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Abstract: A reliable estimation of public bicycle trip characteristics, especially trip distribution and
duration, can help decision-makers plan for the relevant transport infrastructures and assist operators
in addressing issues related to bicycle imbalance. Past research studies have attempted to understand
the relationship between public bicycle trip generation, trip attraction and factors such as built
environment, weather, population density, etc. However, these studies typically did not include
trip distribution, duration, and detailed information on the built environment. This paper aims to
estimate public bicycle daily trip characteristics, i.e., trip generation, trip attraction, trip distribution,
and duration using points of interest and smart card data from Nanjing, China. Negative binomial
regression models were developed to examine the effect of built environment on public bicycle
usage. Totally fifteen types of points of interest (POIs) data are investigated and factors such as
residence, employment, entertainment, and metro station are found to be statistically significant.
The results showed that 300 m buffer POIs of residence, employment, entertainment, restaurant,
bus stop, metro station, amenity, and school have significantly positive effects on public bicycle
generation and attraction, while, counterintuitively, 300 m buffer POIs of shopping, parks, attractions,
sports, and hospital have significantly negative effects. Specifically, an increase of 1% in the trip
distance leads to a 2.36% decrease in the origin-destination (OD) trips or a 0.54% increase of the trip
duration. We also found that a 1% increase in the number of other nearby stations can help reduce
0.19% of the OD trips. The results from this paper can offer useful insights to operators in better
estimating public bicycle usage and providing reliable services that can improve ridership.

Keywords: public bicycle; negative binomial regression; trip distribution; trip duration; smart card;
road traffic engineering

1. Introduction

Bicycle sharing system has gained global popularity in recent years and users across
cities in North America, Europe, and Asia are increasingly using shared bicycles as alterna-
tive transport modes for short-distance trips or connection to transit [1]. Its environmental
friendliness and flexible mobility are well-accepted benefits [2,3]. Hence, bicycle sharing
trips began to substitute trips previously made by public transit, walking, and even private
cars [4,5].

As a new transportation mode, the bicycle sharing system also brings challenges in
transportation planning, especially in the context of established guides such as the Euro-
pean standards, US standards, and Chinese standards [4]. For cities which were originally
not designed for cycling or did not have sufficient public cycling infrastructure, existing
transport infrastructures cannot satisfy the demand of bicycle sharing trips. Bicycling
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accessibility is significantly affected by the availability of shared-bike infrastructures [6].
In addition, public bicycle infrastructures should be deployed with proper guidance or
codes of practice, for example, where to locate potential self-service docking stations, depot,
and how to plan for or design dedicated cycling paths. Without a proper planning of
cycling infrastructures, the safety and efficiency of bicycle trips could be compromised. If
urban and transport planners have the means to better estimate public bicycle usage during
the planning stage (especially cycling trip distribution and duration when the bicycles are
loaned), decision-makers can take precautions to address issues related to safety, service
efficiency, and meeting demand with proper supply planning.

Past researchers have attempted to predict public bicycle demand for transportation
planning purposes using information related to the built environment, weather, population
density, etc. The majority of these models tend to be focused on trip generation, trip
attraction, and destination choice, while few tried to include the trip distribution and trip
duration, which is important in terms of establishing infrastructure provision standards
and optimization of public bicycle operations. In addition, built environment factors tend
to be complex and while many of these factors were studied in the literature, few actually
considered such factors in detail [7–13]. It must be noted that POI (point of interest) data
are derived from modern digital maps and they provide geographical location and category
of an urban facility (such as school, restaurant, hospital, etc.) [14]. This makes it possible
for researchers to categorize land use and the built environment in greater detail and to
utilize such data for predicting public bicycle trip characteristics.

As such, this paper aims to estimate public bicycle trip characteristics such as trip
generation, trip attraction, trip distribution, and duration with detailed POI and smart
card data in Nanjing, China. In particular, the scope of this study is focused on examining
the influence of various built environment factors on public bicycle trips, and this can
offer planners a perspective to better estimate public bicycle usage. The findings from
this study are expected to be valuable to planners as well as related operators to provide
reliable or tangible standards for a public bicycle system. The remainder of the paper is
structured as follows. First, an overview of the existing literature on shared bicycle demand
models is presented. Second, we present our approach in developing trip generation, trip
distribution, and trip duration models for the public bicycle system through an illustrative
case study of a Nanjing, China. This includes a discussion on our study area, data collection
efforts, and modeling methodology. Third, a set of negative binomial regression models
is developed for trip generation, trip distribution, and trip duration, and key factors that
could affect them are discussed. Finally, conclusions are drawn, and the limitations and
future research recommendations are discussed.

2. Literature Review

In order to estimate the public bicycle usage for transportation planning purposes,
various data resources such as GPS data [15], live point data [16], and journey data were
employed in the literature. In particular, access to public bicycle journey data has offered
opportunities to estimate the bicycle usage in the station level [7–13,17–25]. Based on
these data, numerous studies in the literature had been conducted to determine the in-
fluential factors affecting public bicycle usage. In particular, built environment [7–13,25],
demographics [17–20], and weather [21–24] are among the most extensively studied fac-
tors. For example, Rixey et al. [10] first explored the impact of university, park, bikeways,
and bus stops on public bicycle usage in three different U.S. cities. Thereafter, the effect
of nearby businesses and jobs of the bicycle station [9] and land use percentage [8] on
public bicycle usage were also investigated. Recently, Zhang et al. [7] developed multiple
linear regression models to understand how the public transport facilities and land use
characteristics can influence weekday, weekend, and peak hour bicycle trip generation.
Macioszek et al. [25] analyzed the impact of home and workplace on shared bicycle usage
in Warsaw, Poland, using bivariate ordered probit models. Faghih-Imani et al. also studied
how the number of restaurants and grocery stores can affect bicycle use in Montreal [11],
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Chicago [12], and New York [13]. Besides land use characteristics, other nearby bicycle
stations and amenities are also found to be influential to the usage and attractiveness of
shared bicycles [26].

Compared to past studies on bicycle trip generation, there are fewer studies on bicycle
trip distribution and duration in the literature. González et al. [27] developed a destination
choice model considering route length, socioeconomic characteristics, and presence of
metro stations. El-Assi et al. [21] added the consideration of available parking lots in the
station into the destination choice model. However, such data is not possible to obtain
during the transportation planning stage and as such, these models can only serve as short-
term prediction of trip destination choice post-construction or implementation. Caulfield
et al. [28] further studied the duration of bicycle trips in medium sized cities and found that
frequent users tend to have shorter trip durations. Gebhart and Noland [23] also attempted
to investigate the effect of weather and proximity to metro station on trip duration. It is
noted that these studies do not really consider the urban fabric or the built environment,
including whether there are restaurants, schools, or other POIs that reflect the activities
that drive travel demand.

It is well recognized that POIs offer specific services that meet peoples’ various re-
quirements [29], which can reflect the attractiveness of the built environment on transport
demand. Traditional data collection methods on built environment characteristics are costly,
time-consuming, and often with a low sampling rate. Today, POI data can be automatically
retrieved from web mapping services via API (Application Programming Interface) and
numerous researchers have introduced POI data into the analysis of transportation sys-
tems [14,29]. Nevertheless, there are few transport studies on this aspect focusing on public
bicycle usage. This includes Hampshire et al. [30], who added POI data from Tele Atlas to
explain the bicycle trip generation and attraction in Barcelona and Seville, Spain, and Zhao
et al. [31], who adopted POI data to analyze the shared bicycle reallocation demand in
Nanjing, China.

It can be seen from the literature that although past researchers have explored the
effect of various built environment factors on trip generation and distribution, there is
still a lack of a comprehensive approach to include all possible factors and at the same
time, consider the major bicycle trip characteristics (i.e., generation, attraction, distribution,
and duration).

3. Data Collection

Our study area is located in Hexi District of Nanjing, China. Hexi District has an
independent public bicycle system and it does not share its public bicycles with the other
districts in Nanjing. All the public bicycle renting transactions are achieved through the
use of a smart card. By charging 300 CNY (around 45.96 USD) as a deposit and usage fee,
the operator offers each user a unique smart card for renting the bicycle. For the first 2 h,
users can ride for free and thereafter, users are charged 1 CNY (around 0.15 USD) per hour
within 3 h and charged 3 CNY (around 0.46 USD) per hour after 3 h [32]. Since the public
bicycle system began operations in the district in January 2013, 267 fixed docking stations
were set up and nearly 10 thousand bikes came into service.

There are two main types of datasets used in this research: smart card data (journey
data) and POI data. Other data, such as station attributes and weather, are obtained through
public bicycle operators and public-domain meteorological websites, respectively. Smart
card data is one type of journey data, which is only available for a few cities [17]. A month
of smart card data (November 2015) from the public bicycle operator in Hexi District was
collected for this study. The dataset records detailed information on each public bicycle trip:
card number, rented bicycle number, starting station, ending station, starting time, ending
time, etc. Through simple data query methods, we can derive the number of trips generated
by or attracted to each station, the origin-destination (OD) matrix, and the duration of
each trip. It is worth noting that trips with extremely short durations (within 1 min) are
highly likely to be operator or technical errors [16,33] and are removed from our dataset.
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The major OD pair distribution is presented in Figure 1a, and it can be observed from the
figure that most public bicycle trips are somewhat connected to metro lines.
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POI data are retrieved from Baidu Map API [34]. Fifteen most relevant POI types
are selected for analysis and they include residence, employment, entertainment, restau-
rant, bus stop, amenity, shopping, attractions, hotel, school, park, metro station, sports,
and hospital. The heat map of all the POIs is shown in Figure 1b. It can be clearly seen
from the figure that there are three gathering places of POIs, two of which are near metro
stations. This indicates a high spatial correlation between urban built environment and
public bicycle trips.

4. Methodology
4.1. Dependent Variables and Model Choice

Four dependent variables are considered in this study, namely: trip generation, trip
attraction, trip distribution, and trip duration, since they are fundamental for establishing
infrastructure provision standards and optimization of public bicycle operations. For
example, trip generation and attraction could help to determine the capacity of bicycle
infrastructure, while trip distribution and trip duration could affect bicycle reallocation
amount and frequency. They are respectively characterized as daily departures for each
station, daily arrivals for each station, the number of daily trips between two stations,
and the duration of each trip. The histograms of these four dependent variables are shown
in Figure 2. A total of 1,427,770 public bicycle trips occurred in our study period and 57,119
rows of invalid data were removed (where trip duration is less than 1 min and accounting
for 3.8% of the entire database).
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As shown in Figure 2, none of the dependent variables conform to a normal distribu-
tion, indicating that the ordinary least squares (OLS) method could not be directly applied.
Since trip generation, attraction, distribution, and duration can be regarded as count data,
Poisson and negative binomial regressions are appropriate to fit them. However, over-
dispersion occurred when we conducted the Poisson dispersion test in all the four datasets.
This leads us to use negative binomial regression finally to estimate the count model.

In the negative binomial regression model, the probability that dependent variable Y
equals non-negative integer y conditioning on independent variables xi is as follows:

P(Y = y|x1, x2, x3, . . .) =
Γ(y + τ)

y!Γ(τ)
(1 + λ/τ)−τ(1 + τ/λ)−y (1)

where, λ is the mean of y and the variance of y is λ(1 + λ/τ) under the model assumption.
Maximum likelihood estimation (MLE) is used to estimate the coefficients τ, β0, and βi in
the following model:

ln λ = β0 + ∑ βixi (2)

4.2. Selection of Independent Variables

Two groups of independent variables were generated to explore their influences on
trip generation, attraction, distribution, and duration, as Table 1 shows. A great variety of
POI data can be derived from Baidu Map and we chose a total of 15 most relevant types to
investigate. Their specific contents can be found in the third column of Table 1. According
to the previous studies in other cities [7,12] and Nanjing planning standard [35], we set a
300 m radius as the walkable distance for public bicycle trips. Therefore, the number of
POIs in the 300 m buffer is used to capture the influence of POI. Since attractions, hotel,
school, park, metro station, sports, and hospital are sparsely scattered in the map, we use
dummy variables instead for them.

Table 1. Descriptive statistics of independent variables.

Variables Description Mean Standard Deviation

POI data

Residence Number of houses/apartments in 300 m buffer 26.22 15.27
Employment Number of enterprises/factories in 300 m buffer 45.29 57.59

Entertainment Number of KTVs (karaoke)/bars/cinemas/teahouses/massage
facilities in 300 m buffer 14.27 12.82

Restaurant Number of restaurants in 300 m buffer 22.93 21.76
Bus stop Number of bus stops in 300 m buffer 2.99 1.59
Amenity Number of banks/post offices/libraries/repair facilities in 300 m buffer 25.50 17.73
Shopping Number of supermarkets/malls/stores in 300 m buffer 25.96 29.50

Attractions Dummy variable: 1 = accessible to attractions/scenic
spots/museums/galleries in 300 m buffer; 0 = not accessible 0.46 0.50

Hotel Dummy variable: 1 = accessible to hotels/lodges/inns/motels in 300 m
buffer; 0 = not accessible 0.82 0.39

School Dummy variable: 1 = accessible to schools in 300 m buffer; 0 = not
accessible 0.21 0.41

Park Dummy variable: 1 = accessible to parks/gardens/arboretums in 300 m
buffer; 0 = not accessible 0.04 0.19

Metro station Dummy variable: 1 = accessible to metro stations in 300 m buffer; 0 =
not accessible 0.12 0.33

Sports Dummy variable: 1 = accessible to fitness centers/swimming
pools/gymnasiums in 300 m buffer; 0 = not accessible 0.52 0.50

Hospital Dummy variable: 1 = accessible to hospitals in 300 m buffer; 0 = not
accessible 0.55 0.50

Station attribute and
weather data

Station capacity Number of bike slots 36.82 8.40
Other stations Number of other bike stations in 300 m buffer 3.35 3.08
Bike lane Dummy variable: 1 = dedicated bike lane; 0 = no dedicated bike lane 0.47 0.50
Temperature Daily Mean Temperature (◦C) 11.80 4.75
Rain Dummy variable: 1 = rain; 0 = no rain 0.47 0.50
Weekday Dummy variable: 1 = weekday; 0 = weekend 0.70 0.46
Distance Trip distance from origin station to destination station (km) 1.15 0.77
Metro station ×metro station 0.014 0.119

Weather and station attribute data include mean temperature, rain or not, station
capacity, other stations in the 300 m buffer, weekday or not, and trip distance. These
variables are used to complement POI data in order to better explain the dependent
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variables. In particular, the trip distance is measured by the shortest path, which is an
appropriate indicator for actual trip distance, though they may not be the same [12].

5. Results

The results of the four negative binomial regression models are shown in Tables 2–
7. In linear regression models, researchers use R-squared to measure the proportion of
explained deviance. The counterpart for generalized linear models is pseudo R-squared.
Although not an exactly equivalent statistic to the adjusted R-square of the linear regression
model, pseudo R-squared can evaluate the goodness of fit, also ranging from 0 to 1. There
are several pseudo R-squares and we chose Nagelkerke Pseudo R-squared [19,28] and
Cox-Snell Pseudo R-squared [9], which have been used in a previous study of public bicycle
usage. We also checked the significance of the likelihood ratio chi-square for each model
and estimated the elasticities (or elasticities at the mean).

5.1. Generations and Attractions Model

Table 2 shows the results of the negative binomial regression that measured the public
bicycle trips’ generation and attraction. Most of the independent variables were statistically
significant and the majority of regression coefficients showed the expected signs. Although,
the Cox-Snell pseudo R-squared is 0.52, not as good as Wang et al.’s research [9], but
still with great significance, which is also confirmed by the likelihood ratio chi-square
significant at a 0.0001 level.

As expected, both residence and employment have a positive effect on public bicycle
usage. The coefficient of residence in the generation model is significantly bigger than that
in the attraction model, which indicates that more people tend to depart from stations near
residence (home) than arriving to such stations. While, the coefficients of employment and
entertainment are just the opposite. Such trip preference inevitably leads to the imbalance
of public bicycles spatially.

Trip activities were higher in bicycle stations with metro stations as well as bus stops
in the 300 m catchment, indicating that many users take public bicycle as a first/last mile
feeder mode to transit stations [19,21,30]. Both generations and attractions increase when
there are higher numbers of restaurants or amenities such as bank, post office, library, repair,
etc., in the 300 m buffer of the station. However, the unanticipated negative coefficient of
attractions and park means that people rarely ride public bicycles to attractions or parks.
This is probably because the public bicycle of Nanjing can only be rented by deposit smart
card, which is not so friendly to visitors. Likewise, shopping, sports, and hospital also have
negative effects on public bicycle usage. It is reasonable for users not cycling when they
are full of purchases or rackets or they are ill.

This study also confirms results of previous studies. As can be seen in Table 2,
rainy weather decreases both the generations and the attractions of public bicycles [21,23].
The elasticity of station capacity shows that an increase of 1% in the station capacity leads
to a 0.46% and 0.5% increase in the trip generation and attraction, respectively. The public
bicycle usage in Nanjing is much more frequent on weekdays than weekends, similar to
annual members in New York [13]. The negative sign for other stations coefficient confirms
that an increase of other bike stations within the 300 m buffer will lower the demand
generated at this station [7,12].
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Table 2. Regression coefficients for trips’ generation and attraction model.

Generation Model Attraction Model

Variable Coefficient Z Value Coefficient Z Value

(constant) 1.937 16.43 *** 1.846 15.56 ***
Ln (Residence) 0.084 8.68 *** 0.067 7.00 ***

Ln (Employment) 0.042 4.29 *** 0.066 6.81 ***
Ln (Entertainment) 0.042 2.65 ** 0.057 3.56 ***

Ln (Restaurant) 0.040 3.28 ** 0.045 3.68 ***
Ln (Bus stop) 0.186 10.38 *** 0.193 10.75 ***
Ln (Amenity) 0.258 13.87 *** 0.226 12.10 ***
Ln (Shopping) −0.062 −5.82 *** −0.072 −6.73 ***

Attractions −0.303 −19.81 *** −0.301 −19.60 ***
School 0.086 4.91 *** 0.075 4.22 ***
Park −0.473 −12.15 *** −0.476 −12.17 ***

Metro station 0.622 27.40 *** 0.573 25.09 ***
Sports −0.114 −7.47 *** −0.104 −6.79 ***

Hospital −0.124 −7.25 *** −0.129 −7.51 ***
Ln (Station capacity) 0.463 14.85 *** 0.504 16.05 ***

Other stations −0.082 −29.40 *** −0.085 −30.17 ***
Bike lane 0.175 11.15 *** 0.156 9.85 ***

Temperature 0.034 21.85 *** 0.034 21.61 ***
Rain −0.352 −23.65 *** −0.353 −23.56 ***

Weekday 0.194 12.64 *** 0.195 12.63 ***
Likelihood ratio

chi-square 4376 *** 4247.2 ***

Pseudo R2

(Cox-Snell)
0.52 0.51

Pseudo R2

(Nagelkerke)
0.63 0.61

Degree of Freedom
(DF) 7690 7690

*** p < 0.001; ** p < 0.01.

Table 3. Elasticity of generation and attraction model.

Variable
Elasticity

Variable
Elasticity at Mean

Generation Model Attraction Model Generation Model Attraction Model

Residence 0.084 0.067 Attractions −0.138 −0.137
Employment 0.042 0.066 School 0.019 0.016

Entertainment 0.042 0.057 Park −0.018 −0.019
Restaurant 0.040 0.045 Metro station 0.077 0.071

Bus stop 0.186 0.193 Sports −0.060 −0.055
Amenity 0.258 0.226 Hospital −0.068 −0.071
Shopping −0.062 −0.072 Other stations −0.276 −0.285

Station capacity 0.463 0.504 Bike lane 0.082 0.073
Temperature 0.402 0.400

Rain −0.165 −0.165
Weekday 0.136 0.136

5.2. Distribution and Duration Model

Trip distribution (OD) and duration are influenced by attributes of both origin station
and destination station. Therefore, all the independent variables of origin station and
destination station as well as trip distance have been examined. Besides, to isolate the
impact of abnormally long duration trip, we removed these outliers from the dataset.
Outliers in this research refer to any trip duration data that falls more than 3 times the
interquartile range above the third quartile, accounting for 3.7% of the total data.

Table 4 shows the regression coefficients for the distribution (OD) model. The Cox-
Snell pseudo R-squared and Nagelkerke pseudo R-squared are 0.46 and 0.69 respectively,
and the likelihood ratio chi-square is significant at a 0.0001 level, indicating a good fit. All
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the estimated coefficients were statistically significant and with the expected signs. To avoid
overestimating trips between two bike stations that both have proximity to metros, we
added another variable “metro station ×metro station” to the model, which is calculated
as product of “metro station” in both origin and destination.

The negative coefficient of “metro station × metro station” means that users are
less likely to ride a public bicycle from one metro coverage to another metro coverage.
Apparently, distance is the most influential factor of trip OD. The elasticity shows that an
increase of 1% in the trip distance leads to a 2.36% decrease in the OD trips. Analogous
to the generation or attraction model, both start station capacity and end station capacity
were positively correlated with OD trips. The elasticity for other stations at the mean value
is −0.19, implying that a 1% increase in the number of other nearby stations can result in a
0.19% reduction in the OD trips. In both the origin station and destination station 300 m
catchment, the number of residence POIs and employment POIs had a positive correlation
with OD trips, as expected.

Table 4. Regression coefficients for distribution model.

Variable Coefficient Z Value

(constant) −3.328 −76.85 ***
Ln (Distance) −2.355 −844.65 ***

Metro station ×metro station −0.959 −64.27 ***
Rain −0.374 −96.40 ***

Weekday 0.225 55.49 ***
Temperature 0.036 88.69 ***

Origin Station
Ln (Residence) 0.079 39.71 ***

Ln (Employment) 0.092 47.77 ***
Ln (Station capacity) 0.438 54.45 ***

Other stations −0.055 −80.22 ***
Metro station 0.686 124.50 ***

Destination Station
Ln (Residence) 0.049 23.91 ***

Ln (Employment) 0.106 56.25 ***
Ln (Station capacity) 0.498 60.11 ***

Other stations −0.056 −80.64 ***
Metro station 0.636 114.78 ***

Likelihood ratio chi-square 733,485 ***
Pseudo R2 (Cox-Snell) 0.46

Pseudo R2 (Nagelkerke) 0.69
df 1,957,124

*** p < 0.001.

Table 5. Elasticity of distribution model.

Variable Elasticity Variable Elasticity at Mean

Distance −2.355 Metro station ×metro station −0.014
Rain −0.174

Weekday 0.158
Temperature 0.429

Origin Station
Residence 0.079 Other stations −0.186

Employment 0.092 Metro station 0.085
Station capacity 0.438

Destination Station
Residence 0.049 Other stations −0.187

Employment 0.106 Metro station 0.079
Station capacity 0.498
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The results of regression coefficients for trips’ duration are presented in Table 6.
The pseudo R-squared and the significant likelihood ratio chi-square also suggest a good
fit. Unsurprisingly, the trip distance is also positively related to the trip duration [28]. As
the most remarkable factor, a 1% increase in the trip distance tends to raise 0.54% of the
trip duration.

Compared with trips at the weekend, the expected trip duration is shorter on week-
days [28]. Users could take their time riding a public bicycle at the weekend, without
worrying about lateness for work or school. As one would expect, trips involving metro
stations have a negative impact on the trip duration. This is because public bicycle trips
access to or egress from metro stations imply the “first mile” or “last mile” connection to
metro trips, which is usually short as one part of a big trip chain. However, trips starting
from or ending at home (residence) are likely to have longer travel times.

Interestingly, the elasticity shows that large station capacity, especially in the desti-
nation station, tends to decrease the trip duration greatly. That is probably because larger
station capacity may reduce the likelihood of no-bike-to-rent or no-slot-to-return situations.
The dedicated bike lane in the destination station has a significantly negative impact on trip
duration. This perhaps suggests that a dedicated bike lane can improve riding efficiency.

Table 6. Regression coefficients for the duration model.

Variable Coefficient Z Value

(constant) 6.702 639.73 ***
Ln (Distance) 0.537 815.95 ***

Weekday −0.061 −63.08 ***
Origin Station

Ln (Residence) 0.016 35.03 ***
Ln (Station capacity) −0.065 −32.75 ***

Metro station −0.025 −23.34 ***
Destination Station

Ln (Residence) 0.032 71.17 ***
Ln (Station capacity) −0.094 −47.34 ***

Metro station −0.078 −70.26 ***
Bike lane −0.018 −19.74 ***

Likelihood ratio chi-square 673,116 ***
Pseudo R2 (Cox-Snell) 0.50

Pseudo R2 (Nagelkerke) 0.61
df 1,261,752

*** p < 0.001.

Table 7. Elasticity of the duration model.

Variable Elasticity Variable Elasticity at Mean

Distance 0.537 Weekday −0.046
Origin Station

Residence 0.016 Metro station −0.006
Station capacity −0.065

Destination Station
Residence 0.032 Metro station −0.017

Station capacity −0.094 Bike lane −0.010

6. Conclusions

Previous research efforts have attempted to find out the relationship between the
public bicycle trip generation, attraction, and factors such as built environment, weather,
population density, etc. However, they have neglected to include the trip distribution and
duration as a whole and not investigated the built environment in detail, especially in
China. This study developed negative binomial regression models to fill the research gap
based on POI data in Nanjing. All the four developed models, including Generation Model,
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Attraction Model, Distribution Model, and Duration Model, showed a good fit in terms of
pseudo R-squared and likelihood ratio chi-square. A number of interesting findings were
also revealed in this study.

Firstly, our findings of generation and attraction models showed that 300 m buffer
POIs of residence, employment, entertainment, restaurant, bus stop, metro station, amenity,
and school have significantly positive effects on public bicycle generation and attrac-
tion, while, counterintuitively, 300 m-buffer POIs of shopping, parks, attractions, sports,
and hospital have significantly negative effects. The negative effect is probably owing to the
visitor-unfriendly smart card renting system and inconvenience resulting from handfuls
of purchases or illness. The model also confirms the previous studies’ results that large
station capacity as well as warm temperature could attract more public bicycle trips and
inversely, other nearby stations and rainy weather could decrease the public bicycle usage
in the station.

Secondly, the distribution model confirmed the positive effect of residence and em-
ployment POIs on the public bicycle usage. Moreover, the findings suggest that “metro
station × metro station” and trip distance have a negative impact on OD trips. Specifically,
an increase of 1% in the trip distance leads to a 2.36% decrease in the OD trips. “Metro
station × metro station” is a necessary factor to avoid overestimating trips between metro
coverages. We also found that a 1% increase in the number of other nearby stations can help
reduce 0.19% of the OD trips. It is useful for operators to know the influence quantitatively,
when they try to alleviate the imbalance issue by adjusting other nearby stations.

Thirdly, the duration model revealed that a 1% increase in the trip distance tended
to raise 0.54% of the trip duration. Trips involving metro stations are usually short, while
trips starting from or ending at home (residence) are prone to be long. Besides, the results
suggest that larger station capacity and dedicated bike lanes can significantly shorten users’
trip duration. It is meaningful for operators or decision-makers to realize this effect in
order to improve the level of service.

Taken together, this study contributes to the literature by providing quantitative
results about how built environments affect the public bicycle usage. Specifically, valuable
insights gained from this research may help operators and decision-makers understand
how various types of POIs influence the whole process of public bicycle trips: generation,
attraction, distribution, and duration. The findings of this study point to key factors for
consideration in the planning stage to alleviate the reallocation burden in operation. For
example, bus stops and amenities could attract more bicycle usage, and bicycle stations
near them need bigger capacity. While bicycle stations near attractions and other bicycle
stations are just the opposite since they showed significantly negative effects on the bicycle
usage.

It is noteworthy that we only investigated public bicycles in this study and all the
findings are fit for public bicycles. As for private bicycles, the trip characteristics could be
different because the users usually have to pick up their private bicycles when they start a
new trip. Thus, a visiting point with available bicycle parking lots are prone to be chosen.
The POI may not play an important role in the private bicycle usage.

Although necessary measures have been taken, there are still several limitations in this
study. One limitation of this research is that only one-month smart card data were gained
to train the regression model and various weather conditions cannot be investigated in
detail. Another limitation we encountered is that there are no free-access population and
job data accurate to the block scale in Nanjing, so we used the residence and employment
POIs instead. Nevertheless, the explanatory power is still weakened. Besides, the model
coefficients from one case city (Nanjing, China) may not be directly transferable when
applied to other cities since each city has its own trip characteristics. As a future research
line, we suggest researchers obtain enriched data with much longer spans and adapt the
analytical method proposed in this paper to other cities.
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