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Abstract: Soil organic carbon (SOC) conservation in agricultural soils is vital for sustainable agri-
cultural production and climate change mitigation. To project changes of SOC and rice yield under
different water and carbon management in future climates, based on a two-year (2015 and 2016)
field test in Kunshan, China, the Denitrification Decomposition (DNDC) model was modified and
validated and the soil moisture module of DNDC was improved to realize the simulation under
conditions of water-saving irrigation. Four climate models under four representative concentration
pathways (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5), which were integrated from the fifth phase
of the Coupled Model Intercomparison Project (CMIP5), were ensembled by the Bayesian Model
Averaging (BMA) method. The results showed that the modified DNDC model can effectively
simulate changes in SOC, dissolved organic carbon (DOC), and rice yield under different irrigation
and fertilizer management systems. The normalized root mean squared errors of the SOC and DOC
were 3.45–17.59% and 8.79–13.93%, respectively. The model efficiency coefficients of SOC and DOC
were close to 1. The climate scenarios had a great impact on rice yield, whereas the impact on SOC
was less than that of agricultural management measures on SOC. The average rice yields of all the
RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 scenarios in the 2090s decreased by 18.41%, 38.59%, 65.11%,
and 65.62%, respectively, compared with those in the 2020s. The long-term effect of irrigation on the
SOC content of paddy fields was minimal. The SOC of the paddy fields treated with conventional
fertilizer decreased initially and then remained unchanged, while the other treatments increased
obviously with time. The rice yields of all the treatments decreased with time. Compared with
traditional management, controlled irrigation with straw returning clearly increased the SOC and
rice yields of paddy fields. Thus, this water and carbon management system is recommended for
paddy fields.

Keywords: paddy field; soil organic carbon; denitrification decomposition (DNDC); climate change

1. Introduction

The carbon cycle is a popular topic in ecological research [1]. Soil organic carbon
(SOC) is the largest carbon pool on the planet excluding the ocean’s and rock’s sediments;
thus, small changes in SOC have a great impact on the atmosphere [2]. The carbon pool of
the agro-ecosystem is one of the most active parts of the global carbon cycle, in which soil
organic carbon storage in farmland accounts for 8–10% of that in all types of land [3]. The
SOC in farmland is vulnerable to disturbances from human activities [4], but this SOC can
be artificially regulated on a short-time scale [5]. In addition, China has a total paddy soil
area of 45.7 Mha, accounting for approximately one-fifth of the total cultivated land area in
the world [6]. Thus, paddy fields have a considerable carbon sequestration potential. At
the same time, the dynamics of SOC in paddy fields are affected by many factors, such as
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temperature, precipitation, irrigation, and fertilization [7]. However, few studies on SOC
changes in paddy fields have focused on the impact of coupling water-saving irrigation
and fertilizer management. In recent years, water-saving irrigation technology has been
widely used in China and has changed the soil moisture status and organic carbon content.
Thus, evaluating the impact of water and carbon management measures on the dynamic
changes in SOC is important to maintaining agricultural productivity.

Moreover, our understanding of climate change as an important factor affecting
SOC and rice yield remains limited. Thus, improving our understanding of the impact
of environmental change and field management on nutrient cycling and crop growth is
necessary. Despite the growing importance of industry, agricultural production, as one
of the most sensitive sectors to climate change [8], plays an important role in ensuring
food security throughout the world, especially in China [9]. Rice paddies are an important
source of both global food production and greenhouse gas (GHG) [10,11], and rice yield is
extremely sensitive to agricultural measures, such as irrigation and fertilization [12]. At
present, China’s sustainable agricultural development is facing challenges in maintaining
optimal yields while mitigating environmental impacts [13,14]. Therefore, addressing
climate change and optimizing management measures for paddy fields are problems that
should be urgently resolved.

The combination of process-based modeling and various experimental data provides
opportunities for quantifying the impacts of different management practices and future
climate change on soil C dynamics [15]. In fact, comprehensively and accurately evaluating
SOC change is difficult due to the low speed of SOC dynamics and time-consuming
and laborious on-site sampling; thus, a calibration model is necessary. Agronomists and
scientists have worked diligently in the past to devise and promote the use of agricultural
practices that can maintain or increase SOC levels. With the continuous development of
agricultural research methods in addition to physical sampling and analysis of soil profiles
for SOC, dynamic modelling of SOC can be used to effectively monitor soil organic carbon
storage under different agricultural management. Among the relatively mature related
models, including CENTURY, denitrification and decomposition (DNDC), NCSOIL, and
RothC, the DNDC model is widely used due to its simple parameter inputs and accurate
result simulation. The DNDC model can satisfactorily simulate SOC conversion in paddy
fields and crop growth under climate change [4].

Kunshan is located in the Tai-Lake region in the middle and low reaches of the
Yangtze River paddy soil region of China, which is a typical rice production area in the
country [16]. Many recent studies have revealed that the paddy soils in this area have
high SOC sequestration potential [17,18]. Hence, combining the experimental data from
Kunshan with that from the DNDC model is feasible. Although we are encouraged by the
tests of and improvements in DNDC for crop yields and environmental impact estimation
in the past two decades, the widespread application of this tool in China has several
limitations [19]. For instance, the constant 50-cm soil depth leads to overestimation of soil
water content [20]. In addition, some soil properties, such as bulk density, porosity, and
hydraulic parameters are assumed to be constant across all layers (down to a depth of
50 cm). However, most soil properties vary inherently between layers. Additionally, the
traditional flood irrigation mode is the only irrigation mode for paddy fields, which makes
it difficult to simulate the increasingly popularized water-saving irrigation mode. These
factors may decrease the accuracy of irrigation simulation.

Although the DNDC model has been improved and applied in China through a
two-decade effort, only four models exist for paddy fields under flood irrigation, namely,
continuous flooding (the field water level is maintained at 10 cm), alternative wet and
dry flooding (water level fluctuates between −5 to 5 cm), and rain-fed and empirical
parameters. These four existing modes are inconsistent with the water-saving irrigation
model in China. In a previous study [21], DNDC was used to simulate methane emissions
from paddy fields under medium-term drainage, intermittent irrigation, and continuous
flooding. In contrast to the above irrigation methods, under the condition of controlled
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irrigation, which is widely applied in China, a shallow water layer is reserved on the
surface of the field after transplanting seedlings until the regreening stage and the soil
remains not flooded on the surface of the irrigation field in each subsequent growth stage,
usually 60–80% of the time [22]. The irrigation time and irrigation amount were determined
with the root-layer soil moisture as the control index. The existing model cannot simulate
the controlled irrigation conditions. Thus, urgently modifying the DNDC model for paddy
fields under water-saving irrigation is necessary to decrease site-specific suitability [23].
Given these problems, this research modified the 50-cm soil layer in the model to the depth
of the root layer and controlled the upper and lower limits of paddy irrigation with soil
moisture content. Additionally, the limits were modified in accordance with the needs
of different growth stages of rice to adapt to the local water-saving irrigation mode. We
hypothesized that crop growth and SOC dynamics could be simulated by improving the
soil moisture module of this model. On this basis, the effects of different water and carbon
management on SOC and rice yield in future climate conditions were studied.

Interest is growing in terms of finding ways to simulate climate change by using
General Circulation Models (GCMs), which is the main current approach to predict future
climate change and its responses. Substantial progress in global and regional modeling
at medium to high resolutions and in downscaling methods has provided the basis for
an increasing number of studies that attempt to simulate the effect of future climate
change [24]. Predicting the dynamic changes in SOC and rice yield in paddy fields in the
future is important for formulating agricultural management measures to save water, to
increase yield, and to promote sustainable development. We carried out this study on the
basis of the modified DNDC model and four climate scenarios under four GCMs weighted
by Bayesian model averaging (BMA). The objectives of the study are (1) to validate the
relevant parameters and to simulate changes in SOC and rice yield in Kunshan for the
next 80 years, and (2) to extend the paddy field irrigation module in the DNDC model
to provide a theoretical basis for optimizing field management measures to cope with
climate change.

2. Materials and Methods
2.1. Experimental Site

The experiment was conducted in 2015 and 2016 at the State Key Laboratory of
Hydrology-Water Resources and Hydraulic Engineering of Hohai University, Kunshan
Irrigation and Drainage Experiment Station (31◦15′15” N, 120◦57′43” E), Jiangsu Province,
China (Figure 1). The study area has a subtropical monsoon climate with a mean annual
precipitation of 1097 mm, an average annual air temperature of 15.5 ◦C, a sunshine duration
of 2086 h, and a frost-free period of 234 days·y−1. The locals are accustomed to a rotation
of rice and wheat planting. The paddy soil is classified as a hydragric anthrosol, which has
a heavy loam texture, with a bulk density of 1.32 g cm−3 at 0–30 cm and an initial pH of 7.4
at 0–18 cm. The organic matter is 21.71 g kg−1 for the top 0–18 cm layer, and total K, total P,
and total N are 20.86, 1.40, and 1.79 g kg−1 for the 0–30 cm layer, respectively.

2.2. Field Management

The experiment was laid out (plot size 150 m2) in a randomized block design with six
treatments in triplicate. The six treatments were a combination of irrigation and fertilizer
management systems: the two irrigation managements regimes were flood irrigation (FI)
and controlled irrigation (CI), and the three fertilizer managements were wheat straw
returning (S), organic fertilizer management (O), and farmer fertilizer practices (FFP). The
six treatments were FS (FI and S), FO (FI and O), FF (FI and FFP), CS (CI and S), CO (CI
and O), and CF (CI and FFP), with a total of 18 cells. Rain-fed wheat was grown in the
plots during the non-rice planting season.
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The rice variety in the experiment was Japonica Rice Nanging 46. Three or four
seedlings per hill were transplanted in late June, with a plant spacing of 13.0 cm × 25.0 cm,
and were harvested in late October. Local nitrogen (N) fertilizer was adopted in FFP
(Table 1). The chemical fertilizer management of the S treatment was similar to that of the
FFP treatment, and 3000 kg ha−1 of straw from the previous wheat crop (the organic carbon
content of wheat straw was 441 g kg−1, while the C/N ratio was 50:1 and the organic
carbon input through wheat straw was 1322 g kg−1) was returned to the S paddy fields
both years. Additionally, 7500 kg ha−1 of well-decomposed chicken manure (23% moisture
content, 16.3 g kg−1 N, 261 g kg−1 organic carbon, 15.4 g kg−1 P2O5, and 20.7 g kg−1 K2O
(Shijiazhuang Jitian Biotechnology Co., Ltd., China) was applied to the O paddy fields in
2015 and 2016. The base fertilizer and wheat straw were mixed into the muddy soil during
tillage, and surface application was adopted for all other fertilizers.

Table 1. Date and rate of nitrogen fertilization during the rice-growing season in farmer fertilizer
practice (FFP) (kg N ha−1).

Activity 2015 2016

Base fertilizer (29 and 28 June) 155.2 (72.0CF + 83.2AB) 72.0 (72.0CF)
Tillering fertilizer (16 Jul) 69.3 (U) 97.0 (U)

Panicle fertilizer (9 and 11 Aug) 58.9 (U) 104.0 (U)
Total nitrogen 283.4 273.0

Dates in brackets are when the fertilizer was applied in 2015 and 2016, respectively. CF: compound fertilizer (N,
P2O5, and K2O contents were 16.0%, 12.0%, and 17.0% in 2015 and 2016), AB: ammonium bicarbonate (N content
was 17.1%), U: urea (N content was 46.2%).

The irrigation water layer of the CI paddy fields was maintained at 5–25 mm in the
regreening stage. Irrigation was applied only to keep the soil moist, and standing water
was avoided in the other stages except during periods of pesticide and fertilizer application.
In accordance with local rice planting habits, a 30–50 mm shallow water layer was retained
in the FI paddy fields after transplantation except during the midseason drainage period
and the yellow maturity stage of rice. Rainfall was deflected with a canopy to accurately
control soil moisture. The root zone soil water content criteria in different rice growth
stages for CI are shown in Table 2.
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Table 2. Limits for irrigation in different stages of rice under controlled irrigation.

Stages Re-
Greening

Tillering Jointing and Booting Heading and
Flowering

Milk
Maturity

Yellow
MaturityFormer Middle Later Former Later

Upper limit a 25 mm b θs1 θs1 θs1 θs2 θs2 θs3 θs3 Drying
Lower limit 5 mm b 70% θs1 65% θs1 60% θs1 70% θs2 75% θs2 80% θs3 70% θs3 Drying

Monitored soil
depth/cm — 0–20 0–20 0–20 0–30 0–30 0–40 0–40 —

θs1, θs2, and θs3 represent saturated volumetric soil moisture for the 0–20, 0–30, and 0–40 cm layers, respectively. a In the case of pesticide,
fertilizer application, and rainfall, standing irrigation water at a depth of up to 5 cm was maintained for less than 5 days. b The data show
the water depth during the re-greening stage.

2.3. Yield Measurement, Soil Sampling, and Analysis

Rice yield was estimated by artificially harvesting crops per unit area of each plot.
Three hills of rice were randomly chosen to evaluate the filled grain number, setting
percentage, thousand kernel weight, and panicle number of each treatment.

A total of 108 soil samples were collected from each plot following an S-shaped pattern
at 0–10, 10–20, and 20–40 cm depths during the whole growth stage of rice in 2015 (23 June,
12 July, 20 August, 23 August, 21 September, and 25 October) and 2016 (29 June, 27 July,
21 August, 4 September, 21 September, and 25 October). After harvesting with a spiral drill
(diameter, 38 mm; length, 1 m), three samples of 0–40 cm soil were randomly collected
in each plot and fully stirred. Then, samples from the same depth were homogenized by
mixing, separated from visible debris and crop residues, and divided into two parts. One
part of the fresh samples was stored at 4 ◦C, and the other was air-dried, ground, and
screened with a sieve of 0.149 mm; 12.5 g of fresh soil samples for dissolved organic carbon
(DOC) was placed in a conical flask, immersed into 50 mL of 0.5 mol L−1 K2SO4 solution,
and shaken for 30 min before the extracts were separated with a 0.45-µm filter. SOC
was measured by the potassium dichromate external heating method, and the oxidation
correction coefficient was considered. Besides, soil water content was recorded by a time
domain reflectometer (Soil Moisture Equipment, Ltd., Corp. USA), and vertical rulers were
used to monitor water layer at 8 a.m. everyday. The amount of irrigation water for each
plot was calculated by using the water meter.

2.4. DNDC Model
2.4.1. Overview of the DNDC Model

The DNDC model is a process-cased biogeochemical model written in Visual C++
6.0 language for C and N dynamics in agro-ecosystems. This model has evolved over
decades of development since it was developed by Li et al. [25]. Various soil hydrological
processes were included in the present model. The DNDC model has been used worldwide
because of its simple parameter input and accurate simulation results. It was designated as
the preferred biogeochemical model in Asia by the International Symposium on Global
Change in the Asia-Pacific region in 2000 [26]. The DNDC model has good adaptability in
China [27,28], but studies on predicting SOC dynamics in paddy soil under water-saving
irrigation and water-carbon coupling based on future climatic conditions are few. Therefore,
the present study improved the irrigation module of DNDC95, which is the latest version
of the DNDC model, to realize simulation of paddy fields under controlled irrigation and
to optimize the irrigation module of paddy fields in the model on the basis of experimental
data. More detail can be found in the Supplementary Materials.

2.4.2. Input Data

Daily meteorological data, soil properties, and agricultural management measures
were collected to support DNDC simulation. Soil physical and chemical properties, in-
cluding initial soil C and N content, texture, and field capacity, were obtained through
field sampling and laboratory analysis. The value of SOC at surface soil (0–10 cm) used
as an input to the model was based on a measured total SOC value (11.1 g C kg−1). The
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contents of TN, NH4
+-N, and NO3

−-N served as a pre-fertilization input value of DNDC.
Agricultural management measures were obtained on the basis of field records and local
farmers’ habits. The meteorological data used in this paper were as follows: historical
meteorological observation data and GCMs from the Meteorological Information Center
of China Meteorological Administration (http://data.cma.gov.cn/). Data included the
daily maximum temperature, minimum temperature, radiation, wind speed, and precip-
itation. The future climate projections were acquired from four GCMs participating in
the Coupled Model Intercomparison Project (CMIP5) experiment, including BCC-CSM1.1
(m), MIROC-ESM-CHEM, GFDL-ESM2M, and HadGEM2-ES (Table 3) [24,29]. In accor-
dance with the new emissions scenarios proposed by CMIP5, representative concentration
pathways (RCPs) and four climate scenarios, RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5,
were selected. RCP 2.6 is a low peak-and-decay scenario (the radiation force reaches its
maximum near the middle of the 21st century before falling to 2.6 W m−2), RCP 8.5 is a
high-emissions scenario (the radiation force rises to 8.5 W m−2 by 2100), and RCP 6.0 and
RCP 4.5 are two intermediate scenarios (with a radiation force stability in 6.0 W m−2 and
2.6 W m−2, respectively, by 2100).

Table 3. Four general climate models used in this study.

Institutions Models Approximate Atmospheric Resolution

Beijing Climate Center, China Meteorological Administration BCC-CSM1.1 (m) 1.125◦ × 1.125◦

Japan Agency for Marine-Earth Science and Technology 1 MIROC-ESM-CHEM 2.8125◦ × 2.8125◦

Geophysical Fluid Dynamics Laboratory GFDL-ESM2M 2.5◦ × 2◦

Met Office Hadley Center HadGEM2-ES 1.875◦ × 1.24◦

1: Atmosphere and Ocean Research Institute (The University of Tokyo) and National Institute of Environmental Studies.

2.4.3. BMA Method

As an advanced statistical method based on Bayesian theory and in consideration
of model uncertainty, BMA has been proposed to combine multiple climate models to
provide good performance models with high weights. BMA has been widely used in
multimodel ensemble predictions of future climate. Therefore, four future climate models
were predicted using the BMA weighted set in the present study and estimated on the
basis of two statistical downscaling methods: back-propagation neural network and Statis-
tical Downscaling Model (SDSM) developed by Wilby et al. [30,31]. Their mathematical
expressions are as follows [24]:

Assume that y is the prediction variable, and its posterior distribution is as follows:

p(y| f1, f2, . . . , fk, D) =
K

∑
k=1

p(y| fk, D)p( fk|D) (1)

On the premise of satisfying the minimum mean squared error, the combined predic-
tion formula on the basis of the basic principle of Bayesian theorem is as follows:

EBMA(y|D) =
K

∑
k=1

p( fk|D)E[pk(y| fk, D)] =
K

∑
k=1

ωk, fk (2)

where p(fk|D) denotes the posterior probability that model fk is correct given the training
data and is calculated with Bayes’ theory; p(y|fk, D), estimated from the training data, is
the predictive probability density function based on model y|fk alone; and k is the number
of models being combined, which is equal to four in this study. This formula uses the
posterior probability p(fk|D) of the model as the weight for all possible model predictions
E(D|fk, D) and obtains the combined predicted value.

Based on the field experimental data, we modified and verified the DNDC model to
simulate soil organic carbon in paddy fields under different water and carbon management
systems. The controlled irrigation module was added to the irrigation module of DNDC to

http://data.cma.gov.cn/
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realize the simulation of paddy fields under controlled irrigation. Then, combined with the
climate model and climate scenarios after the BMA-weighted average, the simulation of
SOC and rice yield under the corresponding water and carbon management systems in the
next 80 years was conducted.

2.5. Data Analysis

Validation of the model results in the current study mainly included the average
deviation method, correlation coefficient method, relative error method, and root mean
squared method [32]. The absolute root mean squared error (RMSEa), normalized root mean
squared error (RMSEn), coefficient of model efficiency (EF), and coefficient of determination
(R2) were used to quantitatively assess the goodness-of-fit between the simulated results
and measured (observed) results. Their mathematical expressions are as follows:

EF = 1−

n
∑

i=1
(SMi −OBSi)

2

n
∑

i=1
(OBSi −OBS)

2 (3)

EF = 1−

n
∑

i=1
(SMi −OBSi)

2

n
∑

i=1
(OBSi −OBS)

2 (4)

RMSEn =
100× RMSEa

OBSavg
(5)

R2 = (

n
∑

i=1
(OBSi −OBSavg)(SMi − SMavg)√

n
∑

i=1
(OBSi −OBSavg)

2 n
∑

i=1
(SMi − SMavg)

2
)2 (6)

where OBSi is the observed value, OBSavg is the average observed value, SMi is the sim-
ulated value, SMavg is the average simulated value, and n is the sample size. Higher R2

and lower RMSEn indicated a good fit between the simulated and observed data. The
smaller the RMSEn value is, the higher the fitting degree between the simulated value
and the observed value. A value less than 10% indicates good consistency between the
simulated value and the observed value. The results between 10% and 20% indicate an
ordinary simulation effect, and a value higher than 30% indicates an unsatisfactory simula-
tion effect [33,34]. The Taylor diagram is a polar-style graph, which summarizes the three
statistical indices, i.e., the correlation coefficient between simulations and observations (R),
the root mean squared error (RMSE), and the standard deviation (STD) using a single point.
Given its comprehensiveness and visibility, Taylor diagrams are particularly beneficial
in evaluating the relative accuracy of the different models. The radial distance from the
origin reflects STD, the cosine of the azimuth angle denotes R, and the radial distance from
the observed points is proportional to the RMSE difference. A main criterion can usually
be summarized: the closer a point is to the observed data, the better the fit between the
observed and simulated data [35].

Origin 9.1 software (OriginLab Corporation, Northampton, MA, USA) and MATLAB
2017 (MathWorks Corporation, USA) were used to calculate data and construct the relevant
charts. Statistical analysis was carried out using standard procedures on a randomized plot
design (SPSS 22.0). Significance was calculated on the basis of a Least significant difference
(LSD) test at the 0.05 probability level.
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The Mann–Kendall trend test, which we used in this study based on MATLAB 2017,
is one of the widely used distribution-free tests of trend in time series. A standard normal
variate Z is calculated as follows:

Z =


S−1√
Var(S)

, S > 0

0, S = 0
S+1√
Var(S)

, S < 0

 (7)

UFk =
Sk − E(Sk)√

Var(Sk)
, k = 1, 2, . . . , n (8)

UBk =

{
−UFk, k = n, n− 1, . . . , 1

0, k = 1

}
(9)

In a two-sided test for the trend, the null hypothesis of no trend is rejected if |Z| > Zα/2
where α is the significance. The calculation method of Var(S) and S can be found in the
literature [36], where Z > 0 indicates an upward trend and Z < 0 indicates a downward trend.
In addition, UF is the standardized result of S, which is a statistical sequence calculated in
time sequence and obeys normal distribution, while UB is repeatedly calculated in reverse
chronological order.

3. Results
3.1. Model Modification and Validation
3.1.1. Model Modification

On the basis of the source code of DNDC95, this study improved the module on paddy
field flooding in the farmland management menu. The two methods for the original water
management module are the following: continuous flooding (water level is maintained at
10 cm) and alternative irrigation (water level fluctuates between −5 to 5 cm). The problems
in the model were solved by improving the following three aspects: (1) the 50-cm constant
soil layer assumed in the original DNDC model was adjusted to a value that varied with
the depth of the rice root layer; (2) the fluctuation range of the water level was adjusted in
accordance with the upper and lower limits of irrigation water controlled by soil moisture
content; and (3) the upper and lower limits of irrigation with controlled irrigation were
changed with the rice growth period, controlled irrigation with rice growth period was
implemented, and the corresponding parameters were adjusted. Controlled irrigation was
monitored in accordance with the soil moisture and water layer indicators in Table 2. The
amount of irrigation water simulated by DNDC under controlled irrigation and traditional
flooding irrigation after the modification was consistent with the observed irrigation
water amount (Table 4). Additionally, crop parameters were calibrated in this study. The
maximum crop yield, biomass allocation, and C/N ratio of the crops were modified on
the basis of the observed results, and some internal parameters were modified to simulate
actual conditions in the field. For example, the chromic acid wet oxidation method [37]
and the Kjeldahl method [38] were used to estimate the total carbon nitrogen ratio of stems,
leaves, and grains at the heading and maturing stages of Nanging 46. The total C/N ratios
used for model correction were 55 for the root, 75 for the stem and leaf, and 75 for the
grain. The maximum biomass production of grain was modified to 4700 kg C ha−1 to stay
consistent with our observed data.
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Table 4. Comparison of observed and simulated irrigation values of the Denitrification Decomposi-
tion (DNDC) model simulation.

Year Treatments Observed/mm Simulated/mm RMSEn

2015 Controlled irrigation 356.93 346.03 3.08
Flood irrigation 812.11 789.10

2016 Controlled irrigation 456.43 468.14 3.77
Flood irrigation 954.78 919.01

Notes: Observed and simulated denote the observed irrigation amount and the simulated irrigation
amount, respectively.

3.1.2. Model Calibration and Validation
Model Calibration

The comparisons of DOC and SOC measured values and simulated values in the test
area in 2015 are shown in Figures 2 and 3. The dynamic changes in SOC and DOC in
paddy soil under different water and carbon management systems in one year were well
fitted through the modified DNDC model. The simulated values were consistent with
the observed values. Tables 5 and 6 reflect the evaluation results of the SOC and DOC
simulation values, respectively. The RMSEa values of the SOC and DOC simulations were
0.35–1.62 g kg−1 and 23.63–38.49 mg kg−1, respectively. The RMSEn values of the SOC
and DOC simulations were 3.54–17.59% and 8.79–13.93%, respectively. The regression
coefficient R2 of DOC was 0.80–0.99, and the EF values of SOC and DOC were close to 1.
The SOC regression coefficients of the partial treatments (FS and FO) were closer to 1, which
indicated that the modified DNDC model can accurately simulate the effects of different
water and carbon management systems on SOC and DOC dynamics in paddy soil.
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Figure 2. Simulation of dissolved organic carbon (DOC) (0–10 cm soil) change in each treat-
ment during the calibration period (2015), where (a–f) present the CS, FS, CO, FO, CF, and FF
treatments, respectively.
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Figure 3. Simulation of soil organic carbon (SOC) change in each treatment during the calibration
period (2015), where (a–f) present the CS, FS, CO, FO, CF, and FF treatments, respectively.

Table 5. Estimation of SOC results for each treatment by using the modified DNDC model during the calibration period
(units of SOC: g kg−1).

Variable Treatments N Xobs(SD) Xsim(SD) P(t*) α β R2 RMSEα RMSEn EF

SOC CF 6 10.31(0.30) 10.94(0.27) 0.03 1.37 2.90 0.86 0.78 7.11 0.91
0–10 cm CS 6 11.44(0.87) 11.49(0.30) 0.89 * 0.19 10.20 0.72 0.71 6.19 1.00

CO 6 12.34(1.04) 11.97(0.39) 0.49 * 0.36 7.67 0.74 1.16 9.73 0.99
FF 6 10.89(0.58) 11.15(0.34) 0.34 * 0.25 9.04 0.81 0.59 5.31 1.00
FS 6 13.48(0.97) 12.69(0.30) 0.16 * 0.66 4.78 0.94 1.32 10.37 0.99
FO 6 12.70(0.83) 12.84(0.32) 0.71 * 0.46 7.16 0.89 0.80 6.24 1.00

SOC CF 6 8.95(0.79) 9.76(0.04) 0.07 * 0.09 9.03 0.82 0.35 3.54 0.98
10–20 cm CS 6 10.00(0.56) 10.04(0.05) 0.87 * 0.58 4.25 0.93 0.54 5.40 1.00

CO 6 10.95(1.00) 11.04(0.06) 0.09 * 0.02 9.78 0.87 1.34 13.39 0.99
FF 6 9.49(0.44) 9.85(0.04) 0.14 * −0.05 10.38 0.78 0.58 5.86 1.00
FS 6 11.41(0.86) 11.20(0.04) 0.61 * 0.02 10.94 0.84 0.87 7.74 0.99
FO 6 12.11(0.47) 11.20(0.04) 0.01 0.06 10.38 0.60 1.01 9.01 0.99

SOC CF 6 7.13(0.77) 7.13(0.04) 0.14 * 0.05 7.39 0.81 0.96 12.40 0.98
20–40 cm CS 6 8.51(0.28) 7.72(0.03) 0.01 −0.09 8.51 0.84 0.84 10.86 0.99

CO 6 7.60(0.52) 7.27(0.04) 0.24 * −0.06 7.67 0.59 0.65 8.88 0.99
FF 6 7.68(0.68) 7.78(0.03) 0.76 * −0.01 7.80 0.81 0.70 8.95 0.99
FS 6 10.12(1.31) 9.20(0.03) 0.19 * −0.02 9.41 0.62 1.62 17.59 0.97
FO 6 9.32(0.31) 9.20(0.03) 0.46 * −0.05 8.39 0.79 0.35 3.82 1.00

Notes: N is the number of samples; Xobs is the average observed value; Xsim is the average simulated value; SD is standard deviation;
P(t*) is t-test significance; α and β are the slope and intercept of the linear correlation between simulated values and observed values,
respectively; and R2 is the coefficient of determination between the simulated value and the observed value. In P(t*), * means that the
difference between the simulated value and the observed value is not significant and that the credibility is 95%.
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Table 6. Evaluation of DOC simulation results of each treatment by using a modified DNDC model during the calibration
period and verification period (units of DOC: mg kg−1).

Period Treatments N Xobs(SD) Xsim(SD) P(t*) α β R2 RMSEα RMSEn EF

Calibration CF 6 253.43(41.85) 268.65(55.03) 0.83 * 0.80 63.48 0.82 23.63 8.79 0.68
2015 CS 6 294.48(47.33) 291.55(76.59) 0.47 * 1.49 −146.39 0.84 38.12 13.08 0.59

CO 6 300.76(82.01) 276.36(72.57) 0.13 * 0.83 28.02 0.86 38.49 13.93 0.78
FF 6 261.05(66.19) 244.55(67.47) 0.26 * 0.92 3.10 0.82 33.19 13.57 0.75
FS 6 259.38(53.43) 270.43(76.00) 0.36 * 1.41 −94.33 0.98 26.90 9.95 0.75
FO 6 287.82(78.81) 280.93(70.41) 0.62 * 0.83 41.88 0.86 29.98 10.67 0.86

Validation CF 6 217.12(43.39) 228.97(49.39) 0.14 * 1.09 −6.69 0.84 19.37 8.46 0.80
2016 CS 6 189.72(50.10) 201.27(75.88) 0.40 * 1.49 −82.10 0.97 30.06 14.94 0.64

CO 6 222.98(68.81) 232.05(85.68) 0.42 * 1.22 −39.77 0.96 24.77 10.67 0.87
FF 6 181.52(43.42) 168.36(55.57) 0.30 * 1.15 −39.69 0.80 28.73 17.06 0.56
FS 6 174.99(45.67) 172.98(46.78) 0.38 * 1.02 −5.48 0.99 4.92 2.84 0.99
FO 6 176.29(52.26) 176.92(52.97) 0.91 * 0.99 3.01 0.95 12.22 6.91 0.95

Notes: N is the number of samples; Xobs is the average observed value; Xsim is the average simulated value; SD is standard deviation;
P(t*) is t-test significance; α and β are the slope and intercept of the linear correlation between simulated values and observed values,
respectively; and R2 is the coefficient of determination between the simulated value and the observed value. In P(t*), * means that the
difference between the simulated value and the observed value is not significant and that the credibility is 95%.

Validation of Model Parameters

This study validated the modified DNDC model with 2016 data. The comparison
between the simulated and observed values of DOC and SOC with different treatments
during the verification period is shown in Figures 4 and 5. In most cases, the modified
DNDC model with calibration parameters can simulate the dynamics of DOC and SOC in
paddy fields under different water and carbon management systems. On the time scale of
one year, DOC in paddy fields clearly changed with time, showing an increasing first and
then decreasing trend, whereas the SOC content had a negligible change. In addition, the
vertical distribution of SOC in paddy fields under different water and carbon management
systems was relatively consistent. The SOC in the paddy field decreased as the soil depth
increased, and the SOC fluctuation of 0–10 cm was larger than the SOC fluctuations of
10–20 cm and 20–40 cm. These results were essentially consistent with those of previous
studies [39]. The results (Figure 6) showed that the simulated values of rice yield under
different water and carbon treatments in the calibration and verification periods were close
to the observed data, that is, to the line 1:1.

Comparison of Observed and Simulated Values

The parameter evaluation results for DOC (Table 6) and SOC (Table 7) in paddy fields
simulated by the modified DNDC model showed the relationship between the simulated
and observed values. RMSEa and RMSEn were small, indicating that the simulation was
good. The model verification results indicated that irrigation and fertilization management
had a great impact on SOC and DOC in paddy fields. Irrigation affected the dynamics
of SOC and DOC. SOC under controlled irrigation was lower than that under flooding
irrigation, but DOC was higher. Controlled irrigation is beneficial to the oxidative de-
composition of paddy soil, which may be the cause of this phenomenon. In addition, the
SOC contents of the organic fertilizer and straw returning treatments were significantly
higher than the SOC content of the conventional fertilizer treatment, indicating that the
appropriate fertilization method was beneficial to SOC accumulation in paddy fields.
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Figure 4. Simulation of DOC (0–10 cm soil) dynamics in each treatment during the verification period
(2016), where (a–f) present the CS, FS, CO, FO, CF, and FF treatments, respectively.
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Figure 5. Simulation of SOC changes in each treatment during the verification period (2016), where
(a–f) present the CS, FS, CO, FO, CF, and FF treatments, respectively.
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Figure 6. Simulation of yield changes in each treatment during the validation period (2015) and calibration period (2016):
the solid line is a 1:1 relationship.

Table 7. Evaluation of SOC simulation results of each treatment by using modified DNDC model during the verification
period (units of SOC: g kg−1).

Variable Treatments N Xobs(SD) Xsim(SD) P(t*) α β R2 RMSEα RMSEn EF

SOC CF 6 11.46(0.87) 11.40(0.29) 0.88 * 0.05 10.69 0.97 0.88 7.72 0.90
0–10 cm CS 6 11.02(0.59) 11.58(0.54) 0.05 * 0.57 10.00 0.76 0.75 6.46 0.84

CO 6 13.69(0.78) 12.35(0.38) 0.01 0.35 10.83 0.62 1.45 11.77 0.83
FF 6 10.88(0.15) 11.11(0.25) 0.09 * 0.52 5.58 0.85 0.34 3.09 0.92
FS 6 12.96(0.81) 12.35(0.24) 0.16 * 0.82 13.37 0.84 1.02 8.26 0.56
FO 6 13.18(0.60) 12.56(0.19) 0.10 * 0.09 11.38 0.87 0.93 7.37 0.87

SOC CF 6 8.76(0.08) 9.01(0.05) 0.01 −0.25 11.75 0.80 0.28 3.10 0.89
10–20 cm CS 6 9.28(0.45) 9.61(0.39) 0.01 0.82 2.00 0.87 0.37 3.83 0.93

CO 6 10.56(1.23) 10.41(0.05) 0.79 * 0.02 10.18 0.82 1.21 11.67 0.83
FF 6 10.10(0.50) 10.24(0.37) 0.69 * −0.29 17.17 0.73 0.75 7.30 0.83
FS 6 11.45(0.33) 11.13(0.03) 0.09 * −0.02 11.41 0.87 0.46 4.16 0.93
FO 6 10.78(0.36) 11.22(0.03) 0.04 0.01 11.21 0.81 0.57 5.09 0.87

SOC CF 6 7.48(0.34) 7.66(0.10) 0.33 * −0.08 8.40 0.73 0.42 5.43 1.00
20–40 cm CS 6 8.04(0.52) 7.91(0.02) 0.61 * 0.02 7.78 0.84 0.53 6.66 1.00

CO 6 8.83(0.63) 7.92(0.02) 0.02 0.02 7.76 0.67 1.10 13.83 0.98
FF 6 8.55(0.77) 8.70(0.62) 0.25 * 0.77 2.25 0.91 0.30 3.42 −1.16
FS 6 9.70(0.07) 9.42(0.03) 0.00 −0.12 10.83 0.99 0.29 3.03 1.00
FO 6 9.08(4.07) 9.14(0.03) 0.80 * −0.03 9.40 0.84 0.49 5.37 1.00

Notes: N is the number of samples; Xobs is the average observed value; Xsim is the average simulated value; SD is standard deviation;
P(t*) is t-test significance; α and β are the slope and intercept of the linear correlation between simulated values and observed values,
respectively; and R2 is the coefficient of determination between the simulated value and the observed value. In P(t*), * means that the
difference between the simulated value and the observed value is not significant and that the credibility is 95%.

3.2. Projection of SOC and Rice Yield in Paddy Fields Based on BMA and Modified DNDC
3.2.1. BMA Method Evaluation of Predicted Values of Meteorological Parameters Required
by DNDC

Different GCMs should be combined to provide detailed and accurate climate data
in the context of climate change. In the present study, four GCMs processed by BMA
were used to obtain four climate variables as required by the modified DNDC model:
maximum temperature, minimum temperature, wind speed, and radiation (Figure 7). The
performance of the BMA ensemble multi-model to predict future climate variations was
evaluated with a Taylor chart (Figure 8). Numerous studies have shown that the prediction
effect of BMA parameters is improved by extending the model training time [40,41]. This
study used 40 years (1961–2000) to train BMA weights, and current and future climate
parameters were generated in the remaining stages (2001–2099). The comparison between
simulated and observed precipitation values in 2015 and 2016 treated by BMA is shown
in Figure 9. In the calibration and verification period of the model, the simulated and
the observed rainfall values treated by BMA had a good fitting effect. The simulated
precipitation value and the observed value were relatively close except for the slightest
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occurrence of a peak value. In Figure 7, the meteorological parameters generated by BMA
were more consistent on the daily scale than at other scales measured by any single model.
Figure 8 shows the relative accuracy of the model with a Taylor diagram. The results
of the BMA method (point E) were closer to the points marked “observed” than to the
data measured by any single model (points A, B, C, and D). Thus, BMA exhibited a good
correlation and small RMSE. Except for the analog value matching the effect of wind speed,
which was slightly poor (even if R of the BMA method was also approximately 0.7), the
prediction of the other meteorological factors was good.
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Figure 7. Time series of daily mean maximum temperature (a), minimum temperature (b), wind speed (c), and radia-
tion (d) from 2012 to 2016: observed is the measured value, and BCC-CSM1.1 (m), GFDL-ESM2M, HadGEM2-ES, and
MIROC2SM-CHEM represent the four climate models in Table 2, respectively. BMA (Bayesian Model Averaging) represents
the value after BMA-weighted average.
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Figure 8. Taylor diagrams for meteorological factors in Kunshan, 2012–2016: this diagram is a comparison between the
projected and measured values of four meteorological parameters required by a modified DNDC model. The four figures
are as follows: (a) maximum temperature, (b) minimum temperature, (c) wind speed, and (d) radiation. Observed is the
observed value, A is BCC-CSM1.1 (m), B is GFDL-ESM2M, C is HadGEM2-ES, D is MIROC-3SM-CHEM, and E is the
BMA-weighted value.
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Figure 9. Comparison of simulated and actual precipitation values in 2015 (a) and 2016 (b) treated by BMA.
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3.2.2. SOC Dynamics Prediction in Paddy Fields under Water and Carbon Regulation in
Future Climate Conditions

On the basis of the modified DNDC model and the BMA method, this study predicted
the SOC changes (0–10 cm) in paddy fields under four climate scenarios (i.e., RCP 2.6,
RCP 4.5, RCP 6.0, and RCP 8.5) over the next 80 years (2020–2099), as shown in Figure 10.
The average predicted SOC under different climate scenarios consistently occurred in
the following order FO > CO > FS > CS > FF > CF. The trend lines of the SOC change
in paddy fields under the four climate scenarios were estimated via linear square fitting
(Figure 10). This trend indicated that the effect of fertilizer management on SOC changes
in paddy fields over the long term was very large in the four scenarios. To some extent,
this phenomenon explained the similar results found for the different climate scenarios,
i.e., the SOC of the CF and FF treatments decreased with prolonged time, while the CS,
CO, FS, and FO treatments showed an increasing trend with an extended time. Fertilizer
management obviously affected the long-term trend of SOC in paddy fields under the same
irrigation treatment. Irrigation had a certain impact on SOC in paddy fields over a short
time, but only a negligible difference was observed over the long term. The overall trend
in the SOC changes in paddy fields under flooding irrigation and controlled irrigation
treatments was consistent and showed that SOC decreased in the conventional fertilizer
treatment and increased in the treatment with organic fertilizer and straw application.
In comparison with that in the 2020s, in the 2090s, the average values of the CF and FF
treatments decreased by 4.98%, 5.86%, 6.07%, and 7.49% in the RCP 2.6, RCP 4.5, RCP 6.0,
and RCP 8.5 scenarios, respectively, while the average values of the other treatments in the
2090s increased by 102.97%, 99.68%, 99.57%, and 97.54%, respectively. In addition, in the
first 5 years, the CS and CO treatments showed an unexpected downward trend and then
increased rapidly, which was different from the results of the model verification period.
This may have been due to the frequent alternation of drying and wetting under controlled
irrigation conditions, which promoted soil respiration. Therefore, the SOC of paddy fields
decreased in the short term, while the long-term application of organic fertilizer and straw
application can offset this carbon loss effect. However, the SOC of the organic fertilizer
treatment under the RCP 4.5 and RCP 6.0 scenarios increased in 2100, which were because
both the low peak attenuation and high emissions scenarios were not conducive to the
accumulation of SOC in paddy fields.Sustainability 2021, 13, x FOR PEER REVIEW 17 of 26  
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Figure 10. Prediction of SOC change in paddy fields with different treatments in the next 80 years un-
der different climate scenarios (0–10 cm): the dashed lines in different colors in the figure correspond
to the corresponding trend lines, and each trend line was derived from a series of annual values. The
annual SOC is the final content at the end of the growth period of each treatment in the next 80 years.
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In Table 8, the dynamics of SOC every 10 years under different treatments in the next
80 years is reflected by the RCP 2.6 scenario as an example. The results showed that the SOC
of the conventional fertilizer treatment decreased rapidly in the first 10 years but gradually
flattened. The soil organic carbon levels in the CF and FF treatments decreased by 14.18%
and 13.50%, respectively. The SOC of the CS treatment abnormally decreased by 8.13%
and increased rapidly. The effect of climate scenario on the SOC in paddy fields was not
obvious (Figure 11). The SOC of the organic fertilizer treatment under the various climate
scenarios increased with time. Compared with that under baseline conditions (2020), the
SOC in the CO treatment under RCP 2.6 increased from 45.89% in 2040 to 149.39% in 2080
and the SOC in the CS treatment under RCP 4.5 increased from 3.07% in 2040 to 41.05% in
2080. In addition, the decline in the SOC in the CF and FF treatments was the largest in the
first 20 years and remained unchanged.

Table 8. Changes in the SOC of paddy fields with different treatment in the next 80 years under the
RCP 2.6 scenario.

Period CF CO CS FF FO FS

2020–2029 −14.18% 13.97% −8.13% −13.50% 18.86% 6.26%
2030–2039 −0.74% 24.33% 10.15% −3.18% 19.04% 8.74%
2040–2049 4.22% 19.66% 12.47% 5.17% 17.96% 8.36%
2050–2059 0.79% 13.70% 7.67% 0.41% 12.21% 5.36%
2060–2069 0.57% 10.85% 6.61% 0.21% 9.68% 4.66%
2070–2079 0.46% 8.88% 5.07% −0.04% 7.81% 3.67%
2080–2089 0.66% 6.99% 5.63% 2.04% 6.96% 4.40%
2090–2099 0.71% 6.07% 4.26% 0.11% 5.44% 3.02%

Notes: The values above denote simulated SOC change every 10 years (compared with the baseline 10 years ago)
of the CF, CO, CS, FF, FO, and FS treatments in the 2020s, 2030s, 2040s, 2050s, 2060s, 2070s, 2080s, and 2090s.

3.2.3. Projection of Rice Yield Changes

On the basis of the modified DNDC model and BMA method, we predicted rice yield
changes under different water and carbon management systems over the next 80 years
under four climate scenarios (Figure 12). The relationship between the different treatments
was essentially the same under various climate scenarios, which showed that the rice yield
of the CS treatment was the highest and that of the CF treatment was the lowest. Thus, the
long-term return of straw can significantly promote an increase in rice yield. Similar to the
regulation of water and carbon regulation of SOC dynamics in paddy fields, irrigation and
carbon management both affected the yield under the same climate conditions while the
combination of appropriate fertilization and controlled irrigation evidently increased rice
yield. The rice yield in the CS and CO treatments in most cases was higher than that in
the FS and FO treatments. This study provides a trend line of each rice yield with time
(Figure 12). Overall, the rice yields of the different treatments have good synchronization
and almost simultaneously changed at different stages of the 21st century. In comparison
with that in the 2020s, the average rice yield of each treatment in the 2090s decreased by
18.41%, 38.59%, 65.11%, and 65.62% in RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, respectively.
In addition, the climate scenarios resulted in clear effects on rice yields under the same
water and carbon management mode. The rice yield tended to increase in the first 20 years
as the radiative force increased. However, under the high emissions scenario of RCP 8.5,
the rice yield of the CS treatment initially remained unchanged but declined rapidly with
increased time. Taking RCP 2.6 as an example, the results of the Mann–Kendall trend
test [42] are shown in Figure 13. The yields of the CF and FF treatments increased in
2020–2023 and 2087 (UF > 0), while the UF values of the CO, CS, FO, and FS treatments
were less than zero within the 95% confidence interval, except for the increase in 2020–2023,
which indicated that maintaining rice yield via excessive carbon input might be difficult
to sustain.
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Figure 11. SOC in different treatments in four climate scenarios, where (a–f) present the CS, FS, CO, FO, CF, and FF
treatments, respectively: the red, blue, and black lines represent the changes of SOC in paddy soil in 2040, 2060, and
2080, respectively, compared with the baseline (2020). The horizontal and vertical coordinates are the percentage values of
the changes.
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Figure 12. Prediction of rice yield change under different climate scenarios and treatments in the
next 80 years: the trend lines in black, red, and blue in the figure represent conventional fertilizer
treatment, organic fertilizer treatment, and straw returning treatment, respectively, while the solid
and dotted lines represent conventional irrigation and controlled irrigation.
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4. Discussion
4.1. Performance of the Modified DNDC Model and Limitations

The default parameters of the DNDC model did not meet the needs of simulating
SOC dynamic changes [23], and the model should be calibrated to reduce uncertainties
in new systems or environments [20]. The results of this study showed that the modi-
fied DNDC model had good adaptability to SOC and yield simulation of paddy fields
in the Kunshan area. The modified DNDC model successfully predicted the irrigation
situation under water-saving irrigation and flood irrigation, and the effects of different
irrigation and fertilization conditions on the SOC, DOC, and rice yield in paddy fields can
be simulated. In addition, current research has mainly focused on water consumption and
water use efficiency [43] and less on the effect of climate change on SOC in rice fields, and
climate factors, such as temperature and precipitation, are important driving forces in SOC
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change [44], which have a far-reaching impact on agricultural production [9]. In this study,
SOC prediction and rice yield were based on the modified DNDC model, local irrigation,
fertilization management, and four GCMs integrated with BMA. The results weighted by
BMA were closer to the observed points than to any single model in the Taylor diagram;
thus, integrating multiple climate models with BMA is reliable, which is consistent with
the results of Wang et al. [24]. Interpretation based on the single model was one of the
limitations of this study. The uncertainty could be reduced by the method of multi-model
ensemble [45]. In addition, it is desirable to calibrate the model results with data from more
sites and long-term series of observed data under different water and carbon management.

4.2. Effects of Water and Carbon Management Systems on SOC in Paddy Fields and Rice Yield

The present study found that the combination of irrigation and fertilization patterns
can markedly increase SOC and rice yield, which was consistent with the findings of
Kamoni et al. [46]. This result may be due to irrigation improving the availability of
soil N, thereby increasing productivity. The mechanism of the effects of irrigation on
organic carbon remains unclear. Some studies have found that irrigation affects SOC
mineralization and transfer [47], while others found that waterlogging affects rice residue
input and the decomposition rate of SOC under anaerobic conditions, thus affecting SOC
accumulation [48]. For example, Kelliher et al. [49] found that irrigation reduced SOC
by 61%, while Houlbrooke et al. [50] found that irrigation had little effect on SOC, which
may be related to environmental conditions, soil development stages and types, irrigation
water quality, and years. This study found that the SOC of controlled irrigation paddy
fields was lower than that of fields with conventional irrigation, which may be due to
the frequent dry–wet alternation of controlled irrigation promoting microbial activities,
increased soil fertility, and soil respiration, thus increasing soil carbon loss [51]; this finding
is different from the results of Zhao et al. [52]. Zhao et al. found that optimized irrigation
and fertilization treatments increased SOC in the North China Plain, which may be related
to the retention of residue in the experiment every year. In addition, the present study
found that controlled irrigation reduced the SOC of paddy fields while reducing irrigation
water; the SOC content evidently increased after the combination of irrigation with straw
returning or application of organic fertilizer. Thus, applying organic fertilizer or straw
returning under controlled irrigation conditions can reduce the water footprint while
addressing SOC. Combining controlled irrigation with organic fertilizer and returning
straw to the fields, which is a feasible alternative water and carbon management mode,
saved a large amount of water resources and increased rice yield and SOC content.

The dynamics of SOC in paddy fields are the net result of organic matter input and
output. Irrigation schedules and fertilization affect soil organic carbon in paddy fields by
changing the input of energy or material [53]. SOC dynamics are difficult to measure in
the short term. This process-based model is a good tool for predicting future trends. The
results of long-term simulation of the SOC changes in paddy fields under different water
and carbon management systems (Figure 10) showed that the combination of controlled
irrigation and suitable organic fertilizer application is a satisfactory water and carbon
regulation mode. SOC growth was rapid, and yield was maintained at a high level with
prolonged time. In addition, fertilizer management has a considerable impact on the long-
term evolution of SOC on farmlands, which was consistent with the results of previous
studies. For example, Wan et al. and Wang et al. [40,54] found through model research
that an SOC of 0–30 cm on farmland in China would decrease to 7.8–8.2 t ha−1 in 2080
without fertilizer management but would increase markedly if organic fertilizer or straw
was applied to the field. This study found a synergistic relationship between SOC content
and rice yield, and rice yield was high in the treatments with high SOC content, such as
the CS and CO treatments, which was similar to the conclusion of Qiu et al. [55].
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4.3. Effects of Climate Scenarios on SOC and Rice Yield in Paddy Fields and
Possible Countermeasures

Impacts in climate scenarios have a considerable impact on rice yield, but their effect
on SOC is less than that of agricultural management measures, which may be because
climate change affects the decomposition of SOC, while agricultural management measures
affect the soil carbon input quantity [56]; excessive carbon input may mask the impact of
SOC decomposition. Additionally, the change in SOC was negatively correlated with initial
SOC concentrations [57], and a high carbon input and low initial SOC would increase
the pool of soil carbon. Conversely, the conversion of excessive carbon input into soil
may offset the carbon loss caused by soil respiration, which explains to some extent why
climate scenario impacts have a negligible effect on SOC changes in paddy fields. Unlike
the current conclusion that fertilization can maintain high rice yields over the long term,
although excessive fertilization can maintain high rice yields in the short term under
future climate conditions, rice yields may still decrease in the long term (Figure 12). This
phenomenon is attributed to the decline in rice yield caused by high temperatures and
water stress that may have exceeded the impacts of promotion by fertilizer. The SOC of
the controlled irrigation treatment increased rapidly in the late period but decreased in
2025, 2040, and 2083 in all treatments. This result may have been caused by the impact of
climate conditions in such years. The average rice yields in all the treatments after 80 years
decreased under the RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 scenarios by 18.41%, 38.59%,
65.11%, and 65.62%, respectively, compared with that in the baseline treatment (2020). In
addition, previous studies [58] found that a variety of improvements can offset the decline
in rice yield caused by climate warming, which might be a possible strategy to address
climate change in the future.

Overall, paddy fields play a significant role in mitigating climate change through
carbon sequestration, but the impact of different climate scenarios on SOC changes in paddy
fields is less obvious than that of water and carbon management measures. Yu et al. [56]
found that maintaining existing farmland management measures can maintain China’s
paddy soil carbon sequestration potential over the next 20–40 years; however, this result
depends on long-term continuation of the current excessive carbon input management,
which is closely related to the current policy of vigorously promoting and subsidizing
straw returning and organic fertilizer application in China [59]. In accordance with the
report released by the agricultural sector, most crop residues were removed from farmlands
before the 1980s and used as fuel and animal feed in rural areas. This trend was reversed
by the government through a policy in the 1990s to encourage farmers to recycle crop
straw as much as possible, and the policy achieved considerable results [60]. At the
same time, farmers stopped using crop straw as fuel due to improvements in living
standards, which have caused serious environmental pollution in the past [61]. In addition,
unreasonable fertilization leads to soil degradation, water pollution, soil acidification, and
serious agricultural nonpoint source pollution [62]. Thus, how to promote straw returning
in many developing countries across the world and to reduce its pollution is the direction
of further study.

In addition, notably, in the future climate model, although water and carbon manage-
ment will increase production and carbon sequestration, whether it will increase GHGs
still needs further study. For example, excessive carbon input may increase greenhouse
gases, such as CO2 and CH4, while SOC changes are sensitive to CO2 concentrations. Thus,
the benefits of carbon sequestration may be offset. The predicted results showed that the
rice yields of all the treatments will decrease in the future, especially after the middle of the
21st century. Although the rice yield decreased under the coupling of controlled irrigation
with straw returning and organic fertilizer, the rice yield was always higher than that in
conventional fertilizer treatments. Thus, finding an appropriate amount of organic fertilizer
or straw application to balance carbon sequestration is necessary to increase production
and to reduce greenhouse gas emissions.
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5. Conclusions

This study modified the DNDC model to adapt to the common water-saving irrigation
mode in China, especially in the middle and lower reaches of the Yangtze River. The
parameters related to SOC and rice yield were calibrated. In addition, the dynamics of
SOC and rice yield in Kunshan over the next 80 years under different water and carbon
management were predicted on the basis of the four climate scenarios synthesized via the
BMA method. The results showed that the modified DNDC model had good adaptability
to the simulation of SOC and rice yield under different water and carbon management.
The RMSEn values of the SOC and DOC simulations were 3.45% to 17.59% and 8.79% to
13.93%, respectively. The R2 of DOC was between 0.80 and 0.99, and the model efficiency
coefficient EF values of SOC and DOC were all close to 1. In comparison to the single model,
the BMA method can better simulate the changes in climate factors. Climate scenarios
significantly affect rice yield, but their impact on SOC is less than agricultural management
measures. Unfavorable climate will reduce yields in the future climate in spite of long-term
over fertilization. Compared with traditional water and carbon management systems, the
combination of controlled irrigation and organic fertilizer application or straw returning
can obviously increase the SOC content and rice yield in the long-term simulation under
the four climate scenarios, and the yield of the straw-returning treatment was higher. The
SOC of controlled irrigation paddy fields was lower than that of conventional irrigation,
but only a negligible difference was observed over the long term. Therefore, combining
controlled irrigation and appropriate organic fertilizer can balance water conservation, can
maintain SOC and a stable rice yield in paddy fields, and is the recommended water and
carbon management system for paddy fields.

Supplementary Materials: The following are available online at https://www.mdpi.com/2071-105
0/13/2/568/s1, Figure S1: Structure of the DNDC model, Table S1: Input parameters required for
regional simulation with DNDC.
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BMA Bayesian Model Averaging
CMIP5 The fifth phase of the Coupled Model Intercomparison Project
CI Controlled irrigation
CF Controlled irrigation and farmer fertilizer practices
CO Controlled irrigation and organic fertilizer management
CS Controlled irrigation and straw returning
DNDC Denitrification-Decomposition model
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DOC Dissolved organic carbon, g kg−1

EF Coefficient of model efficiency
FI Flood irrigation
FF Flood irrigation and farmer fertilizer practices
FO Flood irrigation and organic fertilizer management
FS Flood irrigation and straw returning
FFP Farmer fertilizer practices
GCMs General Circulation Models
LSDs Least significant differences
R2 Coefficient of determination
RCPs Representative concentration pathways
RMSEa The absolute root mean squared error
RMSEn The relative root mean squared error
SDSM Statistical Downscaling Model
SOC Soil organic carbon, g kg−1

STD Standard deviation
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