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Abstract: Soil organic carbon (SOC) conservation in agricultural soils is vital for sustainable 

agricultural production and climate change mitigation. To project changes of SOC and rice yield 

under different water and carbon management in future climates, based on a two-year (2015 and 

2016) field test in Kunshan, China, the Denitrification Decomposition (DNDC) model was modified 

and validated and the soil moisture module of DNDC was improved to realize the simulation under 

conditions of water-saving irrigation. Four climate models under four representative concentration 

pathways (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5), which were integrated from the fifth phase of 

the Coupled Model Intercomparison Project (CMIP5), were ensembled by the Bayesian Model 

Averaging (BMA) method. The results showed that the modified DNDC model can effectively 

simulate changes in SOC, dissolved organic carbon (DOC), and rice yield under different irrigation 

and fertilizer management systems. The normalized root mean squared errors of the SOC and DOC 

were 3.45–17.59% and 8.79–13.93%, respectively. The model efficiency coefficients of SOC and DOC 

were close to 1. The climate scenarios had a great impact on rice yield, whereas the impact on SOC 

was less than that of agricultural management measures on SOC. The average rice yields of all the 

RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 scenarios in the 2090s decreased by 18.41%, 38.59%, 65.11%, 

and 65.62%, respectively, compared with those in the 2020s. The long-term effect of irrigation on 

the SOC content of paddy fields was minimal. The SOC of the paddy fields treated with 

conventional fertilizer decreased initially and then remained unchanged, while the other treatments 

increased obviously with time. The rice yields of all the treatments decreased with time. Compared 

with traditional management, controlled irrigation with straw returning clearly increased the SOC 

and rice yields of paddy fields. Thus, this water and carbon management system is recommended 

for paddy fields. 
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1. Introduction 

The carbon cycle is a popular topic in ecological research [1]. Soil organic carbon 

(SOC) is the largest carbon pool on the planet excluding the ocean’s and rock’s sediments; 

thus, small changes in SOC have a great impact on the atmosphere [2]. The carbon pool 

of the agro-ecosystem is one of the most active parts of the global carbon cycle, in which 

soil organic carbon storage in farmland accounts for 8–10% of that in all types of land [3]. 

The SOC in farmland is vulnerable to disturbances from human activities [4], but this SOC 

can be artificially regulated on a sho“”rt-time scale [5]. In addition, China has a total paddy 

soil area of 45.7 Mha, accounting for approximately one-fifth of the total cultivated land 

area in the world [6]. Thus, paddy fields have a considerable carbon sequestration 
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potential. At the same time, the dynamics of SOC in paddy fields are affected by many 

factors, such as temperature, precipitation, irrigation, and fertilization [7]. However, few 

studies on SOC changes in paddy fields have focused on the impact of coupling water-

saving irrigation and fertilizer management. In recent years, water-saving irrigation 

technology has been widely used in China and has changed the soil moisture status and 

organic carbon content. Thus, evaluating the impact of water and carbon management 

measures on the dynamic changes in SOC is important to maintaining agricultural 

productivity. 

Moreover, our understanding of climate change as an important factor affecting SOC 

and rice yield remains limited. Thus, improving our understanding of the impact of 

environmental change and field management on nutrient cycling and crop growth is 

necessary. Despite the growing importance of industry, agricultural production, as one of 

the most sensitive sectors to climate change [8], plays an important role in ensuring food 

security throughout the world, especially in China [9]. Rice paddies are an important 

source of both global food production and greenhouse gas (GHG) [10,11], and rice yield 

is extremely sensitive to agricultural measures, such as irrigation and fertilization [12]. At 

present, China’s sustainable agricultural development is facing challenges in maintaining 

optimal yields while mitigating environmental impacts [13,14]. Therefore, addressing 

climate change and optimizing management measures for paddy fields are problems that 

should be urgently resolved. 

The combination of process-based modeling and various experimental data provides 

opportunities for quantifying the impacts of different management practices and future 

climate change on soil C dynamics [15]. In fact, comprehensively and accurately 

evaluating SOC change is difficult due to the low speed of SOC dynamics and time-

consuming and laborious on-site sampling; thus, a calibration model is necessary. 

Agronomists and scientists have worked diligently in the past to devise and promote the 

use of agricultural practices that can maintain or increase SOC levels. With the continuous 

development of agricultural research methods in addition to physical sampling and 

analysis of soil profiles for SOC, dynamic modelling of SOC can be used to effectively 

monitor soil organic carbon storage under different agricultural management. Among the 

relatively mature related models, including CENTURY, denitrification and 

decomposition (DNDC), NCSOIL, and RothC, the DNDC model is widely used due to its 

simple parameter inputs and accurate result simulation. The DNDC model can 

satisfactorily simulate SOC conversion in paddy fields and crop growth under climate 

change [4]. 

Kunshan is located in the Tai-Lake region in the middle and low reaches of the 

Yangtze River paddy soil region of China, which is a typical rice production area in the 

country [16]. Many recent studies have revealed that the paddy soils in this area have high 

SOC sequestration potential [17,18]. Hence, combining the experimental data from 

Kunshan with that from the DNDC model is feasible. Although we are encouraged by the 

tests of and improvements in DNDC for crop yields and environmental impact estimation 

in the past two decades, the widespread application of this tool in China has several 

limitations [19]. For instance, the constant 50-cm soil depth leads to overestimation of soil 

water content [20]. In addition, some soil properties, such as bulk density, porosity, and 

hydraulic parameters are assumed to be constant across all layers (down to a depth of 50 

cm). However, most soil properties vary inherently between layers. Additionally, the 

traditional flood irrigation mode is the only irrigation mode for paddy fields, which 

makes it difficult to simulate the increasingly popularized water-saving irrigation mode. 

These factors may decrease the accuracy of irrigation simulation. 

Although the DNDC model has been improved and applied in China through a two-

decade effort, only four models exist for paddy fields under flood irrigation, namely, 

continuous flooding (the field water level is maintained at 10 cm), alternative wet and dry 

flooding (water level fluctuates between −5 to 5 cm), and rain-fed and empirical 

parameters. These four existing modes are inconsistent with the water-saving irrigation 
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model in China. In a previous study [21], DNDC was used to simulate methane emissions 

from paddy fields under medium-term drainage, intermittent irrigation, and continuous 

flooding. In contrast to the above irrigation methods, under the condition of controlled 

irrigation, which is widely applied in China, a shallow water layer is reserved on the 

surface of the field after transplanting seedlings until the regreening stage and the soil 

remains not flooded on the surface of the irrigation field in each subsequent growth stage, 

usually 60–80% of the time [22]. The irrigation time and irrigation amount were 

determined with the root-layer soil moisture as the control index. The existing model 

cannot simulate the controlled irrigation conditions. Thus, urgently modifying the DNDC 

model for paddy fields under water-saving irrigation is necessary to decrease site-specific 

suitability [23]. Given these problems, this research modified the 50-cm soil layer in the 

model to the depth of the root layer and controlled the upper and lower limits of paddy 

irrigation with soil moisture content. Additionally, the limits were modified in accordance 

with the needs of different growth stages of rice to adapt to the local water-saving 

irrigation mode. We hypothesized that crop growth and SOC dynamics could be 

simulated by improving the soil moisture module of this model. On this basis, the effects 

of different water and carbon management on SOC and rice yield in future climate 

conditions were studied. 

Interest is growing in terms of finding ways to simulate climate change by using 

General Circulation Models (GCMs), which is the main current approach to predict future 

climate change and its responses. Substantial progress in global and regional modeling at 

medium to high resolutions and in downscaling methods has provided the basis for an 

increasing number of studies that attempt to simulate the effect of future climate change 

[24]. Predicting the dynamic changes in SOC and rice yield in paddy fields in the future 

is important for formulating agricultural management measures to save water, to increase 

yield, and to promote sustainable development. We carried out this study on the basis of 

the modified DNDC model and four climate scenarios under four GCMs weighted by 

Bayesian model averaging (BMA). The objectives of the study are 1) to validate the 

relevant parameters and to simulate changes in SOC and rice yield in Kunshan for the 

next 80 years, and 2) to extend the paddy field irrigation module in the DNDC model to 

provide a theoretical basis for optimizing field management measures to cope with 

climate change. 

2. Materials and Methods 

2.1. Experimental Site 

The experiment was conducted in 2015 and 2016 at the State Key Laboratory of 

Hydrology-Water Resources and Hydraulic Engineering of Hohai University, Kunshan 

Irrigation and Drainage Experiment Station (31°15′15″N, 120°57′43″E), Jiangsu Province, 

China (Figure 1). The study area has a subtropical monsoon climate with a mean annual 

precipitation of 1097 mm, an average annual air temperature of 15.5 °C, a sunshine 

duration of 2086 h, and a frost-free period of 234 days·y−1. The locals are accustomed to a 

rotation of rice and wheat planting. The paddy soil is classified as a hydragric anthrosol, 

which has a heavy loam texture, with a bulk density of 1.32 g cm−3 at 0–30 cm and an initial 

pH of 7.4 at 0–18 cm. The organic matter is 21.71 g kg−1 for the top 0–18 cm layer, and total 

K, total P, and total N are 20.86, 1.40, and 1.79 g kg−1 for the 0–30 cm layer, respectively. 
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Figure 1. Location of the experimental station. 

2.2. Field Management 

The experiment was laid out (plot size 150 m2) in a randomized block design with six 

treatments in triplicate. The six treatments were a combination of irrigation and fertilizer 

management systems: the two irrigation managements regimes were flood irrigation (FI) 

and controlled irrigation (CI), and the three fertilizer managements were wheat straw 

returning (S), organic fertilizer management (O), and farmer fertilizer practices (FFP). The 

six treatments were FS (FI and S), FO (FI and O), FF (FI and FFP), CS (CI and S), CO (CI 

and O), and CF (CI and FFP), with a total of 18 cells. Rain-fed wheat was grown in the 

plots during the non-rice planting season. 

The rice variety in the experiment was Japonica Rice Nanging 46. Three or four 

seedlings per hill were transplanted in late June, with a plant spacing of 13.0 cm × 25.0 cm, 

and were harvested in late October. Local nitrogen (N) fertilizer was adopted in FFP 

(Table 1). The chemical fertilizer management of the S treatment was similar to that of the 

FFP treatment, and 3000 kg ha−1 of straw from the previous wheat crop (the organic carbon 

content of wheat straw was 441 g kg−1, while the C/N ratio was 50:1 and the organic carbon 

input through wheat straw was 1322 g kg−1) was returned to the S paddy fields both years. 

Additionally, 7500 kg ha−1 of well-decomposed chicken manure (23% moisture content, 

16.3 g kg−1 N, 261 g kg−1 organic carbon, 15.4 g kg−1 P2O5, and 20.7 g kg−1 K2O (Shijiazhuang 

Jitian Biotechnology Co., Ltd., China) was applied to the O paddy fields in 2015 and 2016. 

The base fertilizer and wheat straw were mixed into the muddy soil during tillage, and 

surface application was adopted for all other fertilizers. 

Table 1. Date and rate of nitrogen fertilization during the rice-growing season in farmer fertilizer 

practice (FFP) (kg N ha-1). 

Activity 2015 2016 

Base fertilizer (29 and 28 June) 155.2 (72.0CF+83.2AB) 72.0 (72.0CF) 

Tillering fertilizer (16 Jul) 69.3 (U) 97.0 (U) 

Panicle fertilizer (9 and 11 Aug) 58.9 (U) 104.0 (U) 

Total nitrogen 283.4 273.0 

Dates in brackets are when the fertilizer was applied in 2015 and 2016, respectively. CF: 

compound fertilizer (N, P2O5, and K2O contents were 16.0%, 12.0%, and 17.0% in 2015 and 2016), 

AB: ammonium bicarbonate (N content was 17.1%), U: urea (N content was 46.2%). 

The irrigation water layer of the CI paddy fields was maintained at 5–25 mm in the 

regreening stage. Irrigation was applied only to keep the soil moist, and standing water 

was avoided in the other stages except during periods of pesticide and fertilizer 
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application. In accordance with local rice planting habits, a 30–50 mm shallow water layer 

was retained in the FI paddy fields after transplantation except during the midseason 

drainage period and the yellow maturity stage of rice. Rainfall was deflected with a 

canopy to accurately control soil moisture. The root zone soil water content criteria in 

different rice growth stages for CI are shown in Table 2. 

Table 2. Limits for irrigation in different stages of rice under controlled irrigation. 

Stages 
Re-

greening 

Tillering 
Jointing and 

Booting Heading and 

Flowering 

Milk 

Maturity 

Yellow 

Maturity Forme

r 

Middl

e 
Later Former Later 

Upper limit a 25 mm b θs1 θs1 θs1 θs2 θs2 θs3 θs3 Drying 

Lower limit 5 mm b 
70% 

θs1 

65% 

θs1 

60% 

θs1 
70% θs2 75% θs2 80% θs3 70% θs3 Drying 

Monitored soil 

depth/cm 
— 0–20 0–20 0–20 0–30 0–30 0–40 0–40 — 

θs1, θs2, and θs3 represent saturated volumetric soil moisture for the 0–20, 0–30, and 0–40 cm layers, respectively. a In the 

case of pesticide, fertilizer application, and rainfall, standing irrigation water at a depth of up to 5 cm was maintained for 

less than 5 days. b The data show the water depth during the re-greening stage. 

2.3. Yield Measurement, Soil Sampling, and Analysis 

Rice yield was estimated by artificially harvesting crops per unit area of each plot. 

Three hills of rice were randomly chosen to evaluate the filled grain number, setting 

percentage, thousand kernel weight, and panicle number of each treatment. 

A total of 108 soil samples were collected from each plot following an S-shaped 

pattern at 0–10, 10–20, and 20–40 cm depths during the whole growth stage of rice in 2015 

(June 23, July 12, August 20, August 23, September 21, and October 25) and 2016 (June 29, 

July 27, August 21, September 4, September 21, and October 25). After harvesting with a 

spiral drill (diameter, 38 mm; length, 1 m), three samples of 0–40 cm soil were randomly 

collected in each plot and fully stirred. Then, samples from the same depth were 

homogenized by mixing, separated from visible debris and crop residues, and divided 

into two parts. One part of the fresh samples was stored at 4 °C, and the other was air-

dried, ground, and screened with a sieve of 0.149 mm; 12.5 g of fresh soil samples for 

dissolved organic carbon (DOC) was placed in a conical flask, immersed into 50 mL of 0.5 

mol L−1 K2SO4 solution, and shaken for 30 min before the extracts were separated with a 

0.45-μm filter. SOC was measured by the potassium dichromate external heating method, 

and the oxidation correction coefficient was considered. Besides, soil water content was 

recorded by a time domain reflectometer (Soil Moisture Equipment, Ltd., Corp. USA), and 

vertical rulers were used to monitor water layer at 8 a.m. everyday. The amount of 

irrigation water for each plot was calculated by using the water meter. 

2.4. DNDC Model 

2.4.1. Overview of the DNDC Model 

The DNDC model is a process-cased biogeochemical model written in Visual C++ 6.0 

language for C and N dynamics in agro-ecosystems. This model has evolved over decades 

of development since it was developed by Li et al. [25]. Various soil hydrological processes 

were included in the present model. The DNDC model has been used worldwide because 

of its simple parameter input and accurate simulation results. It was designated as the 

preferred biogeochemical model in Asia by the International Symposium on Global 

Change in the Asia-Pacific region in 2000 [26]. The DNDC model has good adaptability in 

China [27,28], but studies on predicting SOC dynamics in paddy soil under water-saving 

irrigation and water-carbon coupling based on future climatic conditions are few. 

Therefore, the present study improved the irrigation module of DNDC95, which is the 

latest version of the DNDC model, to realize simulation of paddy fields under controlled 
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irrigation and to optimize the irrigation module of paddy fields in the model on the basis 

of experimental data. More detail can be found in the Supplementary Materials. 

2.4.2. Input Data 

Daily meteorological data, soil properties, and agricultural management measures 

were collected to support DNDC simulation. Soil physical and chemical properties, 

including initial soil C and N content, texture, and field capacity, were obtained through 

field sampling and laboratory analysis. The value of SOC at surface soil (0–10 cm) used as 

an input to the model was based on a measured total SOC value (11.1 g C kg−1). The 

contents of TN, NH4+-N, and NO3−-N served as a pre-fertilization input value of DNDC. 

Agricultural management measures were obtained on the basis of field records and local 

farmers’ habits. The meteorological data used in this paper were as follows: historical 

meteorological observation data and GCMs from the Meteorological Information Center 

of China Meteorological Administration (http://data.cma.gov.cn/). Data included the 

daily maximum temperature, minimum temperature, radiation, wind speed, and 

precipitation. The future climate projections were acquired from four GCMs participating 

in the Coupled Model Intercomparison Project (CMIP5) experiment, including BCC-

CSM1.1 (m), MIROC-ESM-CHEM, GFDL-ESM2M, and HadGEM2-ES (Table 3) [24,29]. In 

accordance with the new emissions scenarios proposed by CMIP5, representative 

concentration pathways (RCPs) and four climate scenarios, RCP 2.6, RCP 4.5, RCP 6.0, and 

RCP 8.5, were selected. RCP 2.6 is a low peak-and-decay scenario (the radiation force 

reaches its maximum near the middle of the 21st century before falling to 2.6 W m−2), RCP 

8.5 is a high-emissions scenario (the radiation force rises to 8.5 W m−2 by 2100), and RCP6.0 

and RCP4.5 are two intermediate scenarios (with a radiation force stability in 6.0 W m−2 

and 2.6 W m−2, respectively, by 2100). 

Table 3. Four general climate models used in this study. 

Institutions Models Approximate Atmospheric Resolution 

Beijing Climate Center, China Meteorological Administration BCC-CSM1.1 (m) 1.125° × 1.125° 

Japan Agency for Marine-Earth Science and Technology 1 MIROC-ESM-CHEM 2.8125° × 2.8125° 

Geophysical Fluid Dynamics Laboratory GFDL-ESM2M 2.5° × 2° 

Met Office Hadley Center HadGEM2-ES 1.875° × 1.24° 
1: Atmosphere and Ocean Research Institute (The University of Tokyo) and National Institute of Environmental Studies. 

2.4.3. BMA Method 

As an advanced statistical method based on Bayesian theory and in consideration of 

model uncertainty, BMA has been proposed to combine multiple climate models to 

provide good performance models with high weights. BMA has been widely used in 

multimodel ensemble predictions of future climate. Therefore, four future climate models 

were predicted using the BMA weighted set in the present study and estimated on the 

basis of two statistical downscaling methods: back-propagation neural network and 

Statistical Downscaling Model (SDSM) developed by Wilby et al. [30,31]. Their 

mathematical expressions are as follows [24]: 

Assume that y is the prediction variable, and its posterior distribution is as follows: 

1 2
1

( | , ,..., , ) ( | , ) ( | )
K

k k k
k

p y f f f D p y f D p f D


   (1)

On the premise of satisfying the minimum mean squared error, the combined 

prediction formula on the basis of the basic principle of Bayesian theorem is as follows: 

 
1 1

( | ) ( | ) ( | , ) ,
K K

BMA k k k k k
k k

E y D p f D E p y f D f
 

    (2)
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where p(fk|D) denotes the posterior probability that model fk is correct given the training 

data and is calculated with Bayes’ theory; p(y|fk, D), estimated from the training data, is 

the predictive probability density function based on model y|fk alone; and k is the number 

of models being combined, which is equal to four in this study. This formula uses the 

posterior probability p(fk|D) of the model as the weight for all possible model predictions 

E(D|fk, D) and obtains the combined predicted value. 

Based on the field experimental data, we modified and verified the DNDC model to 

simulate soil organic carbon in paddy fields under different water and carbon 

management systems. The controlled irrigation module was added to the irrigation 

module of DNDC to realize the simulation of paddy fields under controlled irrigation. 

Then, combined with the climate model and climate scenarios after the BMA-weighted 

average, the simulation of SOC and rice yield under the corresponding water and carbon 

management systems in the next 80 years was conducted. 

2.5. Data Analysis 

Validation of the model results in the current study mainly included the average 

deviation method, correlation coefficient method, relative error method, and root mean 

squared method [32]. The absolute root mean squared error (RMSEa), normalized root 

mean squared error (RMSEn), coefficient of model efficiency (EF), and coefficient of 

determination (R2) were used to quantitatively assess the goodness-of-fit between the 

simulated results and measured (observed) results. Their mathematical expressions are as 

follows: 

2

1

2

1

( )

1

( )

n

i i
i

n

i
i

SM OBS

EF

OBS OBS







 






 (3)

2

1

2

1

( )

1

( )

n

i i
i

n

i
i

SM OBS

EF

OBS OBS







 






 (4)

100 a
n

avg

RMSE
RMSE

OBS


  (5)

2 21

2 2

1 1

( )( )

( )

( ) ( )

n

i avg i avg
i

n n

i avg i avg
i i

OBS OBS SM SM

R

OBS OBS SM SM



 

 



 



 
 (6)

where OBSi is the observed value, OBSavg is the average observed value, SMi is the 

simulated value, SMavg is the average simulated value, and n is the sample size. Higher R2 

and lower RMSEn indicated a good fit between the simulated and observed data. The 

smaller the RMSEn value is, the higher the fitting degree between the simulated value and 

the observed value. A value less than 10% indicates good consistency between the 

simulated value and the observed value. The results between 10% and 20% indicate an 

ordinary simulation effect, and a value higher than 30% indicates an unsatisfactory 

simulation effect [33,34]. The Taylor diagram is a polar-style graph, which summarizes 

the three statistical indices, i.e., the correlation coefficient between simulations and 

observations (R), the root mean squared error (RMSE), and the standard deviation (STD) 

using a single point. Given its comprehensiveness and visibility, Taylor diagrams are 

particularly beneficial in evaluating the relative accuracy of the different models. The 

radial distance from the origin reflects STD, the cosine of the azimuth angle denotes R, 
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and the radial distance from the observed points is proportional to the RMSE difference. 

A main criterion can usually be summarized: the closer a point is to the observed data, the 

better the fit between the observed and simulated data [35]. 

Origin 9.1 software (OriginLab Corporation, Northampton, MA, USA) and MATLAB 

2017 (MathWorks Corporation, USA) were used to calculate data and construct the 

relevant charts. Statistical analysis was carried out using standard procedures on a 

randomized plot design (SPSS 22.0). Significance was calculated on the basis of a Least 

significant difference (LSD) test at the 0.05 probability level.  

The Mann–Kendall trend test, which we used in this study based on MATLAB 2017, 

is one of the widely used distribution-free tests of trend in time series. A standard normal 

variate Z is calculated as follows: 

1
, 0

( )

0, 0

1
, 0

( )

S
S

Var S

Z S

S
S

Var S

  
 

 
 

  
 
 
 

 (7)

( )
, 1, 2,...,

( )

k k
k

k

S E S
UF k n

Var S


   (8)

, , 1, ...,1

0, 1

k

k

UF k n n
UB

k

   
  

 
 (9)

In a two-sided test for the trend, the null hypothesis of no trend is rejected if |�| >

��/� where α is the significance. The calculation method of Var[S] and S can be found in 

the literature [36], where Z > 0 indicates an upward trend and Z < 0 indicates a downward 

trend. In addition, UF is the standardized result of S, which is a statistical sequence 

calculated in time sequence and obeys normal distribution, while UB is repeatedly 

calculated in reverse chronological order. 

3. Results 

3.1. Model Modification and Validation 

3.1.1. Model Modification 

On the basis of the source code of DNDC95, this study improved the module on 

paddy field flooding in the farmland management menu. The two methods for the 

original water management module are the following: continuous flooding (water level is 

maintained at 10 cm) and alternative irrigation (water level fluctuates between −5 to 5 cm). 

The problems in the model were solved by improving the following three aspects: (1) the 

50-cm constant soil layer assumed in the original DNDC model was adjusted to a value 

that varied with the depth of the rice root layer; (2) the fluctuation range of the water level 

was adjusted in accordance with the upper and lower limits of irrigation water controlled 

by soil moisture content; and (3) the upper and lower limits of irrigation with controlled 

irrigation were changed with the rice growth period, controlled irrigation with rice 

growth period was implemented, and the corresponding parameters were adjusted. 

Controlled irrigation was monitored in accordance with the soil moisture and water layer 

indicators in Table 2. The amount of irrigation water simulated by DNDC under 

controlled irrigation and traditional flooding irrigation after the modification was 

consistent with the observed irrigation water amount (Table 4). Additionally, crop 

parameters were calibrated in this study. The maximum crop yield, biomass allocation, 

and C/N ratio of the crops were modified on the basis of the observed results, and some 

internal parameters were modified to simulate actual conditions in the field. For example, 
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the chromic acid wet oxidation method [37] and the Kjeldahl method [38] were used to 

estimate the total carbon nitrogen ratio of stems, leaves, and grains at the heading and 

maturing stages of Nanging 46. The total C/N ratios used for model correction were 55 for 

the root, 75 for the stem and leaf, and 75 for the grain. The maximum biomass production 

of grain was modified to 4700 kg C ha−1 to stay consistent with our observed data. 

Table 4. Comparison of observed and simulated irrigation values of the Denitrification 

Decomposition (DNDC) model simulation. 

Year Treatments Observed/mm Simulated/mm RMSEn 

2015 Controlled irrigation 356.93 346.03 3.08 

 Flood irrigation 812.11 789.10  

2016 Controlled irrigation 456.43 468.14 3.77 

 Flood irrigation 954.78 919.01  

Notes: Observed and simulated denote the observed irrigation amount and the simulated 

irrigation amount, respectively. 

3.1.2. Model Calibration and Validation 

Model Calibration 

The comparisons of DOC and SOC measured values and simulated values in the test 

area in 2015 are shown in Figures 2 and 3. The dynamic changes in SOC and DOC in 

paddy soil under different water and carbon management systems in one year were well 

fitted through the modified DNDC model. The simulated values were consistent with the 

observed values. Tables 5 and 6 reflect the evaluation results of the SOC and DOC 

simulation values, respectively. The RMSEa values of the SOC and DOC simulations were 

0.35–1.62 g kg−1 and 23.63–38.49 mg kg−1, respectively. The RMSEn values of the SOC and 

DOC simulations were 3.54–17.59% and 8.79–13.93%, respectively. The regression 

coefficient R2 of DOC was 0.80–0.99, and the EF values of SOC and DOC were close to 1. 

The SOC regression coefficients of the partial treatments (FS and FO) were closer to 1, 

which indicated that the modified DNDC model can accurately simulate the effects of 

different water and carbon management systems on SOC and DOC dynamics in paddy 

soil. 
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Figure 2. Simulation of dissolved organic carbon (DOC) (0–10 cm soil) change in each treatment 

during the calibration period (2015), where (a–f) present the CS, FS, CO, FO, CF, and FF 

treatments, respectively. 

 

Figure 3. Simulation of soil organic carbon (SOC) change in each treatment during the calibration 

period (2015), where (a–f) present the CS, FS, CO, FO, CF, and FF treatments, respectively. 
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Table 5. Estimation of SOC results for each treatment by using the modified DNDC model during 

the calibration period (units of SOC: g kg−1). 

Variable Treatments N Xobs(SD) Xsim(SD) P(t *) α β R2 RMSEα RMSEn EF 

SOC CF 6 10.31(0.30) 10.94(0.27) 0.03 1.37 2.90 0.86 0.78 7.11 0.91 

0–10 cm CS 6 11.44(0.87) 11.49(0.30) 0.89 * 0.19 10.20 0.72 0.71 6.19 1.00 

 CO 6 12.34(1.04) 11.97(0.39) 0.49 * 0.36 7.67 0.74 1.16 9.73 0.99 

 FF 6 10.89(0.58) 11.15(0.34) 0.34 * 0.25 9.04 0.81 0.59 5.31 1.00 

 FS 6 13.48(0.97) 12.69(0.30) 0.16 * 0.66 4.78 0.94 1.32 10.37 0.99 

 FO 6 12.70(0.83) 12.84(0.32) 0.71 * 0.46 7.16 0.89 0.80 6.24 1.00 

SOC CF 6 8.95(0.79) 9.76(0.04) 0.07 * 0.09 9.03 0.82 0.35 3.54 0.98 

10–20 cm CS 6 10.00(0.56) 10.04(0.05) 0.87 * 0.58 4.25 0.93 0.54 5.40 1.00 

 CO 6 10.95(1.00) 11.04(0.06) 0.09 * 0.02 9.78 0.87 1.34 13.39 0.99 

 FF 6 9.49(0.44) 9.85(0.04) 0.14 * −0.05 10.38 0.78 0.58 5.86 1.00 

 FS 6 11.41(0.86) 11.20(0.04) 0.61 * 0.02 10.94 0.84 0.87 7.74 0.99 

 FO 6 12.11(0.47) 11.20(0.04) 0.01 0.06 10.38 0.60 1.01 9.01 0.99 

SOC CF 6 7.13(0.77) 7.13(0.04) 0.14 * 0.05 7.39 0.81 0.96 12.40 0.98 

20–40 cm CS 6 8.51(0.28) 7.72(0.03) 0.01 −0.09 8.51 0.84 0.84 10.86 0.99 

 CO 6 7.60(0.52) 7.27(0.04) 0.24 * −0.06 7.67 0.59 0.65 8.88 0.99 

 FF 6 7.68(0.68) 7.78(0.03) 0.76 * −0.01 7.80 0.81 0.70 8.95 0.99 

 FS 6 10.12(1.31) 9.20(0.03) 0.19 * −0.02 9.41 0.62 1.62 17.59 0.97 

 FO 6 9.32(0.31) 9.20(0.03) 0.46 * −0.05 8.39 0.79 0.35 3.82 1.00 

Notes: N is the number of samples; Xobs is the average observed value; Xsim is the average simulated 

value; SD is standard deviation; P(t*) is t-test significance; α and β are the slope and intercept of 

the linear correlation between simulated values and observed values, respectively; and R2 is the 

coefficient of determination between the simulated value and the observed value. In P(t*), * means 

that the difference between the simulated value and the observed value is not significant and that 

the credibility is 95%. 

Table 6. Evaluation of DOC simulation results of each treatment by using a modified DNDC 

model during the calibration period and verification period (units of DOC: mg kg-1). 

Period Treatments N Xobs(SD) Xsim(SD) P(t *) α β R2 RMSEα RMSEn EF 

Calibration CF 6 253.43(41.85) 268.65(55.03) 0.83 * 0.80 63.48 0.82 23.63 8.79 0.68 

2015 CS 6 294.48(47.33) 291.55(76.59) 0.47 * 1.49 −146.39 0.84 38.12 13.08 0.59 

 CO 6 300.76(82.01) 276.36(72.57) 0.13 * 0.83 28.02 0.86 38.49 13.93 0.78 

 FF 6 261.05(66.19) 244.55(67.47) 0.26 * 0.92 3.10 0.82 33.19 13.57 0.75 

 FS 6 259.38(53.43) 270.43(76.00) 0.36 * 1.41 −94.33 0.98 26.90 9.95 0.75 

 FO 6 287.82(78.81) 280.93(70.41) 0.62 * 0.83 41.88 0.86 29.98 10.67 0.86 

Validation CF  6 217.12(43.39) 228.97(49.39) 0.14 * 1.09 −6.69 0.84 19.37 8.46 0.80 

2016 CS 6 189.72(50.10) 201.27(75.88) 0.40 * 1.49 −82.10 0.97 30.06 14.94 0.64 

 CO 6 222.98(68.81) 232.05(85.68) 0.42 * 1.22 −39.77 0.96 24.77 10.67 0.87 

 FF 6 181.52(43.42) 168.36(55.57) 0.30 * 1.15 −39.69 0.80 28.73 17.06 0.56 

 FS 6 174.99(45.67) 172.98(46.78) 0.38 * 1.02 −5.48 0.99 4.92 2.84 0.99 

 FO 6 176.29(52.26) 176.92(52.97) 0.91 * 0.99 3.01 0.95 12.22 6.91 0.95 

Notes: N is the number of samples; Xobs is the average observed value; Xsim is the average 

simulated value; SD is standard deviation; P(t *) is t-test significance; α and β are the slope and 

intercept of the linear correlation between simulated values and observed values, respectively; and 

R2 is the coefficient of determination between the simulated value and the observed value. In P(t 

*), * means that the difference between the simulated value and the observed value is not 

significant and that the credibility is 95%. 

Validation of Model Parameters 

This study validated the modified DNDC model with 2016 data. The comparison 

between the simulated and observed values of DOC and SOC with different treatments 

during the verification period is shown in Figure 4 and Figure 5. In most cases, the 

modified DNDC model with calibration parameters can simulate the dynamics of DOC 

and SOC in paddy fields under different water and carbon management systems. On the 
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time scale of one year, DOC in paddy fields clearly changed with time, showing an 

increasing first and then decreasing trend, whereas the SOC content had a negligible 

change. In addition, the vertical distribution of SOC in paddy fields under different water 

and carbon management systems was relatively consistent. The SOC in the paddy field 

decreased as the soil depth increased, and the SOC fluctuation of 0–10 cm was larger than 

the SOC fluctuations of 10–20 cm and 20–40 cm. These results were essentially consistent 

with those of previous studies [39]. The results (Figure 6) showed that the simulated 

values of rice yield under different water and carbon treatments in the calibration and 

verification periods were close to the observed data, that is, to the line 1:1. 

 

Figure 4. Simulation of DOC (0–10 cm soil) dynamics in each treatment during the verification 

period (2016), where (a–f) present the CS, FS, CO, FO, CF, and FF treatments, respectively. 
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Figure 5. Simulation of SOC changes in each treatment during the verification period (2016), 

where (a–f) present the CS, FS, CO, FO, CF, and FF treatments, respectively. 

Figure 6. Simulation of yield changes in each treatment during the validation period (2015) and 

calibration period (2016): the solid line is a 1:1 relationship. 
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The parameter evaluation results for DOC (Table 6) and SOC (Table 7) in paddy fields 

simulated by the modified DNDC model showed the relationship between the simulated 

and observed values. RMSEa and RMSEn were small, indicating that the simulation was 

good. The model verification results indicated that irrigation and fertilization 

management had a great impact on SOC and DOC in paddy fields. Irrigation affected the 

dynamics of SOC and DOC. SOC under controlled irrigation was lower than that under 

flooding irrigation, but DOC was higher. Controlled irrigation is beneficial to the 

oxidative decomposition of paddy soil, which may be the cause of this phenomenon. In 

addition, the SOC contents of the organic fertilizer and straw returning treatments were 

significantly higher than the SOC content of the conventional fertilizer treatment, 
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indicating that the appropriate fertilization method was beneficial to SOC accumulation 

in paddy fields. 

Table 7. Evaluation of SOC simulation results of each treatment by using modified DNDC model 

during the verification period (units of SOC: g kg-1). 

Variable Treatments N Xobs(SD) Xsim(SD) P(t *) α β R2 RMSEα RMSEn EF 

SOC CF  6 11.46(0.87) 11.40(0.29) 0.88* 0.05 10.69 0.97 0.88 7.72 0.90 

0–10 cm CS 6 11.02(0.59) 11.58(0.54) 0.05* 0.57 10.00 0.76 0.75 6.46 0.84 

 CO 6 13.69(0.78) 12.35(0.38) 0.01 0.35 10.83 0.62 1.45 11.77 0.83 

 FF 6 10.88(0.15) 11.11(0.25) 0.09* 0.52 5.58 0.85 0.34 3.09 0.92 

 FS 6 12.96(0.81) 12.35(0.24) 0.16* 0.82 13.37 0.84 1.02 8.26 0.56 

 FO 6 13.18(0.60) 12.56(0.19) 0.10* 0.09 11.38 0.87 0.93 7.37 0.87 

SOC CF 6 8.76(0.08) 9.01(0.05) 0.01 −0.25 11.75 0.80 0.28 3.10 0.89 

10–20 cm CS 6 9.28(0.45) 9.61(0.39) 0.01 0.82 2.00 0.87 0.37 3.83 0.93 

 CO 6 10.56(1.23) 10.41(0.05) 0.79* 0.02 10.18 0.82 1.21 11.67 0.83 

 FF 6 10.10(0.50) 10.24(0.37) 0.69* −0.29 17.17 0.73 0.75 7.30 0.83 

 FS 6 11.45(0.33) 11.13(0.03) 0.09* −0.02 11.41 0.87 0.46 4.16 0.93 

 FO 6 10.78(0.36) 11.22(0.03) 0.04 0.01 11.21 0.81 0.57 5.09 0.87 

SOC CF 6 7.48(0.34) 7.66(0.10) 0.33* −0.08 8.40 0.73 0.42 5.43 1.00 

20–40 cm CS 6 8.04(0.52) 7.91(0.02) 0.61* 0.02 7.78 0.84 0.53 6.66 1.00 

 CO 6 8.83(0.63) 7.92(0.02) 0.02 0.02 7.76 0.67 1.10 13.83 0.98 

 FF 6 8.55(0.77) 8.70(0.62) 0.25* 0.77 2.25 0.91 0.30 3.42 −1.16 

 FS 6 9.70(0.07) 9.42(0.03) 0.00 −0.12 10.83 0.99 0.29 3.03 1.00 

 FO 6 9.08(4.07) 9.14(0.03) 0.80* −0.03 9.40 0.84 0.49 5.37 1.00 

Notes: N is the number of samples; Xobs is the average observed value; Xsim is the average simulated 

value; SD is standard deviation; P(t *) is t-test significance; α and β are the slope and intercept of 

the linear correlation between simulated values and observed values, respectively; and R2 is the 

coefficient of determination between the simulated value and the observed value. In P(t *), * 

means that the difference between the simulated value and the observed value is not significant 

and that the credibility is 95%. 

 

3.2. Projection of SOC and Rice Yield in Paddy Fields Based on BMA and Modified DNDC 

3.2.1. BMA Method Evaluation of Predicted Values of Meteorological Parameters 

Required by DNDC 

Different GCMs should be combined to provide detailed and accurate climate data 

in the context of climate change. In the present study, four GCMs processed by BMA were 

used to obtain four climate variables as required by the modified DNDC model: 

maximum temperature, minimum temperature, wind speed, and radiation (Figure 7). The 

performance of the BMA ensemble multi-model to predict future climate variations was 

evaluated with a Taylor chart (Figure 8). Numerous studies have shown that the 

prediction effect of BMA parameters is improved by extending the model training time 

[40,41]. This study used 40 years (1961–2000) to train BMA weights, and current and future 

climate parameters were generated in the remaining stages (2001–2099). The comparison 

between simulated and observed precipitation values in 2015 and 2016 treated by BMA is 

shown in Figure 9. In the calibration and verification period of the model, the simulated 

and the observed rainfall values treated by BMA had a good fitting effect. The simulated 

precipitation value and the observed value were relatively close except for the slightest 

occurrence of a peak value. In Figure 7, the meteorological parameters generated by BMA 

were more consistent on the daily scale than at other scales measured by any single model. 

Figure 8 shows the relative accuracy of the model with a Taylor diagram. The results of 

the BMA method (point E) were closer to the points marked “observed” than to the data 

measured by any single model (points A, B, C, and D). Thus, BMA exhibited a good 

correlation and small RMSE. Except for the analog value matching the effect of wind 
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speed, which was slightly poor (even if R of the BMA method was also approximately 

0.7), the prediction of the other meteorological factors was good. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Time series of daily mean maximum temperature (a), minimum temperature (b), wind 

speed (c), and radiation (d) from 2012 to 2016: observed is the measured value, and BCC-CSM1.1 

(m), GFDL-ESM2M, HadGEM2-ES, and MIROC2SM-CHEM represent the four climate models in 

Table 2, respectively. BMA (Bayesian Model Averaging) represents the value after BMA-weighted 

average. 
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(a) (b) 

(c) (d) 

Figure 8. Taylor diagrams for meteorological factors in Kunshan, 2012–2016: this diagram is a 

comparison between the projected and measured values of four meteorological parameters 

required by a modified DNDC model. The four figures are as follows: (a) maximum temperature, 

(b) minimum temperature, (c) wind speed, and (d) radiation. Observed is the observed value, A is 

BCC-CSM1.1 (m), B is GFDL-ESM2M, C is HadGEM2-ES, D is MIROC-3SM-CHEM, and E is the 

BMA-weighted value. 

  
(a) (b) 

Figure 9. Comparison of simulated and actual precipitation values in 2015 (a) and 2016 (b) treated 

by BMA. 
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3.2.2. SOC Dynamics Prediction in Paddy Fields under Water and Carbon Regulation in 

Future Climate Conditions 

On the basis of the modified DNDC model and the BMA method, this study 

predicted the SOC changes (0–10 cm) in paddy fields under four climate scenarios (i.e., 

RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) over the next 80 years (2020–2099), as shown in 

Figure 10. The average predicted SOC under different climate scenarios consistently 

occurred in the following order FO > CO > FS > CS > FF > CF. The trend lines of the SOC 

change in paddy fields under the four climate scenarios were estimated via linear square 

fitting (Figure 10). This trend indicated that the effect of fertilizer management on SOC 

changes in paddy fields over the long term was very large in the four scenarios. To some 

extent, this phenomenon explained the similar results found for the different climate 

scenarios, i.e., the SOC of the CF and FF treatments decreased with prolonged time, while 

the CS, CO, FS, and FO treatments showed an increasing trend with an extended time. 

Fertilizer management obviously affected the long-term trend of SOC in paddy fields 

under the same irrigation treatment. Irrigation had a certain impact on SOC in paddy 

fields over a short time, but only a negligible difference was observed over the long term. 

The overall trend in the SOC changes in paddy fields under flooding irrigation and 

controlled irrigation treatments was consistent and showed that SOC decreased in the 

conventional fertilizer treatment and increased in the treatment with organic fertilizer and 

straw application. In comparison with that in the 2020s, in the 2090s, the average values 

of the CF and FF treatments decreased by 4.98%, 5.86%, 6.07%, and 7.49% in the RCP 2.6, 

RCP 4.5, RCP 6.0, and RCP 8.5 scenarios, respectively, while the average values of the 

other treatments in the 2090s increased by 102.97%, 99.68%, 99.57%, and 97.54%, 

respectively. In addition, in the first 5 years, the CS and CO treatments showed an 

unexpected downward trend and then increased rapidly, which was different from the 

results of the model verification period. This may have been due to the frequent 

alternation of drying and wetting under controlled irrigation conditions, which promoted 

soil respiration. Therefore, the SOC of paddy fields decreased in the short term, while the 

long-term application of organic fertilizer and straw application can offset this carbon loss 

effect. However, the SOC of the organic fertilizer treatment under the RCP 4.5 and RCP 

6.0 scenarios increased in 2100, which were because both the low peak attenuation and 

high emissions scenarios were not conducive to the accumulation of SOC in paddy fields. 

  



Sustainability 2021, 13, 568 18 of 27 
 

 

Figure 10. Prediction of SOC change in paddy fields with different treatments in the next 80 years 

under different climate scenarios (0–10 cm): the dashed lines in different colors in the figure 

correspond to the corresponding trend lines, and each trend line was derived from a series of 

annual values. The annual SOC is the final content at the end of the growth period of each 

treatment in the next 80 years. 

In Table 8, the dynamics of SOC every 10 years under different treatments in the next 

80 years is reflected by the RCP 2.6 scenario as an example. The results showed that the 

SOC of the conventional fertilizer treatment decreased rapidly in the first 10 years but 

gradually flattened. The soil organic carbon levels in the CF and FF treatments decreased 

by 14.18% and 13.50%, respectively. The SOC of the CS treatment abnormally decreased 

by 8.13% and increased rapidly. The effect of climate scenario on the SOC in paddy fields 

was not obvious (Figure 11). The SOC of the organic fertilizer treatment under the various 

climate scenarios increased with time. Compared with that under baseline conditions 

(2020), the SOC in the CO treatment under RCP 2.6 increased from 45.89% in 2040 to 

149.39% in 2080 and the SOC in the CS treatment under RCP 4.5 increased from 3.07% in 

2040 to 41.05% in 2080. In addition, the decline in the SOC in the CF and FF treatments 

was the largest in the first 20 years and remained unchanged. 

Table 8. Changes in the SOC of paddy fields with different treatment in the next 80 years under 

the RCP 2.6 scenario. 

Period CF CO CS FF FO FS 

2020–2029 −14.18% 13.97% −8.13% −13.50% 18.86% 6.26% 

2030–2039 −0.74% 24.33% 10.15% −3.18% 19.04% 8.74% 

2040–2049 4.22% 19.66% 12.47% 5.17% 17.96% 8.36% 

2050–2059 0.79% 13.70% 7.67% 0.41% 12.21% 5.36% 

2060–2069 0.57% 10.85% 6.61% 0.21% 9.68% 4.66% 

2070–2079 0.46% 8.88% 5.07% −0.04% 7.81% 3.67% 

2080–2089 0.66% 6.99% 5.63% 2.04% 6.96% 4.40% 

2090–2099 0.71% 6.07% 4.26% 0.11% 5.44% 3.02% 

Notes: The values above denote simulated SOC change every 10 years (compared with the 

baseline 10 years ago) of the CF, CO, CS, FF, FO, and FS treatments in the 2020s, 2030s, 2040s, 

2050s, 2060s, 2070s, 2080s, and 2090s. 
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Figure 11. SOC in different treatments in four climate scenarios, where (a–f) present the CS, FS, 

CO, FO, CF, and FF treatments, respectively: the red, blue, and black lines represent the changes of 

SOC in paddy soil in 2040, 2060, and 2080, respectively, compared with the baseline (2020). The 

horizontal and vertical coordinates are the percentage values of the changes. 
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yield. Similar to the regulation of water and carbon regulation of SOC dynamics in paddy 

fields, irrigation and carbon management both affected the yield under the same climate 

conditions while the combination of appropriate fertilization and controlled irrigation 

evidently increased rice yield. The rice yield in the CS and CO treatments in most cases 

was higher than that in the FS and FO treatments. This study provides a trend line of each 

rice yield with time (Figure 12). Overall, the rice yields of the different treatments have 

good synchronization and almost simultaneously changed at different stages of the 21st 

century. In comparison with that in the 2020s, the average rice yield of each treatment in 

the 2090s decreased by 18.41%, 38.59%, 65.11%, and 65.62% in RCP 2.6, RCP 4.5, RCP 6.0, 

and RCP 8.5, respectively. In addition, the climate scenarios resulted in clear effects on 

rice yields under the same water and carbon management mode. The rice yield tended to 

increase in the first 20 years as the radiative force increased. However, under the high 

emissions scenario of RCP 8.5, the rice yield of the CS treatment initially remained 

unchanged but declined rapidly with increased time. Taking RCP 2.6 as an example, the 

results of the Mann–Kendall trend test [42] are shown in Figure 13. The yields of the CF 

and FF treatments increased in 2020–2023 and 2087 (UF > 0), while the UF values of the 

CO, CS, FO, and FS treatments were less than zero within the 95% confidence interval, 

except for the increase in 2020–2023, which indicated that maintaining rice yield via 

excessive carbon input might be difficult to sustain. 

 

Figure 12. Prediction of rice yield change under different climate scenarios and treatments in the 

next 80 years: the trend lines in black, red, and blue in the figure represent conventional fertilizer 

treatment, organic fertilizer treatment, and straw returning treatment, respectively, while the solid 

and dotted lines represent conventional irrigation and controlled irrigation.  
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Figure 13. Mann–Kendall test charts of rice yield changes under different water and carbon 

treatments (with RCP 2.6 as an example), where (a–f) represent the CF, CO, CS, FF, FO, and FS 

treatments, respectively. The ordinate axis represents the values of UF and UB. UF > 0 indicates an 

upward trend, and UF < 0 indicates a downward trend. UB exceeded the upper and lower straight 

lines, indicating a significant upward or downward trend (p < 0.05). A sudden change point is 

indicated when UF intersects UB and is between the upper and lower lines. 

4. Discussion 

4.1. Performance of the Modified DNDC Model and Limitations 

The default parameters of the DNDC model did not meet the needs of simulating 

SOC dynamic changes [23], and the model should be calibrated to reduce uncertainties in 

new systems or environments [20]. The results of this study showed that the modified 

DNDC model had good adaptability to SOC and yield simulation of paddy fields in the 

Kunshan area. The modified DNDC model successfully predicted the irrigation situation 

under water-saving irrigation and flood irrigation, and the effects of different irrigation 

and fertilization conditions on the SOC, DOC, and rice yield in paddy fields can be 

simulated. In addition, current research has mainly focused on water consumption and 

water use efficiency [43] and less on the effect of climate change on SOC in rice fields, and 

S
ta

ti
st

ic
s

S
ta

ti
st

ic
s

2020 2030 2040 2050 2060 2070 2080 2090 2100

Year

-5

-4

-3

-2

-1

0

1

2

3

S
ta

ti
st

ic
s

M-K value (FS)

UF UB



Sustainability 2021, 13, 568 22 of 27 
 

climate factors, such as temperature and precipitation, are important driving forces in 

SOC change [44], which have a far-reaching impact on agricultural production [9]. In this 

study, SOC prediction and rice yield were based on the modified DNDC model, local 

irrigation, fertilization management, and four GCMs integrated with BMA. The results 

weighted by BMA were closer to the observed points than to any single model in the 

Taylor diagram; thus, integrating multiple climate models with BMA is reliable, which is 

consistent with the results of Wang et al. [24]. Interpretation based on the single model 

was one of the limitations of this study. The uncertainty could be reduced by the method 

of multi-model ensemble [45]. In addition, it is desirable to calibrate the model results 

with data from more sites and long-term series of observed data under different water 

and carbon management. 

4.2. Effects of Water and Carbon Management Systems on SOC in Paddy Fields and Rice Yield 

The present study found that the combination of irrigation and fertilization patterns 

can markedly increase SOC and rice yield, which was consistent with the findings of 

Kamoni et al. [46]. This result may be due to irrigation improving the availability of soil 

N, thereby increasing productivity. The mechanism of the effects of irrigation on organic 

carbon remains unclear. Some studies have found that irrigation affects SOC 

mineralization and transfer [47], while others found that waterlogging affects rice residue 

input and the decomposition rate of SOC under anaerobic conditions, thus affecting SOC 

accumulation [48]. For example, Kelliher et al. [49] found that irrigation reduced SOC by 

61%, while Houlbrooke et al. [50] found that irrigation had little effect on SOC, which may 

be related to environmental conditions, soil development stages and types, irrigation 

water quality, and years. This study found that the SOC of controlled irrigation paddy 

fields was lower than that of fields with conventional irrigation, which may be due to the 

frequent dry–wet alternation of controlled irrigation promoting microbial activities, 

increased soil fertility, and soil respiration, thus increasing soil carbon loss [51]; this 

finding is different from the results of Zhao et al. [52]. Zhao et al. found that optimized 

irrigation and fertilization treatments increased SOC in the North China Plain, which may 

be related to the retention of residue in the experiment every year. In addition, the present 

study found that controlled irrigation reduced the SOC of paddy fields while reducing 

irrigation water; the SOC content evidently increased after the combination of irrigation 

with straw returning or application of organic fertilizer. Thus, applying organic fertilizer 

or straw returning under controlled irrigation conditions can reduce the water footprint 

while addressing SOC. Combining controlled irrigation with organic fertilizer and 

returning straw to the fields, which is a feasible alternative water and carbon management 

mode, saved a large amount of water resources and increased rice yield and SOC content. 

The dynamics of SOC in paddy fields are the net result of organic matter input and 

output. Irrigation schedules and fertilization affect soil organic carbon in paddy fields by 

changing the input of energy or material [53]. SOC dynamics are difficult to measure in 

the short term. This process-based model is a good tool for predicting future trends. The 

results of long-term simulation of the SOC changes in paddy fields under different water 

and carbon management systems (Figure 10) showed that the combination of controlled 

irrigation and suitable organic fertilizer application is a satisfactory water and carbon 

regulation mode. SOC growth was rapid, and yield was maintained at a high level with 

prolonged time. In addition, fertilizer management has a considerable impact on the long-

term evolution of SOC on farmlands, which was consistent with the results of previous 

studies. For example, Wan et al. and Wang et al. [40,54] found through model research 

that an SOC of 0–30 cm on farmland in China would decrease to 7.8–8.2 t ha−1 in 2080 

without fertilizer management but would increase markedly if organic fertilizer or straw 

was applied to the field. This study found a synergistic relationship between SOC content 

and rice yield, and rice yield was high in the treatments with high SOC content, such as 

the CS and CO treatments, which was similar to the conclusion of Qiu et al. [55]. 
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4.3. Effects of Climate Scenarios on SOC and Rice Yield in Paddy Fields and Possible 

Countermeasures 

Impacts in climate scenarios have a considerable impact on rice yield, but their effect 

on SOC is less than that of agricultural management measures, which may be because 

climate change affects the decomposition of SOC, while agricultural management 

measures affect the soil carbon input quantity [56]; excessive carbon input may mask the 

impact of SOC decomposition. Additionally, the change in SOC was negatively correlated 

with initial SOC concentrations [57], and a high carbon input and low initial SOC would 

increase the pool of soil carbon. Conversely, the conversion of excessive carbon input into 

soil may offset the carbon loss caused by soil respiration, which explains to some extent 

why climate scenario impacts have a negligible effect on SOC changes in paddy fields. 

Unlike the current conclusion that fertilization can maintain high rice yields over the long 

term, although excessive fertilization can maintain high rice yields in the short term under 

future climate conditions, rice yields may still decrease in the long term (Figure 12). This 

phenomenon is attributed to the decline in rice yield caused by high temperatures and 

water stress that may have exceeded the impacts of promotion by fertilizer. The SOC of 

the controlled irrigation treatment increased rapidly in the late period but decreased in 

2025, 2040, and 2083 in all treatments. This result may have been caused by the impact of 

climate conditions in such years. The average rice yields in all the treatments after 80 years 

decreased under the RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 scenarios by 18.41%, 38.59%, 

65.11%, and 65.62%, respectively, compared with that in the baseline treatment (2020). In 

addition, previous studies [58] found that a variety of improvements can offset the decline 

in rice yield caused by climate warming, which might be a possible strategy to address 

climate change in the future. 

Overall, paddy fields play a significant role in mitigating climate change through 

carbon sequestration, but the impact of different climate scenarios on SOC changes in 

paddy fields is less obvious than that of water and carbon management measures. Yu et 

al. [56] found that maintaining existing farmland management measures can maintain 

China’s paddy soil carbon sequestration potential over the next 20–40 years; however, this 

result depends on long-term continuation of the current excessive carbon input 

management, which is closely related to the current policy of vigorously promoting and 

subsidizing straw returning and organic fertilizer application in China [59]. In accordance 

with the report released by the agricultural sector, most crop residues were removed from 

farmlands before the 1980s and used as fuel and animal feed in rural areas. This trend was 

reversed by the government through a policy in the 1990s to encourage farmers to recycle 

crop straw as much as possible, and the policy achieved considerable results [60]. At the 

same time, farmers stopped using crop straw as fuel due to improvements in living 

standards, which have caused serious environmental pollution in the past [61]. In 

addition, unreasonable fertilization leads to soil degradation, water pollution, soil 

acidification, and serious agricultural nonpoint source pollution [62]. Thus, how to 

promote straw returning in many developing countries across the world and to reduce its 

pollution is the direction of further study. 

In addition, notably, in the future climate model, although water and carbon 

management will increase production and carbon sequestration, whether it will increase 

GHGs still needs further study. For example, excessive carbon input may increase 

greenhouse gases, such as CO2 and CH4, while SOC changes are sensitive to CO2 

concentrations. Thus, the benefits of carbon sequestration may be offset. The predicted 

results showed that the rice yields of all the treatments will decrease in the future, 

especially after the middle of the 21st century. Although the rice yield decreased under 

the coupling of controlled irrigation with straw returning and organic fertilizer, the rice 

yield was always higher than that in conventional fertilizer treatments. Thus, finding an 

appropriate amount of organic fertilizer or straw application to balance carbon 

sequestration is necessary to increase production and to reduce greenhouse gas emissions. 
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5. Conclusions 

This study modified the DNDC model to adapt to the common water-saving 

irrigation mode in China, especially in the middle and lower reaches of the Yangtze River. 

The parameters related to SOC and rice yield were calibrated. In addition, the dynamics 

of SOC and rice yield in Kunshan over the next 80 years under different water and carbon 

management were predicted on the basis of the four climate scenarios synthesized via the 

BMA method. The results showed that the modified DNDC model had good adaptability 

to the simulation of SOC and rice yield under different water and carbon management. 

The RMSEn values of the SOC and DOC simulations were 3.45% to 17.59% and 8.79% to 

13.93%, respectively. The R2 of DOC was between 0.80 and 0.99, and the model efficiency 

coefficient EF values of SOC and DOC were all close to 1. In comparison to the single 

model, the BMA method can better simulate the changes in climate factors. Climate 

scenarios significantly affect rice yield, but their impact on SOC is less than agricultural 

management measures. Unfavorable climate will reduce yields in the future climate in 

spite of long-term over fertilization. Compared with traditional water and carbon 

management systems, the combination of controlled irrigation and organic fertilizer 

application or straw returning can obviously increase the SOC content and rice yield in 

the long-term simulation under the four climate scenarios, and the yield of the straw-

returning treatment was higher. The SOC of controlled irrigation paddy fields was lower 

than that of conventional irrigation, but only a negligible difference was observed over 

the long term. Therefore, combining controlled irrigation and appropriate organic 

fertilizer can balance water conservation, can maintain SOC and a stable rice yield in 

paddy fields, and is the recommended water and carbon management system for paddy 

fields. 

Supplementary Materials: The following are available online at www.mdpi.com/2071-
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Abbreviation list 

BMA Bayesian Model Averaging 

CMIP5 The fifth phase of the Coupled Model Intercomparison Project 

CI Controlled irrigation 

CF Controlled irrigation and farmer fertilizer practices 

CO Controlled irrigation and organic fertilizer management 

CS Controlled irrigation and straw returning 

DNDC Denitrification-Decomposition model 

DOC Dissolved organic carbon, g kg-1 

EF Coefficient of model efficiency 

FI Flood irrigation 

FF Flood irrigation and farmer fertilizer practices 

FO Flood irrigation and organic fertilizer management 

FS Flood irrigation and straw returning 

FFP Farmer fertilizer practices 

GCMs General Circulation Models 

LSDs Least significant differences 

R2 Coefficient of determination 

RCPs Representative concentration pathways 

RMSEa The absolute root mean squared error 

RMSEn The relative root mean squared error 

SDSM Statistical Downscaling Model 

SOC Soil organic carbon, g kg−1 

STD Standard deviation 
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