinguished: deterministic and
statistical. The deterministic method is based on the calculation of safety factors for slope
stability studies [31]. It is applied on individual sites due to the difficulty of acquiring
the spatial variability of geotechnical and phreatic parameters [32]. Statistical methods,
such as bivariate and multivariate statistical methods, Frequency Ratio (FR), Weight of
Evidence (WoE), Artificial Neural Network (ANN), and Support Vector Machine (SVM),
are based on analysis of the relations between conditioning factors and landslide events
distribution [20,33–38]. The selection of an adequate method depends on the scale of the
study area, the availability of data, and scientific knowledge [39].

In Algeria, the evaluation of landslide susceptibility is a new field. Some authors have
used heuristic and statistical techniques to identify the different sites prone to landslides.
The majority of the study cases were located in the East of the country [40–43]. A landslide
susceptibility study was carried out in the Arzew sector (North-Western Algeria) [44].
These researchers mostly used statistical techniques [40–44]. Bourenane et al. [40] followed
a geomorphological analysis method for landslide susceptibility mapping. The different
works are described in Table 1.
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Table 1. Different works on landslide susceptibility in Algeria.

Authors Study Area Parameters Techniques

East of Algeria

Bourenane et al., 2014 [40] City of Constantine

Slope gradient, slope aspect,
lithology, precipitation, distance
to stream, land use, distance to
road, distance to faults

Geomorphological
analysis & SI

Achour et al., 2017 [42]
Highway

section/Constantine
province

Lithology, distance to faults,
slope gradient, slope aspect,
distance from streams, land use,
cohesion, internal friction

AHP & IV

Manchar et al., 2018 [43] Constantine city

Lithology, slope gradient, slope
aspect, elevation, distance to
lineaments, distance to stream,
rainfall, NDVI

IV, WoE & FR

Hadji et al., 2018 [16] Oued Mellah Basin
Lithology, faults, slope,
elevation, aspect, streams, roads
and precipitation

AHP, LI & LR

West of Algeria

Roukh and Abdelmansour
(2018) [44] Arzew Sector

Slope angle, slope exposure,
lithology, distance to streams,
land use, distance to road,
altitude,

IV & FR

Current study Mostaganem coast district

Lithology, slope, land use, slope
aspect, plan curvature, rainfall,
distance to streams, distance to
roads and distance to fault

Knowledge driven
approach and AHP
combined to WOM

SI: Statistical Index; FR: Frequency Ratio; IV: Information Value; WoE: Weight of Evidence; LI: Linear Indexing; LR: Logistic Regression;
NDVI: Normalized Difference Vegetation Index.

Our work assesses landslide susceptibility in the coastal district of Mostaganem
(West Algeria). This area is mainly composed of alluvium, consolidated dunes, and beaches
features. Although this lithology is brittle, built-up construction projects have been planned
without an impact study being required by law. As a result, several landslide cases have
been recorded in this area in the last years [45].

In this work, a semi-quantitative approach, based on expert knowledge of landslide
susceptibility mapping, was followed. This approach constitutes a bridge between quali-
tative and quantitative methods by evaluating the importance of different parameters in
the generation of landslide susceptibility maps using a knowledge-driven approach and
AHP, combined with WOM methods within a GIS environment. The results could be an
opportune guideline for land planning in the Mostaganem area [27,46].

2. Materials and Methods
2.1. Study Area

Mostaganem is a coastal province located in the North-West of Algeria. Its 124 km
coastline is made up of ten districts and a river (Oued Cheliff), which divides the province
into two parts. The Eastern part is poorly urbanized and has huge beaches, dunes, littoral
plains, and forests. The Western part is highly urbanized [47]. As one of the main coastal
cities in Algeria, Mostaganem has been intensively urbanized (littoralization) and its
sand dunes overexploited for construction needs [48,49]. The necessary preservation
of the natural resources led to the introduction of the Littoral Law in February 2002,
which stipulates the protection and the valorization of the coastal zone. According to the
Littoral Law, built-up activities are consequently prohibited within the 300 m coastal strip.
Nevertheless, construction projects have already been initiated with the aim of increasing
residential buildings and boosting tourism.

From a morphological point of view, the coastal zone of the Mostaganem province
extends over 2120 km2, where 53% are covered by forest. The study area (Figure 1)
represents 52 km2 and 37.82 km of coastline, covering two districts: Mostaganem (urban
nucleus) and Ben Abdelmalek Ramdane. The Western part of the study area is composed
of consolidated dunes (cliffs) situated around Mostaganem city. The Eastern part is located
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in the zone of Ben Abdelmalek Ramdane, where plains are mainly composed of sand, marl
and, in a few locations, alluvium. The valley corresponding to Oued Cheliff separates
the study area in two geomorphological units: the shoreline parallel to the Eastern plain
and the shelf of Mostaganem; the latter includes mobile dunes, consolidate dunes and
beaches [50–53]. Meteorological conditions in the coastal Mostaganem district correspond
to a semi-arid Mediterranean climate, characterized by dry, hot summers and rainy winters.
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Figure 1. Geographical location of the study area: (a) geographical position of Mostaganem province in Algeria; (b) position
of the coast district in the Mostaganem province; (c) Mostaganem coast district location.

Figure 2 describes the methodology followed in this paper. This work was initiated
by collecting data from different sources (reports, newspaper, interviews) and Global
Navigation Satellite System (GNSS) data to construct a landslide inventory. Then, the
different parameters controlling landslides were extracted, considering a GIS environment
(ArcGIS 10.5.1). A knowledge-driven approach and (AHP), combined with WOM, was
applied to map landslide susceptibility. In order to compare the two produced maps,
a Fuzzy Linear membership function (FL) was applied. In the end, the quality of the
produced maps was verified.

2.2. Landslide Inventory Map

The landslide inventory map is a key step for landslide susceptibility prediction [54,55].
This map can be used to prevent events that could occur in unstable areas and compare
them with the modelled landslide susceptibility map [2,21,56–58]. The landslide inventory
map could be produced on local, regional or national scales; its conception basically
depends on the scope of the study [19,46,59,60]. In our study area, we identified 17 cases
of landslide events during the period between 2016 and 2019 (Figure 1). The compilation
of the landslide inventory map was accomplished through a range of interviews with
administrative personals such as the National Coastal Commission (Commissariat National
du Littoral) and the Directorate of Public Works of Mostaganem province. Interviews
with the local residents of Mostaganem were also performed. The use of Google Earth,
local newspapers, and some reports published by the Laboratory of Maritime Studies
(LEM/Algiers) was also necessary to complete our database. Furthermore, intensive field
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surveys were performed for three years (2017–2019) in order to validate the collected data
and identify the locations. Based on interviews, reports analysis and field surveys, different
geological hazard events that occurred recently were identified (Figure 3). The recorded
cases are mainly shallow; they occurred in soils at depths ranging from a few decimeters
to a few meters. These events took place close to the urban area, near the network of
roads that has been constructed on the consolidated dune system, a feature with high
susceptibility to coastal hazards.
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2.3. Description of Parameters
2.3.1. Lithology

Lithology is an important parameter in landside occurrence and susceptibility map-
ping [37,43,61,62]. The digitizing of the geological map of Bosquet-Mostaganem (scale:
1/200,000) allowed for the identification of 10 lithological units in the study area (Figure 4a).
The main registered rocks belong to Quaternary, Pliocene, and Miocene.

2.3.2. Slope

In landslide susceptibility studies, slope is considered one of the most important
parameters of slope failure. It was derived from SRTM DEM (Shuttle Radar Topography
Mission Digital Elevation Model) with 30 m of spatial resolution, and it was classified into
5 classes (Figure 4b). As is known, the probability of landslide occurrence increases where
the slope is steeper compared with gentler ones [63].
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Figure 4. (a) Lithology; (b) slope; (c) land use; (d) aspect; (e) curvature plan; (f) rainfall; (g) distance to stream; (h) distance
to road; and (i) distance to fault (Datum reference: WGS 84, UTM Zone 31).
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2.3.3. Land Use

Land use is one of the key factors influencing the stability of slopes [64,65]. The
non-organized distribution of constructions on brittle and steep terrains could increase
landslide occurrence [66,67]. Vegetation coverage also plays a vital role in landslide events
reduction due to its root structure, which adds strength to the soil and provides ground
solidity, thus mitigating the erosive effect of hydrological agents [36,68]. In this work, the
evaluation of the impact of land cover types on landslide occurrence was performed by
processing a satellite image from Landsat-8 Operational Land Imager (OLI) (acquired in
October 2017). Furthermore, the Maximum Likelihood (ML) algorithm was applied to the
satellite image using ENVI 4.8 software in order to perform a supervised classification [69].
The studied site was divided into 7 classes: urban area, sparsely vegetated area, river,
fallow land, densely vegetated area, beach-dune and sand plains, and agriculture land
(Figure 4c). The produced map showed an overall accuracy of 94.79%, considering the
analysis of the confusion matrix (Figure 4c).

2.3.4. Slope Aspect

The slope aspect is a crucial geomorphological component in landslide investigations,
since it has indirect action on slope instability. The slope aspect is mainly related to climatic
agents such precipitation, runoff surface, sun exposure, and dry wind, which subsequently
influence soil moisture, vegetation and, ultimately, landslide occurrence [68,70–72]. In this
work, the slope aspect was derived from SRTM DEM with 30 m of spatial resolution and
divided into 5 classes: Flat, North, East, South and West (Figure 4d).

2.3.5. Plane Curvature

The curvature plane, which is defined as the change rate of slope angle or aspect [73,74],
can take 3 slope shapes: flat, convex, and concave. High values of the plane curvature
correspond to a convex shape of the slope; conversely, low values mean the slope is
concave. This factor has a significant influence on the runoff surface. In general, convex
areas disperse runoff equally and consequently do not affect slope stability. However,
concave surfaces contribute to the accumulation of water in the lowest part, leading to the
occurrence of landslides. In this study, the plane curvature was derived from SRTM DEM
in a GIS environment (Figure 4e).

2.3.6. Rainfall

Rain is considered one of the most important factors in the occurrence of landslides [75,76].
Rainwater infiltration increases soil moisture and, subsequently, a decrease in shear strength
and soil cohesion, which induces its instability [46,77,78]. In the province of Mostaganem,
considerable rainfalls occur mainly in December and January [51], since the East of Algeria
is rainier than the West. In the current study, we obtained this parameter by digitizing the
rainfall map of Algeria (1/200,000) and dividing our area into 2 classes (350–400 mm and
400–450 mm; Figure 4f). For the two approaches we followed, the rank and weight of this
parameter were assigned based on expert knowledge.

2.3.7. Distance to Stream

The province of Mostaganem has a significant land aquifer [79,80]. This resource could
indicate the high density of streams in the region. The distance to stream plays a crucial
role in landslide phenomena. It could affect slope stability where the streams saturate
the lower part of the soil, increasing its water level [17,81]. Methodologically, the streams
were digitized from a topographic map (1/25,000). Furthermore, a multi-stream buffer was
created using GIS software tools and divided into 5 classes with a 50 m interval (Figure 4g).

2.3.8. Distance to Roads

The road network is an important anthropogenic feature that could also affect the
stability of the terrain [82]. The RN11 (Route Nationale) is the most important road located
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in the study area. Methodologically, we digitized the road network, extracted from Google
Road using the Quick Map Services Plugin available in open-source GIS software (QGIS—
version 3.8). Furthermore, a multi buffer was created in a GIS environment, in which five
classes with 50 m intervals were grouped (Figure 4h).

2.3.9. Distance to Fault

The areas close to active faults are weak, and consequently, their susceptibility to
instability increases. In the coastal district of Mostaganem, faults were obtained through
the digitization of the geological map of Bosquet-Mostaganem (1/200,000). A multi buffer
was computed with an interval of 100 m, using GIS tools. The distances to the fault were
grouped into 5 classes (Figure 4i).

2.4. Landslide Susceptibility Analysis
2.4.1. Knowledge-Driven Approach

The knowledge-driven approach is a qualitative method; it can be either direct or
indirect. The direct method is based on direct geomorphological mapping of the geological
hazard. However, the indirect method is based on assigning ratings and weights depending
on the influence of controlling factors for landslide triggering [83,84]. The success of this
approach is mainly based on expert knowledge [27]. In this work, a value between 1
to 5 was assigned to the factors. The highest value was assigned to factors and their
subclasses with an important influence on landslide occurrence, and vice vera [85,86].
The landslide susceptibility map was produced using the Raster Calculator tool from GIS
software according to Equation (1).

LSM(K_D) = (Wα × α) + (Wβ × β) + (Wγ × γ) + (Wδ × δ) + (Wε × ε) + (Wλ × λ) + (Wµ× µ)
+(Wτ× τ) + (Wω× ω)

(1)

where LSM (K_D) is the Landslide Susceptibility Map produced according to the knowledge-
driven approach; α is the lithology; β is the Slope; γ is the land use; δ is the slope aspect; ε is
the curvature plan; λ is the rainfall; µ is the distance to stream; τ is the distance to road; ω
is the distance to fault; Wα is the weight of lithology factor; Wβ is the weight of slope; Wγ
is the weight of land use; Wδ is the weight of slope aspect; Wε is the weight of curvature;
Wλ is the weight of rainfall; Wµ is the weight of distance to stream; Wτ is the weight of
distance to road; and Wω is the weight of distance to fault.

2.4.2. Analytical Hierarchy Process (AHP)

The AHP, introduced by Saaty (1980), is a multi-criteria decision-making (MCDM)
method, used in various research fields due to its simplicity and flexibility. Therefore, the
mapping of landslide susceptibility is one of the domains that most uses the AHP [17].
This process, which consists of assigning weights to landslide-controlling factors [8,87],
makes its application possible. Generally, the AHP method comprises 3 steps: (1) decom-
position of the problem into different hierarchical levels, in which high levels represent
the main objectives of decision-making; (2) comparative judgment through the pairwise
comparison of factors; and (3) synthesis of the proprieties according to the importance
of each factor, based on the literature and expert knowledge. Furthermore, in order to
describe the relationship existing between different factors, a numerical value based on the
AHP was assigned to each factor (Table 2). The pairwise comparison matrix was created
through dual comparison between different factors. Weights were determined based on the
normalization of the eigenvector, which corresponds to the largest eigenvalue of the ratio
matrix. With reference to the comparison, different judgments could be reached by experts.
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Table 2. Scale of preference between two parameters in the Analytical Hierarchy Process (AHP) [29].

Intensity of Factors Degree of Intensity Explanation

1 Equal importance The two parameters contribute to the same objective

3 Moderate Importance The experience or judgment slightly favours one
parameter over another

5 Strong importance A parameter is favoured strongly over another

7 Very strong importance A parameter is favoured very strongly over another, and
it shows in practice

9 Extreme importance The evidence of favouring one parameter over another is
of the highest degree possible to affirm

2, 4, 6, 8 Intermediate value between two adjacent judgments Used to represent the comprises between the preference
scores 1, 3, 5, 7 and 9

Reciprocals Opposites Used for inverse comparisons

The Consistency Ratio (CR) was computed to describe the quality of judgments
according to Equation (2).

CR =
CI
RI

(2)

RI is the Random Index depending on the order of matrix given in Table 3 [29]. CI is
the Consistency index, computed using Equation (3):

CI =
(λmax − n)
(n − 1)

(3)

where λmax is the maximum eigenvalue of matrix, and n is the order of matrix.

Table 3. Random consistency index (RI).

n 2 3 4 5 6 7 8 9 10

RI 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.51

If the CR value is lower than 10%, it means the assigned weights of the factors are
consistent [81]. If the CR is higher than 10%, it indicates that the comparisons are not
consistent, which consequently requires a revision. In our work, the AHP was applied
in order to determine the ranking and weights of each class. Regarding the precipitation
parameter, the ranking of classes was given directly based on expert knowledge.

2.4.3. Weighted Overlay Method (WOM)

The WOM is a simple, direct and adequate tool available in GIS environments that is
used widely to solve multi-criteria problems, such as landslide susceptibility [87,88]. This
method consists of a combination of different factors considering its given weights [84,89].
In this study, ranking values and parameter weights have been determined using AHP.
In order to produce the predicting landslide susceptibility map, all the parameters were
integrated in a WOM tool within a GIS environment. The summation of weights must be
equal to 100. Accordingly, each weight was multiplied by its assigned factor according to
Equation (4).

LSM = Σ(Xi × Wi) (4)

where Xi is the ranking of each class, and Wi is the weight of the controlling-parameter.

2.4.4. Normalization

Zadeh (1965) [90] introduced fuzzy set logic for the first time, and it has been widely
applied in different research areas and on distinct measurement due to its straight forward-
ness [91,92]. In this logic, all objects are considered as elements of a set. In fuzzy theory,
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each element can take a value ranging from 0 to 1 [74,93]. According to this method, many
researchers have combined it with AHP in order to improve the accuracy of the assessment
of landslide susceptibility mapping [17,94–96].

In this work, we produced two different maps in terms of scale value (the value
classes), applying two methods: the knowledge-driven approach and the AHP combined
with WOM. Considering this, it was possible to compare both maps and eliminate uncertain
values. Furthermore, the fuzzy linear membership function was applied with the aim to
convert the input data linearly on the 0 to 1 scale, in which the value 0 is assigned to the
lowest input data and value 1 to the highest input value; normalization was processed in
GIS software.

3. Results
3.1. Knowledge-Driven Approach

Based on the knowledge-driven approach, the evaluation integrated several param-
eters such as lithology, slope, land cover, aspect, curvature, rainfall, distance to stream,
distance to road and distance to fault. All the factors were ranked and weighted based on
their importance. A numerical scale (1–5) from low to high influencing was applied. The
most influential factors were: lithology, slope, land cover, and aspect. Curvature plane,
rainfall, distance to stream, and distance to road are equally important with respect to
slope instability. Distance from faults increases the likelihood of landslide occurrence [37].
However, in this study case, this factor does not contribute much to landslide triggering. To
produce the landslide susceptibility map (Figure 5a), the sum of each parameter multiplied
by its correspondent weight was performed in the Raster Calculator tool, considering
Equation (1).
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3.2. Analytical Hierarchy Process Weights

The AHP was applied to estimate the weights and ratings for class factors: lithology,
slope, aspect, land; both can be obtained from the pair wise comparison matrix. The matrix
was applied on two levels: (i) to assess the class rating of each parameter and (ii) to estimate
the weights parameter through Python scripts in GIS software. As illustrated in Table 4,
lithology was the most influential parameter, with a value of 0.280. The classes quaternary
continental alluvium and sand presented ranking values of 0.29 and 0.26, respectively;
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these classes make the lithological factor more influential for landslide triggering. They
presented values of 0.29 and 0.26, respectively. The slope also had a considerable value
of 0.164, followed by land use, with 0.154, and curvature plane, with 0.111. The factors
distance to stream, distance to road, and rainfall were less important. However, the distance
to fault was of minor influence.

Table 4. Estimation of ratings and weights based on the knowledge-driven approach and AHP process.

Knowledge Driven Approach AHP Method

Parameter Classes Rating Weight Rating Weight

Lithology

a1 5 5 0.260 0.280
a2 5 0.290
F 4 0.120

mm 3 0.090
pm 3 0.100
mg 2 0.030

mgm 2 0.030
qc 2 0.030
pL 1 0.024
q1 2 0.026

Slope (◦)

0–5 1 4 0.073 0.164
05–10 2 0.110
10–15 3 0.161
15–25 4 0.259
>25 5 0.395

Land cover

Sparsely vegetated area 5 3 0.368 0.154
Built-up area 4 0.319

Beach, Dune and sand plains 3 0.097
Fallow land 3 0.098

Agriculture land 2 0.046
Forest 2 0.045
River 1 0.033

Aspect

Flat 1 3 0.062 0.111
North 2 0.114
East 3 0.171

South 4 0.146
West 5 0.504

Curvature plane

Concave 5 2 0.619 0.086
Flat 1 0.096

Convex 3 0.284

Rainfall (mm)

350–400 2 2 0.250 0.057
400–450 3 0.750
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Table 4. Cont.

Knowledge Driven Approach AHP Method

Parameter Classes Rating Weight Rating Weight

Distance to stream (m)

50 5 2 0.552 0.077
100 4 0.189
150 3 0.137
200 2 0.077

>200 1 0.041

Distance to road (m)

50 5 2 0.537 0.043
100 4 0.202
150 3 0.129
200 2 0.081

>200 1 0.052

Distance to fault (m)

100 5 1 0.480 0.028
200 4 0.229
300 3 0.161
400 2 0.089

>400 1 0.041

Consistency Ratio (CR) = 0.088

Note: a1: quaternary continental sand; a2: quaternary continental alluvium; F: flysch slick (thitonian upper cretaceous); mm: blue marl
(à cénirite); pm: plaisancian marl blue; mg: sandstone, conglomerate with red clay; mgm: sandstone and sand (sedra—tliouanet level); qc:
post-villafranchian: calcareous carapace; pL: plaisancian calcareous lithothamnium; q1: calcareous lumachel standstone (calabrian).

The values of the CR were less than 10% (Table 4), which is in accordance with the
consistency of the pair-wise comparison. Consequently, these results confirm the validity of
the factors’ ratings and weights [17]. Accordingly, several parameters were integrated into
the GIS environment using a WOM tool, and each parameter was multiplied by its assigned
weight to generate the landslide susceptibility map (Figure 5b) according to Equation (4).

3.3. Landslide Susceptibility Analysis

LSM showed different ranges of CVs (value classes); LSM based on the knowledge-
driven approach showed a CV comprised between (30, 112) (Figure 5a), while LSM pro-
duced using the AHP weight combined with the WOM had a CV ranging from (6, 39)
(Figure 5b).

In order to compare the results, the CV of the output layers was normalized on the
numerical scale (0, 1), using a fuzzy linear membership function and the Natural Breaks
classification (Jenks), which is simple and based on natural groupings inherent in the data.
Class Breaks enable the grouping of similar values and maximize the differences between
classes [70,78].

The LSM maps were grouped into 5 classes: very low, low, moderate, high and very
high (Figure 5). The very low areas susceptible to landslides cover 3.823 km2 (Figure 5a);
they are mainly located in densely vegetated areas. Plant roots provide high stability to
the soil, and consequently no landslide event has been recorded in this class (Figure 6a).
The zone with low susceptibility to landslides covers 11.484 km2. These areas belong to
the beach, dune, and sand class corresponding to a very low slope (0–5◦). The moderate
class covers an extended area of 16.329 km2. The high and very high sites were located
near the urban nucleus and close to the national road (RN11), and they cover a sector of
13.249 km2 and 6.834 km2, respectively. A very high landslide density is observed near
these anthropogenic features (Figure 6). The high and very high classes were located mainly
in the Western part; they were estimated as 72.24% (9.604 km2) and 79.19% (5.142 km2).
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The Eastern part records a high susceptible area of 3.689 km2 (27.75%). The very high class
covers an area of 1.422 km2 (20.80%), and these dangerous sites are mostly situated in the
fallow land class.
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LSM, utilizing the knowledge-driven approach, was comparable to that drawn by
means of the AHP method (Figure 5b). With respect to this, the very low class corresponds
to the forests, which occupy an area of 4.05 km2 (7.82%). However, regions with low
landslide susceptibility are located in the coastal sand features, of which the class covers
10.63 km2 (20.53%). The moderate zones, mainly located in the Western part of the province,
cover an area of 15.84 km2 (30.6%). Finally, the high and very high susceptibility classes,
predominant in the Western urban zone, cover extended areas of 16.197 km2 (31.29%) and
5.047 km2 (9.75%), respectively.

Zones with a very low susceptibility to landslides were registered in areas with dense
vegetation. Vegetation plays an important role in enhancing slope stability and reducing
landslide susceptibility [97]. Zones with the lowest landslide susceptibility are located
along beaches, mobile dunes, and sand plains (Figure 5). Generally, these zones are flat
and do not register any event in this land cover class. The regions with moderate landslide
susceptibility were identified close to built-up areas and in fallow land. Due to the predom-
inance of streams, the zones with high and very high susceptibility were recorded in the
urban nucleus and close to the national road (RN11). In the coastal district of Mostaganem,
most human settlements were constructed in the quaternary continental alluvium and
sand classes. Both lithological types have weak shear strength when hydrogeological
conditions are favourable, leading to an increase in landslide susceptibility. In this respect,
the quaternary continental alluvium recorded high landslide event density, which has been
estimated at about 52.94% (Figure 7). The results obtained show clearly that the density of
landslide events increases with the susceptibility degree (Table 5). The current situation
in Mostaganem is due to unplanned and uncontrolled use of this area. Since 2000, the
landscape of the Mostaganem coast district has undergone an important alteration due to
the excessive exploitation of natural resources and uncontrolled expansion of residential
buildings, regardless of environmental impacts (slope cutting, floods) and in spite of the
Littoral Law, which should protect the coastal zone [98]. The situation in the Mostaganem
coast district reflects a major lack of planning during the urbanization process [45,99].
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Table 5. Landslide susceptibility classes area.

Susceptibility Classes
Knowledge Driven Approach AHP Method

Area (km2) L.D (%) Area (km2) L. D (%)

Very low 3.823 0 4.05 0
Low 11.484 5.882 10.63 11.765

Moderate 16.329 11.765 15.84 11.765
High 13.294 35.294 16.197 23.529

Very high 6.834 47.059 5.047 52.941

L.D: landslide density per class.

3.4. Validation of Landslide Susceptibility Maps

Evaluation of the quality of predictive landslide maps represents a primary step in
this field. Therefore, different methods were attempted, such as landslide density analysis
(Ld), Prediction Rate Curve (PRC), and Area Under Curve (AUC) of Receiver Operating
Characteristic curve (ROC) [100]. In this work, two methods were applied. The first method
is based on the utilization of the ground truth map of landslides with the aim to compare
the produced landslide susceptibility maps. The quality of these maps was concluded
in comparison to the ground truth map (Figure 5). In order to achieve the objective of
this method, a numerical scale (1–5) has been assigned to the predictive map classes. The
lowest value corresponds to zones with lower susceptibility to landslides; the highest value
corresponds to areas with higher susceptibility to landslides (Table 6). Furthermore, two
assumptions based on the location of the landslide event on the ground truth map of the
landslide were taken:

1. The landslide event is located in the same susceptibility class (Figure 5), the result is
outstanding, and the choice of the model was correct.

2. The landslide event is located in two different susceptibility classes (degree), and two
hypotheses could be considered:

- If the difference between the classes of the two predictive maps is one (1), the
choice of the model is accepted.

- If the difference is higher than one (>1), the model should be revised.
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Table 6. Assignment of numerical scale to landslide susceptibility classes.

Landslide Susceptibility Classes Numerical Scale

Very low 1
Low 2

Moderate 3
High 4

Very high 5

Based on the comparison (Table 7), 59% of the landslide events are located in the same
landslide susceptibility degree, which means that the choice of the models was correct. In
contrast, 41% of cases indicate that they belong to two distinct classes with a difference
equal to one (1). This analysis reflects the acceptable choice of the models.

Table 7. Comparison of the event location for the two methods.

Landslide Events Knowledge Driven Approach AHP_WOM Method Diff M1/M2
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
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The second method was the Receiver Operating Characteristic curve (ROC), which 
is a static technique used by researchers to validate predictive results [101]. In this case, a 
graphical plot that provides analysis based on true-positive and false-positive rates 
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AUC using XLSTAT software (version 2015). The results of the predictive maps show that 
the layer, based on the knowledge-driven approach, has an accuracy of AUC = 0.686. For 
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showed a better accuracy (AUC = 0.753) (Figure 8). These values indicate that the used 
models are suitable for landslide susceptibility mapping. Based on the techniques used, 
the landslide predictive maps of landslides show acceptable results. 

The second method was the Receiver Operating Characteristic curve (ROC), which is
a static technique used by researchers to validate predictive results [101]. In this case, a
graphical plot that provides analysis based on true-positive and false-positive rates (sensi-
tivity = f (specificity)) represented the ROC. When this method is applied, the generated
Area Under Curve (AUC), of which the value could change in different cases, shows the
reliability of the model used. Accordingly, values ranging from 0.5 to 1 indicate that the
model is correct; values < 0.5 indicate a random fit. In this work, we calculated the AUC
using XLSTAT software (version 2015). The results of the predictive maps show that the
layer, based on the knowledge-driven approach, has an accuracy of AUC = 0.686. For
the map based on the Analytical Hierarchy Process (AHP) combined with WO, the ROC
showed a better accuracy (AUC = 0.753) (Figure 8). These values indicate that the used
models are suitable for landslide susceptibility mapping. Based on the techniques used,
the landslide predictive maps of landslides show acceptable results.
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4. Conclusions

Landslide hazards impose enormous constraints on socioeconomic development.
Many methods have been attempted for landslide zonation, including qualitative and
quantitative approaches. In this research, we used a semi-quantitative method, applying
the analytical hierarchy process (AHP) and knowledge-driven approaches; the two pro-
duced layers presented common points. In effect, we identified zones with low and very
low landslide susceptibility in densely vegetated sites, as well as beach and coastal dune
areas. However, zones with high and very high susceptibility were registered in the urban
nucleus and close to the national road, RN11; strong water streams characterized both
places. Regarding the distance to fault, the values confirmed that this parameter has a
weak influence on landslide occurrence. The predictive landslide susceptibility maps were
evaluated using the ground truth map of landslide and the Receiver Operating Character-
istic curve (ROC). The ground truth map of landslides confirmed that the modelled maps
present outstanding reliability, considering the location of the landslide events. Meanwhile,
validation based on the ROC indicates an accuracy of 0.686 (AUC = 0.686) regarding the
map produced using the knowledge-driven approach. The realized map using the AHP
combined with the weighted overlay method showed a higher accuracy (AUC = 0.753).
Both techniques proved that the achieved results are scientifically correct compared with
other works. The landscape of the Mostaganem province is mainly formed by a brittle
lithology. Many construction projects have been launched in the vulnerable sandy coastal
features, regardless of the Algerian littoral law that prohibits it. Poorly planned construc-
tion projects in low resilience areas, realized without adequate grading of slopes and control
of the hydrographic network, contribute to landslides triggering. The realized maps could
be used to monitor the spread of landslides and prevent possible natural disaster. The local
authorities of Mostaganem have set an economic development program until 2030. In this
regard, the landslide susceptibility map could help decision makers to better design future
construction projects and avoid building in highly susceptible zones.
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