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Abstract: Disastrous natural hazards, such as landslides, floods, and forest fires cause a serious
threat to natural resources, assets and human lives. Consequently, landslide risk assessment has
become requisite for managing the resources in future. This study was designed to develop four
ensemble metaheuristic machine learning algorithms, such as grey wolf optimized based artificial
neural network (GW-ANN), grey wolf optimized based random forest (GW-RF), particle swarm
optimization optimized based ANN (PSO-ANN), and PSO optimized based RF for modeling rainfall-
induced landslide susceptibility (LS) in Aqabat Al-Sulbat, Asir region, Saudi Arabia, which observes
landslide frequently. To obtain very high precision and robust prediction from machine learning
algorithms, the grey wolf and PSO optimization algorithms were integrated to develop new ensemble
machine learning techniques. Subsequently, LS maps produced by training dataset were validated
using the receiver operating characteristics (ROC) curve based on the testing dataset. Based on the
area under curve (AUC) value of ROC curve, the best method for LS modeling was selected. We
developed ROC curve-based sensitivity analysis to investigate the influence of the parameters for
LS modeling. The Gumble extreme value distribution was employed to estimate the rainfall at 2, 5,
10, 20, 50, and 100 year return periods. Then, the landslide hazard maps were prepared at different
return periods by integrating the best LS model and estimated rainfall at different return periods.
The theory of danger pixels was employed to prepare a final risk assessment of the resources, which
have been exposed to the landslide. The results showed that 27-42 and 6-15 km? were predicted as
the very high and high LS zones using four ensemble metaheuristic machine learning algorithms.
Based on the area under curve (AUC) of ROC, GR-ANN (AUC-0.905) appeared as the best model
for LS modeling. The areas under high and very high landslide hazard were gradually increased
over the progression of time (26 km? at the 2 year return period and 40 km? at the 100 year return
period for the high landslide hazard zone, and 6 km? at the 2 year return period and 20 km? at the
100 year return period for the very high landslide hazard zone). Similarly, the areas of danger pixel
also increased gradually from the 2 to 100 year return periods (37 km? to 62 km?). Various natural
resources, such as scrubland, built up, and sparse vegetation, were identified under risk zone due to
landslide hazards. In addition, these resources would be exposed extensively to landslides over the
advancement of return periods. Therefore, the outcome of the present study will help planners and
scientists to propose high precision management plans for protecting natural resources, which have
been exposed to landslides.

Keywords: rainfall-induced landslide susceptibility; sensitivity analysis; metaheuristic optimization;
risk assessment; return periods; Gumble extreme value distribution
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1. Introduction

Landslide has been considered as the most frequent geo-hazard in the mountainous
regions across the world, which causes a serious threat to the natural resources, assets and
lives [1]. It frequently occurs when the mountainous regions observe an intense rainfall [2].
Since the landslide occurrences comprise 9% of all-natural hazards in the last few decades,
it is expected that the trend of landslide occurrences will be increased in future. The main
reasons are the acceleration of developmental processes in mountainous regions, such
as the urbanization and expansion of agricultural land, along with intense rainfall for a
very shorter period of time due to climate change, which can increase the frequency of
landslides [2-5]. Generally, landslides are a natural phenomenon and fairly uncertain
in nature. Consequently, its occurrences cannot be controlled [2]. The damages can be
minimized by implementing proper management plans, therefore, to minimize the dam-
ages caused by landslides, risk assessment and susceptibility mapping of landslides need
to be investigated. Researchers have attempted to construct the landslide susceptibility
map, which can identify the future probable landslide regions in spatial scale [3]. As a
consequence, the construction of landslide susceptibility modeling has become a vital
task to geological engineers and earth scientists to propose mitigation plans. Moreover, it
is considered as the most basic and valuable step to prepare a comprehensive landslide
hazard modeling and risk assessment, which can increase the performance of the disaster
management plans [5].

As landslide susceptibility mapping is essential for preparing the risk assessment, it
is required to have very high precision and accurate landslide maps. Very high-quality
landslide susceptible models generally depend on a combination of several geospatial
landslides triggering factors, such as elevation, slope, geology, land use land cover, aspect
and others. Since the last decades, the utilization of advanced remote sensing technologies
has allowed multi-resolution high-dimensional datasets to be conveniently accessible to
researchers. The features of the earth surface have been extracted through these advanced
remote sensing datasets. High-resolution satellite images provide highly accurate features
of the earth surface, such as sentinel-2, advanced land observing satellite-phased array type
L-band synthetic aperture radar (ALOS PALSAR) digital elevation model (DEM), QuickBird
etc. [5]. The landslide susceptible models have been constructed by the integration of
landslide triggering factors [6]. Researchers have developed and adopted a variety of
approaches for integrating the triggering factors to generate the final landslide susceptibility
models [7]. They are physical-based, heuristic, and statistical methods [7-9]. The physical
process-based methods utilize the law of mechanics to model the slope instability to
evaluate the landslide susceptibility. These are mainly applicable for a small area as
they are required to have very detailed topography data [7]. Heuristic-based models
predict the probability of the landslide occurrences based on expert views. These methods
are strongly dependent on the expert’s view; therefore, they are sometimes biased and
produced moderately accurate output [8].

In comparison with the mentioned methods, statistical techniques have been exten-
sively employed for landslide susceptibility modeling. However, the statistical models only
require the normal distribution of the landslide triggering factors, and then it can generate
good quality landslide susceptible models. However, it is very difficult to obtain normally
distributed triggering factors [8]. With the advancement of remote sensing databases
and machine learning algorithms, researchers have started to utilize the machine learn-
ing algorithms to overcome mentioned drawbacks and generate good quality landslide
susceptibility models. Widely popular machine learning algorithms which have been exten-
sively used for landslide susceptibility modeling are ANN [9,10], support vector machine
(SVM) [11-13], RF [14-16], and decision tree [17,18]. However, these conventional machine
learning algorithms also have several drawbacks, such as local optimum, over-fitting, low
training speed etc. [7].

Researchers have developed and utilized the ensemble machine learning algorithms to
overcome the mentioned drawbacks and generate very high-quality landslide susceptibility
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maps [7]. Many ensemble machine learning algorithms have reported high performances
for generating landslide susceptibility maps, such as random subspace [19,20], Reptree [21],
bagging [22-24], naive Bayes [9,25], ANFIS [26-29], AdaBoost [22], and Rotation forest [8,30].
The outstanding results produced by the ensemble machine learning algorithms inspire
researchers to develop, utilize, and test new ensemble machine learning algorithms. Al-
though no general agreement has been found for the selection of the best method for
landslide susceptibility modeling [31]. Researchers recommend the development and
testing of new models for obtaining very high precision landslide susceptibility maps [32].

Many ensemble machine learning algorithms have the drawbacks of over-fitting [31].
Eshtay et al. [33] reported that the weights of the input layers are randomly produced, and
the models do not update or optimize the weights during the training phase, which causes
an unstable performance. To solve these drawbacks, metaheuristic optimized algorithms
have been proposed, which searches for the best parameters and optimizes the weights of
the input layer. Taormina and Chau [34] used the extreme learning machine (ELM) and its
ensemble with particle swarm optimization (PSO) for streamflow prediction and reported
that the ensemble model outperforms the standalone ELM model. Niu et al. [35] revealed
that PSO could substantially improve the prediction reliability of the base model. Recently,
some hybrid models have been developed in landslide susceptibility by combining machine
learning algorithms and optimization algorithms, such as PSO and grey wolf (GWO) [35].
Very rare studies on landslide susceptibility modeling using the optimized ensemble
machine learning techniques in Saudi Arabia have yet been documented. To fill the research
gaps, the present study designed to develop four optimized machine learning algorithms by
combining PSO and GWO with ANN and RFE. They are GW-ANN, GW-RF, PSO-ANN, and
PSO-REF. In addition, the area under the receiver operating characteristics curve (AUC-ROC)
based sensitivity analysis was proposed for investigating the performance of landslide
triggering factors for LS modeling, which has not yet been explored in the existing literature.
The map removal technique and ROC curve were integrated to develop this technique.
The ROC based sensitivity analysis is actually the modified version of map removal
technique. First, LS models were constructed based on map removal technique. The
map removal technique is the removal of individual parameters at one time during the
modeling of landslide susceptibility maps and then performed same process repeatedly
for all parameters [36]. In this way, the effect of removing any parameters among all
selected parameters for modeling the output have been measured [36]. In addition, ROC
curve was employed to validate the map removal based LS models. Consequently, the
quantification of the variation of the LS models produced by map removal techniques can
be possible, which were the major drawbacks of the map removal technique. Generally,
several statistical methods, such as sensitivity, specificity, true predicted positive and
negative, and Youden index J can be used for validation. However, numerous researchers
have preferred to use the ROC curve for validation as it is considered as unbiased and
statistically robust than the mentioned method [35]. For this reason, the ROC curve was
employed to validate the map removal based LS models.

When the landslide susceptibility has been integrated with the temporal and magni-
tude information, the landslide hazard model has been generated [2]. Coro minas et al. [37]
suggested several methods to construct the landslide hazard map, such as judgmental
method, empirical method, rational method, magnitude-frequency relations, and indirect
approach. However, the most common approach is the magnitude-frequency approach,
which combines the landslide susceptibility with the temporal landslide triggering factors,
such as rainfall or earthquake [38]. The generated landslide hazard model has been further
combined with the socio-economic framework to produce the potential risk of different
resources, such as forest, buildings, structures etc. [2]. The risk assessment has been consid-
ered as the ultimate scope for landslide research, which facilitates to propose disaster and
land management plans [2,39].

Many studies on the landslide risk assessment have already been carried out using a
variety of methods [40—44]. They are qualitative, semi-quantitative, and quantitative meth-
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ods [2]. Qualitative methods evaluate the landslide risk based on expert knowledge [45].
Semi-quantitative methods assess the landslide risk by assigning the weights to the slope
instability triggering factors [46]. Quantitative methods model the landslide risk by com-
bining landslide hazard, vulnerability, and elements at risk, such as infrastructures (dam,
barrage, buildings, road etc.), structure, human lives, transportation, public services, and
mining [47]. However, the data scarcity is the main hindrance to construct an informative
landslide risk model; therefore, semi-quantitative methods are suitable. In the present
study, the semi-quantitative approach was adopted because of the data scarcity in terms of
the historical landslide, consequences, details of resources at risk and their conditions, and
values of damages in price. Many researchers successfully utilized the theory of danger
pixel as the semi-quantitative approach for assessing the landslide risk in data-scarce
regions [48].

Previous literature reported that numerous ensemble machine learning algorithms
have already been developed for predicting rainfall induced landslide susceptibility. How-
ever, it is very rare that studies on the development of hybrid ensemble machine learning
algorithms by integration of meta-heuristic algorithms and machine learning algorithms
for predicting landslide susceptibility have been carried out. In addition, no studies have
been carried out to construct spatial sensitivity analysis to investigate the spatial differ-
ences, which have been observed in the landslide susceptibility maps if any landslide
conditioning parameters are removed from the modeling process. For spatial sensitivity
analysis, landslide susceptibility models, similar to landslide conditioning factors, would
be constructed. On the other hand, very rare studies on the spatiotemporal landslide
susceptibility modeling have been carried out. Additionally, no studies have been carried
out on the spatiotemporal risk assessment due to rainfall induced landslide. Therefore,
these research gaps should be addressed to propose comprehensive and highly accurate
landslide management plans.

The present study area, Ababa Al-Sulbat in Asir region, has observed frequent land-
slide events. Consequently, the risk assessment has become essential to minimize the
damages of different resources. The main scope of the work is to develop four ensemble
metaheuristic machine learning algorithms and ROC curve-based sensitivity analysis at a
spatial scale. The ROC based sensitivity analysis was employed to investigate the influence
of the conditioning parameters for LS modeling. The spatiotemporal landslide risk assess-
ment using the theory of danger pixel is another scope of the study. This work is the first
comprehensive attempt to landslide risk assessment in Saudi Arabia. The main novelties
can be summarized as follows:

e  General: The work contributes to the robustness of knowledge by developing and uti-
lizing methods to an unstudied area on the landslide susceptibility and spatiotemporal
risk assessment.

e Regional: Increased knowledge of landslide susceptibility and spatiotemporal risk
assessment in Aqabat Al-Sulbat, Asir region, Saudi Arabia. The outcome of this
work would be a valuable basis for the earth scientists, government authorities, and
stakeholders to improve land management and disaster management.

e Methodical: Proposed ensemble metaheuristic machine learning algorithms, such
as PSO-ANN, PSO-RF, GW-ANN, and GW-RF for LS modeling. Developed ROC
based sensitivity model at spatial scale first time. Constructed long-term landslide
risk assessment using danger pixel.

2. Materials and Methodology

In the present study, a variety of materials for preparing the landslide conditioning
parameters and landslide hazard maps were collected from different sources. The ALOS
PALSAR DEM was downloaded from Earth Science Data Systems of national aeronautics
and space administration (NASA). The sentinel-2 multispectral instrument (MSI) was obtained
from the earth explorer of the United States Geological Survey (https://earthexplorer.usgs.
gov/). The geological map was extracted from the map of the Saudi Geological Survey
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at the scale of 1:100,000. The soil texture data was collected from the field survey. The
drainage map and road were digitized and prepared from Google earth imagery and
ArcGIS 10.5 software.

2.1. Study Area

Agqabat Al-Sulbat is situated along Abha-Bahah Road at the northern part of Balgarn
Area, in the Asir Region of Saudi Arabia, covering 199 km? area (Figure 1). The geo-
graphical location of study area extends between 19°45'4.407" N and 19°54'42.055” N and
41°40/52.31" E to 41°53/6.169” E. The study area characterizes by 9892404 m. elevation
with 1768 m. of average elevation from mean sea level. According to the geological map,
the site belongs to Ablah Group, which is structurally-controlled by the Farwah Shear
Zone and located between the Al Lith-Bidah and Shwas-Tayyah structural belts. Three
formations occur in this group, such as Jerub Formation, Rafa Formation, and Thurat
Formation, together composing a succession of epiclastic and volcanic rocks. A broad
range of fractures exist, many of which split the rock into cubic or quadrangular blocks. All
joints are exposed to weathering and potential soil erosion. Slope failure occurred due to
the progression of a mass of rocks along a single discontinuity has been depicted as plane
failure as such a mass on such a plane translates from its origin to its resting place. This is
the case of the totally isolated rock block sitting on a discontinuity, and a situation seldom
met in reality Sliding failure from a long continuous rock slope is often contained by release
surfaces which may allow the mass to move down-dip along the basal plane. The wedge
failure of rock slope may be the most common type of failure in the Aqabat Al-Sulbat area.
The climatic condition of the study area is characterized by cold and semi-arid weather.
The long-term average rainfall is 218 mm, out of which 75% of rainfall happens between
February and June. The average maximum and minimum temperature of the study area
are 29.5 and 16.8 °C.
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Figure 1. Showing the study area and landslide locations: (a) country boundary of Saudi Arabia with Asir region; (b) Asir

region boundary with the study area location; (c) the study area, landslide locations and non-landslide location and (d,e) 3D

model of landslide site (yellow circle showing landslide-prone area).

2.2. Landslide Inventories

The creation of landslide inventories is a vital task to train and test the LS model. In
the present study, the landslide occurrences locations were examined and identified from
the field survey and government report (Figure 2). Fifty landslide locations were collected
using the global positioning system (GPS) and Google Earth. Out of which, 80% (40 points)
of the total points were randomly selected for constructing the training datasets, while
the rest of the points (10 points) were used for generating the validation datasets. The
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classification-based LS modeling was adopted for the present study; therefore, it needs to
incorporate binary data for the modeling. As a consequence, we were required to have
non-landslide locations. Tang et al. (2020) [49] suggested using similar numbers of negative
points for obtaining better results. Although no concrete literature has been found about
the selection of the numbers of negative points. Therefore, 50 non-landslide locations
were randomly selected based on the past or historical landslide records, local people’s
perception, and Google Earth image. The locations had not observed landslide yet, and
were considered as non-landslide points or locations. The selected non-landslide locations
were cross-checked with the expert geotechnical engineers and government reports, that
showed that the non-landslide locations are authentic and can be used for preparing
training and testing datasets. However, many researchers have followed the identical way
to collect negative samples for landslide, flood and other predictive modeling [50]. Some
researchers have used different instruments to test the sites in terms of soil texture, rock
hardness, permeability, and other aspects and based on the testing results, they selected
the sites as negative or positive samples [50]. On the other hand, in the data scarce and
technologically developing regions, researchers use historical remote sensing data archive
(Landsat images), government report, and local people perception to analyze the study area
to pick the negative samples. Then, selected samples have been judged in respect to the
characteristics of the landslide conditioning parameters and expert opinions. Therefore, the
selection of negative or non-landslide location has been done very scientifically. However,
similar to landslide data, the non-landslide data was partitioned by the 80-20 ratio for
constructing training and testing datasets. The training dataset was created by combining
80% of both landslide and non-landslide locations. We generated training datasets in
binary form by assigning 0 and 1 value for landslide and non-landslide locations. Similarly,
the validation dataset was generated in binary form. The data was extracted from the
landslide triggering factors based on the training dataset in ‘spatial analyst” toolbox of
ArcGIS 10.5 software.
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Figure 2. Showing some field photographs with corresponding point locations for soil sample collection sites and landslide

locations in the study area.

2.3. Landslide Conditioning Parameters

The landslide susceptibility modeling has been constructed based on the complex
relationship between landslide triggering factors and past landslide [51]. The selection
of suitable parameters is a challenging work. Expert knowledge on the study area and
previous literature can provide the way for selecting the landslide triggering factors [51].
Twelve landslide triggering factors were selected for modeling landslide susceptibility, such
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as elevation, slope, aspect, curvature, geology, soil texture, land use/land cover, drainage
density, lineament, distance to road, NDVI, and topographic wetness index.

2.3.1. Elevation

One of the significant factors of landslide events is elevation, which controls vegetation,
the direction of runoff, rate of drainage density, gravitational energy of landslides and
human activities [9]. The slope failure and durability have been caused by elevation [20].
The elevation map was generated from a DEM. The elevation in the study area ranges from

2404 to 989 m (Figure 3a).
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Figure 3. Showing the landslide triggering factors, such as (a) elevation, (b) slope, (c) curvature, (d) aspect, (e) geology, (f)
soil texture, (g) lineament density, (h) topographic wetness index (TWI), (i) normalized differentiation vegetation index
(NDVI), (j) land use land cover (LULC) types, (k) drainage density, (1) distance to road.

2.3.2. Slope

The most prevalent factor of landslide occurrences is slope [24,52,53]. The occurrence
of landslides is directly controlled by the slope angle of an area [54]. The slope map was
extracted from ALOS PALSAR DEM. The slope of the study area ranges from 81.03° to 0°
(Figure 3b).
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2.3.3. Curvature

Curvature has been considered as one of the influential landslide conditioning topo-
graphical parameters. The main function of curvature is the generation of surface runoff. It
also influences the infiltration. Generally, the curvature is of three categories, such as the
concave (negative curvature), flat (zero curvature) and convex (positive curvature). The
runoff generation capability is much more for convex slope than concave slope [54]. Therefore,
the runoff in mountainous regions depends upon the types of curvature (Figure 3c).

2.3.4. Aspect

The aspect has been described as the direction of the slope of an area. The aspect
map has been extracted from the DEM of the study area. The generated aspect map was,
then, reclassified into eight classes, such as flat, north, northeast, east, southeast, south,
southeast, west, and northwest (Figure 3d).

2.3.5. Geology

Rock characteristics and its types regulate the physical features of rocks, which directly
regulate the slope instability or failure. The geology map of the study area was digitized
from the Saudi Geological survey at the scale of 1:100000. It was converted into raster
format in ‘spatial analyst” toolbox of ArcGIS. However, the geology map of the study area
has ten geological classes, such as (1) quartz syenite-stock, sheets, and ring dikes (GA),
(2) hornblende diorite, mafic diorite and mafictonalite (DI), (3) quartzite, metasiltstone,
conglomerate, feldspathic greywacke, black marble and white marble (AR), (4) andesitic
and dacitic pyroclastic rocks with minor flows (A]), (5) feldspathic and lithic greywacke
(BHK), (6) andesitic, dacitic, and basaltic flow rock, lithic and crystal tuff and volcanic
breccia (JQ), (7) monzogranite (GR), (8) Olivine gabbro, metagabbro, metadiorite, and
anorthosite (GB), (9) amphibole and biotite schist (BA), and (10) feldspathic greywacke,
carbonaceous chert, argillite, and slate (BHR) (Figure 3e).

2.3.6. Soil Texture

Soil samples were collected from various in-situ locations in the study area. A total of
32 soil samples of approximately 1 kg of aggregate stability (0-30 cm depth) was collected
from the study area. The locations of the soil sampling sites were recorded using GPS. The
stratified composite sampling technique was adopted. The study area was sub-grouped
into various elevation zones, LULC and soil moisture. The site was then considered
separately and two replicates, two to three meters apart, are collected at each survey site.
Each sample was carefully weighed and sieved by 2 mm, and then, the soil texture and
organic matter were extracted by following the standard protocol. Using the hydrometer
method (Stokes law), the size of soil grains (texture analysis) were determined. Figure 3f
illustrated the distribution of soil types in the study area. Four soil texture categories were
recognized, such as sandy loam, loam, loamy sand, and sandy loam.

2.3.7. Lineament Density

The lineament refers to the linear tectonic breaks in any area, which generally declines
rock potency. Generally, the lineament can be different types, such as fault, fracture, and
shearing. The lineament is the type of discontinuity and weaker section in a geological
formation. The weaker part of geology or lineament has been considered as the most
essential factors for landslides [9,20]. In the present study area, we used sentinel-2 satellite
image for extracting the lineament in ENVI software. The line density tool was employed
for constructing the lineament density map (Figure 3g). Higher the lineament density,
higher the chances of landslide occurrences

2.3.8. Topographic Wetness Index (TWI)

The TWTI is an influential hydrologic parameter that regulates landslides. It measures
the magnitude of water accumulation in the basin or site. The impact on soil moisture
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on soil materials causes pore water pressure and reduces the soil strength, which directly
controls the slope failure, especially, landslide. Higher the TWI values, higher the chances
of observing landslides. In the present study, TWI value ranges from 0-10.03 (Figure 3h).

2.3.9. Normalized Differentiation Vegetation Index (NDVI)

The NDVI or vegetation cover plays a significant role for landslide occurrences. The
vegetation covers extensively modify the soil hydrology by amplifying the precipitation
interception, evapotranspiration and infiltration, which decrease the quantity of water that
reaches the soil. This can be important for long-term rainfall. In addition, it increases the
soil strength by root reinforcement. Higher the presence of vegetation, lower the chances
of landslide and vice versa. In the present study, to extract vegetation, we used band 8 and
band 4 of sentinel-2 data. The NDVI value ranges from 0.67 to —0.17. Higher vegetation
concentration in the study area can be found in the western part of the study area (Figure 3i).

2.3.10. Land Use Land Cover (LULC) Mapping

The LULC affects the slope durability by changing land use/land cover and irritating
the slope durability situation [55]. In the present study, we prepared a LULC map from
sentinel-2 data. For LULC mapping, we employed maximum likelihood classification
classifiers. We classified LULC types in the present study area into nine types, such as built
up, waterbodies, dense vegetation, sparse vegetation, agricultural cropland, scrubland,
exposed rocky, bare soil and wadi debris (Figure 3j).

2.3.11. Drainage Density

The drainage density is the total length of all streams and river in a particular river
basin divided by the total area of that basin. The drainage density is adversely correlated
with the landslide. If the drainage density increases, the chances of landslide susceptibility
increases and vice versa. The drainage map was prepared from Google Earth. Then the
digitized drainage map was imported to ArcGIS software for creating the drainage density.
The line density tool of ArcGIS software was used for mapping drainage density. In the
present study, higher drainage density has been found in the eastern part of the study area
(Figure 3k).

2.3.12. Distance to Road

The construction of roads in the mountainous area by cutting the slope, which disturbs
natural typology and affects slope stability. Therefore, road construction causes a slope
failure. The stability of slope changes from stable to unstable during the construction of
road and movement of vehicles, which may cause cracks. These cracks absorb huge water,
which loosens the slope materials. Thus, it triggers landslides. The intense rainfall can
accelerate the process of slope failure, which leads to landslide occurrences. Lower the
distance or near the road in the mountain area, the probability of landslide occurrences is
very high. The road map was digitized from Google earth, and subsequently, we used the
Euclidean distance tool in ArcGIS software for preparing distance to the road map. The
southeastern part of the study area covers a higher concentration of road (Figure 31).

2.4. Methods for Multicollinearity Analysis

Twelve landslide triggering factors were selected in this study for landslide suscep-
tibility and risk assessment. Therefore, to model landslide susceptibility, it is necessary
to carefully optimize and check the collinearity of the selected parameters because the
statistical and machine learning algorithms may be sensitive to collinearities. In addition,
the collinearity can cause disturbance during the modeling process and, as a consequence,
it reduces accuracy to predict the landslide susceptibility [56]. This analysis helps in choos-
ing the appropriate parameters by excluding the redundancy parameters to obtain good
results [57]. A variety of methods are available for analyzing the multicollinearity, such as
information gain ratio, chi-square, relief-f, linear support vector machine, tolerance (TOL)
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and variance inflation factors (VIF) [57]. In the present study, tolerance and VIF were used
to test the multicollinearity among the selected factors. Many previous studies obtained
very good findings by applying TOL and VIF. Note that, at the last stage of analysis, the fac-
tors having the collinearity problems should be excluded to achieve high precision results.
Higher the VIF indicates higher the collinearity. To do the multicollinearity validation, a
linear regression analysis was performed in which the landslide location was considered
as a dependent variable, and the other triggering parameters are considered independent
variables and the R? value was calculated. This value was used to calculate the toler-
ance and variance inflation factor (VIF) of that input variable using Equations (1) and (2),
respectively [57].

T = 1—R? (1)
VIF = % 2)

2.5. Methods for Landslide Susceptibility Model
2.5.1. Optimization Algorithms

To obtain high precision and accurate prediction, the machine learning algorithms,
such as ANN and RF were integrated with GWO and PSO as an ‘add-in” optimizer algo-
rithms. Thus, four ensemble optimization machine learning algorithms were generated,
such as GW-ANN, GW-RF, PSO-ANN, and PSO-RF.

Grey Wolf Optimization (GWO)

At present, GWO [58] is an advanced optimization algorithm, which can replicate the
hunting behaviors and leadership in the group of grey wolfs [59]. Generally, a pack of grey
wolves comprises four groups of leadership, such as alpha, beta, delta, and omega. The
alpha wolves are considered as the dominant and strongest wolves, who guide the pack
and take a decision for hunting, migration, nesting and so on [60]. The beta wolves are
regarded as secondary wolves, which help the alpha for taking a decision. Furthermore,
the delta wolves consist of elders, sentinels, hunters, scouts, and caretakers of the pack.
The omega wolves are considered as the lowest ranking members in the pack, who act as
the babysitter/scapegoat [61]. Albeit delta wolves dominate the omega wolves, but they
obey the alphas and betas. To address optimization problems, alphas are considered as the
fittest solution, followed by beta, gamma, and lastly omega. The finding procedure (i.e.,
finding the location of a prey), which starts with creating an indiscriminate population
of postulant accomplishment (i.e., grey wolves) is statistically designed with the object of
reproducing the hunting attitude of a grey wolves pack. However, the hunting behavior
of the wolves includes four stages, such as prey encircling, hunting, attacking prey, and
exploration. The prey encircling depicts that the grey wolves harass and encircle the prey
during hunting. After the finishing of prey encircling, the behavior of hunting is driven
by alpha, beta, and gamma as they know the detailed information about the location of
prey. When the prey stops their movement, the hunting process ends. At this moment,
the wolves assault the prey. Again, grey wolves start tracking and chasing the prey. The
chasing of prey is known as an exploration in GWO algorithm.

Particle Swarm Optimization (PSO)

The PSO is a powerful meta-heuristic robust evolutionary algorithm for optimization
based on the population behavior and was first proposed by Eberhart and Kennedy [62].
The PSO theory was motivated by the social behavior of the fish and birds in groups
for optimizing the shortest route to find the food [63]. Recently, the PSO algorithm has
been successfully and extensively applied to resolve the non-linear problems in several
fields, like Geology [64,65], flood susceptibility modeling [66,67], landslide susceptibility
modeling [68,69], forest fire mapping [70,71] because of the higher learning speed and it
takes less memory than the other optimization algorithm like genetic algorithm [72,73].
The swarm of particles in the PSO algorithm always tries to find the potential answer to the
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problem, which can be best positioned as per the best solution. The particles in PSO travel
randomly along with the search space. Based on its own and neighbor’s knowledge, a
swarm of particles dislocates in search space. The particles become skilled from each other
within the group and travel in the direction of their best neighbor based on the obtained
knowledge. In a nutshell, the PSO is based on the concept that each swarm of particles
changes its location in the search space in order to get the best position or location that it
has ever been and the best location nearer its neighbor.

2.5.2. Machine Learning Algorithms
Artificial Neural Network (ANN)

The artificial neural network-based multilayer perceptron (MLP) model has been
widely applied for natural hazard prediction because it can solve non-linear mathe-
matical environmental problems based on the optimization of neurons in each hidden
layer [67-69,72-74]. The MLP model is one of the unique elements of ANN, which is char-
acterizes by a parallel information system having numerous neurons. These are connected
with input, hidden, and output layers [74,75]. During the training process, it can learn tasks
without prior knowledge about the problems and identify the similarities among the pat-
terns easily [76]. The modeling process involves several steps, such as (a) transfer function,
which depicts a function utilized to the weighted input of neurons to produce the outcome,
(b) architecture of the trained network, which describes the configuration of the networks,
and (c) common learning law, which includes mathematical algorithms employed to the
neural network’s connection weights on how to change right after each learning step. In
the present study, the MLP architecture was used. Then, the back-propagation algorithm
was used to train the MLP architecture. The advantage of the back-propagation algorithm
is that it reduces the global error between actual and predicted data during the training
process. The sigmoid and linear activation functions have been utilized in the output
and hidden layer. Many previous works have been successfully utilized for landslide
susceptibility modeling [71-76].

Random Forest (RF)

An RF is considered as the ensemble machine learning technique, which creates
numerous decision trees to explore the spatial relationship between existing landslide
occurrences and landslide triggering factors, which finally constructs a classification [77].
To forecast or predict the output, a set of features have been selected and assigned weights
by the outcome of the voting. The majority of the vote, on the basis of the outcome of the
evaluated decision trees, has been ensemble and created a single decision tree to generate
final classification [78,79]. To avoid the uncertainty problems, the application of a single
decision tree generates highly good predictions. The RF model corrects the over-fitting
problem of the decision tree during the training process. The vital task in RF classification
is to obtain a high variance from several decision trees. Significant components of the
RF model during training are to set maximum numbers of trees and variables, which are
needed to perform a split search and sampling process [80]. In the present study, 500 trees
were set to train the model.

2.5.3. Procedure for Optimization

In the present study, the grey wolf and PSO optimization were applied to obtain the
best structural parameters of the mentioned machine learning algorithms. The ensemble
procedure for the proposed GW-ANN, GW-RF could be as follows: parameters initialization
of GW optimization— initialize the random position of “n” grey wolf in “d” dimension—
find the fitness value of wolf— stopping criteria met? if it does not met, starting again from
the second stage— update the position of wolf— calculate the fitness of the wolf— find the
value of alpha, beta, and delta’s position— stopping criteria met? If met, then starts with
the training of machine learning algorithms— evaluate the accuracy— meeting stopping
criteria? If yes, then the optimal model is obtained. If not meet the stopping criteria,



Sustainability 2021, 13, 457

12 of 30

then starts again with the second steps of GW optimization. The ensemble procedure
for the proposed PSO-ANN, PSO-RF could be as follows: parameters initialization of
PSO algorithm— training and testing of machine learning algorithm with the initialized
parameters— calculation of fitness function— fitness value of each swarm of particle in
reference to local and global best values— updating the velocity and position of each
swarm of particle accordingly— reaching a maximum number of iteration? If not reached,
starting again from the second stage— if it reached the maximum number of iteration, that
would be the optimal parameters for the machine learning algorithms.

2.6. Validation of the Landslide Susceptibility Models

Validation of the model is the most important task to evaluate the accuracy of results.
For that, both validation datasets and the training data should be checked for forecast-
ing [81]. The area under the receiver operating characteristic curve (AUC), was applied to
evaluate the model’s performance with the ground reality.

The ROC curve is a common and popular technique worldwide for evaluating the
landslide susceptibility maps [68-75,82]. In ROC, the false-positive rates and true-positive
rates are presented on the X and Y axis, respectively [83]. It distinguishes the trade-offs
between two rates. In ROC, the value of area under the curve ranges between 0 and 1.0.
Higher the AUC value, higher the accuracy of the model or higher the agreement between
the predicted models and ground reality. Talukdar and Pal [84] pointed out that the AUC
value higher than 0.70 reflects a good agreement between the predicted model and the
ground reality.

2.7. Sensitivity Analysis of the Models
Parameters Removal and ROC Based Sensitivity Analysis

This method depicts the effect of removing single parameters at one time on the
landslide susceptibility modeling. One parameter can be removed at one time, and a new
landslide susceptibility map would be constructed based on the rest of the parameters
using the best method (selected by the AUC value of ROC curve). In this way, twelve new
landslide susceptibility maps were constructed for the twelve parameters by removing
parameters one by one. Subsequently, the model’s data was extracted based on the testing
points. Then, an ROC curve was employed to check the performance of the generated
12 landslide susceptibility maps. Based on the AUC value of the ROC curve, the influence
of each parameter for generating the landslide susceptibility models could be obtained. If
the AUC decreases by removing particular parameters, which indicates that, the parameter
has the power or sensitivity to control or influence the landslide susceptibility models. If
the AUC value of the ROC curve achieves higher value, then it indicates that the influence
of the parameter on the landslide susceptibility is low.

2.8. Spatiotemporal Landslide Hazards Mapping

The landslide hazard modeling is considered as the probability of landslide occur-
rences within the particular space and time, which damages various resources, lives, and
properties. However, the landslide hazard modeling needs to have two important factors,
such as landslide susceptibility map and temporal landslide conditioning factors, such
as rainfall, snowfall, and earthquake [85]. The present study area observes extreme and
average rainfall-induced landslides, therefore, abnormal or extreme rainfall is considered
as the major landslide triggering factors. Thus, to construct a landslide hazard model,
the extreme or abnormal rainfall was estimated using Gumbel extreme value distribution
method [86]. A variety of statistical techniques are available for estimating the rainfall at
return periods, such as weibull, log-pearson type-III. Researchers reported that Gumble
extreme value distribution provides a better performance for regions with medium to
low rainfall [86]. The study area observes medium to low rainfall. Therefore, the Gumble
method is suitable for estimating rainfall. The rainfall at 2, 5, 10, 20, 50, and 100 years return
period were estimated by analyzing the long-term rainfall (1973-2019). The study area has
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evenly distributed four rain gauge stations. The study area observes quite similar amounts
of rainfall in all gauge stations. Therefore, the inverse distance weighting (IDW) technique
can perform good results like kriging under these circumstances. Thus, in the present
study, the IDW was employed for preparing interpolated rainfall layers. Spatiotemporal
landslide hazard maps were constructed by combining the rainfall layers at different return
periods and landslide susceptibility maps following Equation (3).

H = Psx Pr 3)

where, the hazard probability is denoted by H, Pg indicates the landslide susceptibility
map generated by the best ensemble metaheuristic machine learning algorithm, and Pr
narrates rainfall layer at different return periods.

2.9. Spatiotemporal Landslide Risk Assessment (LRA) Using the Concept of Danger Pixel

In order to construct spatiotemporal LRA in data scares regions, the concept of the
danger pixel and resource map were employed as a semi-quantitative approach. The
resource map was generated from the LULC map. Generally, the bare soil, exposed rocks
do not provide goods and services; therefore, these classes are considered as non-resource
from a monetary point of view. The resource map includes water bodies, sparse vegetation,
dense vegetation, built-up area, spruce land. Then, the danger pixel was identified for
further research. The pixels having the very high and high landslide susceptibility zones
and landslide hazards are considered as the danger pixel because these pixels have the
highest chances to have landslide hazard in future, while in the past, these pixels had
observed landslides. Therefore, in the present study, we utilized the danger pixel for
LRA by following Kanungo et al. [87]. To construct spatiotemporal danger pixel maps,
the landslide hazard maps at different return periods were considered. Subsequently,
spatiotemporal landslide hazard maps were reclassified into two classes, such as danger
pixel and non-danger pixel. For mapping the danger pixel, very high and high landslide
hazard zones were merged into one class, i.e., danger pixel. While, rest of the classes, such
as very low, low, and moderate landslide hazard maps were merged into one class, i.e.,
non-danger pixel. In this way, we prepared danger pixel maps for 2, 5, 10, 20, 50, and
100 year return periods.

For evaluating landslide risk, the resource map was combined with danger pixel maps
at the different recurrent intervals. The idea behind the integration of resource map and
danger pixel was the resource, which sits over the danger pixel, can have higher chances to
be damaged. Thus, spatiotemporal landslide risk assessment maps were constructed.

3. Results
3.1. Landslide Susceptibility Modeling

In order to develop and utilize the ensemble metaheuristic machine learning algorithms-
based landslide susceptibility modeling, several steps were followed, such as multicollinear-
ity analysis, building and validation of the landslide susceptibility models, and finally the
sensitivity analysis.

3.1.1. Multicollinearity Analysis

Before proceeding for LS modeling, the landslide triggering factors were tested for
checking the multicollinearity using TOL and VIE. The presence of collinearity among
the parameters causes lower performance of the LS modeling. In the present study, the
parameters having TOL < 0.84 and VIF < 4.6 for modeling were considered to be used in the
landslide susceptibility modeling (Table 1). Results showed that aspect achieves lowest VIF
(1.19), followed by NDVI (VIF = 1.3), LULC (VIF = 1.42), and geology (VIF = 1.45).While
the highest VIF value was detected in slope (VIF = 4.6), followed by soil texture (VIF = 2.9),
elevation (VIF = 2.19), and curvature (VIF = 2) (Table 1). The selected twelve parameters
were not affected by collinearity, and could be utilized for landslide susceptibility modeling.
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Table 1. Multicollinearity test for analyzing the presence of collinearity among landslide trigger-

ing factors.

Collinearity Statistics

Parameters Sig.
Tolerance VIF

TWI 0.172 0.543 10.843
Geology 0.577 0.687 10.455
Distance to road 0.253 0.543 10.840
Curvature 0.722 0.500 20.000
Aspect 0.438 0.841 10.189
Lineament density 0.258 0.549 10.823
LULC 0.402 0.704 10.420
NDVI 0.354 0.761 10.314
Drainage density 0.415 0.523 10.913
Slope 0.000 0.217 40.617
Soil texture 0.000 0.455 20.197
Elevation 0.000 0.472 20.119

3.1.2. Configuration of the Machine Learning Algorithms

The ANN and RF algorithms were utilized for landslide susceptibility modeling.
Therefore, for modeling LS, the training database (80% of the total data), which con-
tains twelve landslide triggering factors and dependent factor or past landslide and non-
landslide locations, were utilized to train the ANN and RF models. The optimum values of
the parameters of the ANN and RF models were set by trial and error process to obtain
the high-quality LS maps. Since the ANN model has multilayer architecture, therefore,
the configuration would also be manifold. First, twelve landslide triggering factors were
defined as the input layer. The most controversial parameter, i.e., hidden parameter, has
to be selected, albeit there is no standard way to design the hidden layer. However, some
researchers claimed that one hidden layer could solve all classification problems [36]. Then
the output layer was a two-class layer, such as landslide and non-landslide. In the present
study, one hidden layer with ten neurons were selected by trial and error process. In
addition, the sigmoid activation function was selected. Thus, the optimal network topology
was set for ANN-based LS modeling. Similarly, the RF model was also optimized. 300 trees
and 2 mtry (the number of variables tested at each node) were optimized for the RF model.

3.1.3. Metaheuristic Optimizations for Configured Machine Learning Algorithms

Two metaheuristic algorithms, such as GWO and PSO were employed to optimize
the configured ANN and RF models. The iteration for all models (GW-ANN, GW-RF, PSO-
ANN, and PSO-RF) were set to 1000 by trial and error process because the error during
the training process showed very slight changes or no changes. Although the training
process for all models was performed at 400, 500 and 800 iterations and gradual changes of
errors were observed. Then, 50 and 45 grey wolves were selected for ANN and RF models.
35 particles of swarm for both ANN and RF were set. The detailed optimization of the
GWO and PSO for both ANN and RF were presented in Table 2.

Table 2. Setting of model parameters for optimizing the machine learning algorithms by PSO
and GWO.

Optimization Algorithms Optimized Model Parameters

Swarm size—30; iteration—1000; mutation type-bit-flip, mutation
PSO probability—0.01; inertia weight—0.33; social weight—0.33;
individual weight—0.34; report frequency—20; seed——5

Number of population— 50 (for ANN) and 45 (for RF);
absorption coefficient of the firefly members—0.001; accelerate
type-normal, iteration—1000; seed-6, escape probability—0.8,
mutation probability—0.01; chaotic coefficient—4.0

GWO
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3.1.4. Model Validation and Comparisons

The performances of the four ensemble models were evaluated by comparing the
actual data with predicted data. For evaluating the performances of the four models,
several indexes, such as correlation coefficient (R), Kendall’s tau (T), Spearman’s rtho, MAE,
and RMSE were employed. The results showed that higher correlation and lower different
error values are observed for four models. The GW-ANN model (R = 0.985, T = 0.79,
rho = 0.897, MAE = 0.029, and RMSE = 0.067) outperformed other models, followed by
GW-RF (R=0.97, T = 0.71, tho=0.86, MAE = 0.035, and RMSE = 0.103), PSO-RF (R = 0.95,
T = 0.7, rho = 0.85, MAE=0.04, and RMSE = 0.11), and PSO-ANN (R = 0.94, T = 0.68,
rho = 0.82, MAE = 0.061, and RMSE = 0.12). Findings showed that all ensemble machine
learning models perform well and can be used for generating the LS mapping. Based on
the performance, the ensemble models could be arranged as GW-ANN > GW-RF > PSO-RF
> PSO-ANN.

3.1.5. Generation of the Landslide Susceptibility Maps

Figure 4 showed the constructed landslide susceptibility maps based on four ensemble
metaheuristic machine learning algorithms. The generated LS maps have a continuous
scale or stretch format, and there is a need to separate these values into possible classes. A
variety of classifiers systems are available for the conversion of the continuous maps into
a classified map, such as natural break, equal interval, quantile, and standard deviation.
The researcher recommended that natural break classifier is robust, efficient and consistent
to predict [85]. Subsequently, landslide susceptibility maps, based on Jenks’ natural break
(1967) algorithm, were classified into five subclasses, such as very high, high, moderate, low,
and very low. The method of Jenks optimization, also known as natural break classification,
is a data segmentation process to estimate the optimal value structure of the different
classes. This method intends to decrease the average deviation from the mean class value
while increasing the deviation from the mean of other classes. The method thus minimizes
intra-class and maximizes inter-class variance. According to GW-ANN model, 6.14 km?
and 27.27 km? area were predicted as very high and high LS zones, followed by moderate
(47.86 km?), low (59.97 km?), and very low (57.07 km?) LS zones. According to GW-RF,
PSO-ANN, and PSO-RF models, 15.13 km?2, 16.03 km?2, and 15.03 km? areas were predicted
as a very high LS zone (Table 3). On the other hand, based on GW-RF, PSO-ANN, and
PSO-RF models, 35.06 km?2, 41.32 km?2, and 35.73 km? area come under very high LS zones.
According to GW-RE, PSO-ANN, and PSO-RF models, 40.40 km?2, 18.40 km?, and 40.31 km?
area come under the very low LS zone (Figure 4).

Table 3. Calculation of area coverage under different landslide susceptibility categories.

Area (km?)
Landslide Susceptibility Zones
GW-ANN GW-RF PSO-ANN PSO-RF
Very low 57.07 40.40 18.40 40.31
Low 59.97 54.25 61.33 54.76
Moderate 47.86 53.60 61.45 52.61
High 27.27 35.06 41.32 35.73

Very high 6.14 15.13 16.03 15.03
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Figure 4. Landslide susceptibility models based on ensemble metaheuristic machine learning algorithms, such as (a)
PSO-ANN, (b) PSO-RF, (¢) GW-ANN, and (d) GW-RF.

3.1.6. Validation of LS Maps

Four landslide susceptibility models were validated using the testing datasets. The
ROC curve was employed to evaluate the performance of four LS models. A higher AUC
value of the ROC curve suggests a higher accuracy or agreement between the LS model and
ground reality. Based on the AUC value of ROC curve, GW-ANN model appeared as the
best representative model (AUC = 0.905), followed by PSO-ANN (AUC = 0.880), GW-RF
(AUC-0.877) and PSO-RF (AUC = 0.876) (Figure 5). Results showed that all ensemble
machine learning models perform well for modeling landslide susceptibility. According
to the AUC values, the LS models can be rearranged as GW-ANN > PSO-ANN > GW-
RF > GW-ANN.
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Figure 5. Validation of landslide susceptibility models using receiver operating characteristics
(ROC) curve.

3.1.7. Sensitivity Analysis of LS Model

In the present study, ROC based sensitivity analysis was developed and utilized for
exploring the influence of the landslide triggering factors for LS modeling. Identification
of the parameters, which are mainly responsible for landslide occurrence, is a vital task for
proposing disaster management plans. The ROC based sensitivity analysis is a complex
process to judge the landslide triggering factors. In order to construct ROC based sensitivity
analysis, several steps have to be followed. First, we used the best ensemble machine
learning algorithm, i.e., GW-ANN for LS modeling by excluding individual parameters
at one time. Thus, twelve LS models were constructed by repeating the same procedure
(individual parameter exclusion at one time) Figure 6a-1 showed the twelve LS models
based on eleven parameters. For instance, Figure 6a showed the LS model based on eleven
parameters, excluding elevation, similarly Figure 6b showed LS model excluding the slope
parameter. Very high and high LS zones were predicted differently for twelve different
models based on 12 sets of data. For example, GW-ANN predicted 6.14 km? area as very
high LS zones (Figure 4a), while LS model prepared using map removal technique with
the ROC based sensitivity analysis (excluding elevation, slope, geology, LULC, distance
to road individually) predicted 6.28 km?, 12.08 km?, 6.52 km?2, 7.09 km?2, and 12.75 km?
(Figure 6) respectively. Therefore, it could be stated that the exclusion of slope and distance
to road increases the area of very high LS zones.
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Figure 6. Landslide susceptibility modeling based on GW-ANN (best model)by excluding individual parameter at one
time, such as (a) elevation, (b) slope, (c) curvature, (d) aspect, (e) NDVI, (f) soil texture, (g) lineament density, (h) TWI, (i)
Geology, (j) LULC types, (k) distance to road, (1) drainage density.

Thus, these two parameters are the most dominant and sensitive parameters for
landslides. In addition, twelve LS models were validated using the ROC curve based
on testing datasets. Results showed that the LS model excluding NDVI (AUC = 0.993)
outperforms other models indicating significantly less sensitivity. On the other hand, the LS
model excluding curvature achieves the second best model (AUC = 0.955), followed by LULC
(AUC =0.952), TWI (AUC = 0.924) (Figure 7). The results showed that the LS models perform
better if the mentioned parameters are excluded individually at one time. Therefore, it
could be stated that these parameters are less sensitive to landslide susceptibility. While the
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AUC of ROC curve showed that LS model excluding slope parameter achieves lowest AUC
value (AUC = 0.844), followed by Geology (AUC = 0.858), elevation (AUC = 0.868), distance
to road (AUC = 0.875), and soil texture (0.876) (Figure 7). These parameters are considered
as highly sensitive to a landslide. During modeling, if we exclude one parameter, the
performance of the LS model would be very bad. These parameters are the dominant
causes for the landslide.
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Figure 7. Validation of map removal based landslide susceptibility (LS) models using ROC curve.

According to sensitivity analysis, the slope, elevation, geology, distance to road, and
soil texture were considered as the most effective and sensitive parameters for LS modeling,
while curvature, LULC, and NDVI appeared as least sensitive parameters. The improper
road construction along the southern and southeastern part of the study area was the most
effective reason for frequent landslides in the study area. Therefore, the LS models showed
these regions as the very high landslide susceptible zones. Distance to the road excluded LS
model showed very high landslide susceptible regions in the south and eastern part of the
study area (Figure 6k). Eastern, Southern, and middle part of the study have a very high
slope (67°-81°) (Figure 3) and very high-high landslide susceptible zones (Figure 4). While,
the slope excluded LS model showed very high and high landslide susceptible zones in
the western and northern part of the study area, which is contradictory results (Figure 6b).
Very high and high landslide susceptibility regions (Eastern, Southern, and middle part) of
the study area are characterized by Quartzite, metasiltstone, Conglomerate, feldspathic
greywacke, black marble and white marble, where joints are frequently observed (Figure
3e). Therefore, this region is highly exposed to weathering and potential seats of erosion,
which caused slope failure and landslides. While the geology excluded LS model indicated
some changes in landslide susceptibility patterns (Figure 6i). Therefore, the selected
sensitive parameters have indeed affected LS modeling.

3.2. Landslide Hazards Modeling

In order to construct landslide hazard models, several steps were followed, such as
estimation of rainfall at different recurrent intervals or return periods, and integration of
landslide susceptibility models with them.
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3.2.1. Estimation of Rainfall at Different Return Periods

The rainfall data was collected from four meteorological gauge stations in the study
area from 1983 to 2019. The Gumble extreme value distribution method was employed to
estimate rainfall at 2, 5, 10, 20, 50, and 100 years return periods. The probability of rainfall
occurrences at 2 year return period was 50%, followed by 20% at 5 year, 10% at 10 year, 4%
at 20 year, 2% at 50 year, and 1% at 100 year return periods. Highest and lowest rainfalls at
the 2 year return period were 248.5 mm. and 238.9 mm. (Figure 8). The highest rainfall at 5,
10, 20, 50, and 100 year return periods were 442.1 mm, 522.3 mm, 628.1 mm, 765.1 mm, and
867.7 mm, respectively (Figure 8). Similarly, the lowest rainfall at different return periods
was also gradually increased, albeit the chances of occurrences had low probability.
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Figure 8. Estimation of extreme rainfall at (a) 100, (b) 50, (c) 20, (d) 10, (e) 5, and (f) 2 year return periods using Gumble
extreme value distribution methods.

3.2.2. Generation of Landslide Hazard Models

In order to construct landslide hazard models, the landslide susceptibility map and
rainfall layers were integrated. In the present study, the landslide susceptibility map
(LS model constructed by excluding NDVI parameter, as it showed higher AUC value),
which predicted by GW-ANN as it appeared as best performing model, was integrated
(multiplied) with rainfall layers at different return periods. Thus, landslide hazard map
at 2,5, 10, 20, 50, and 100 year return periods were produced. Then, generated landslide
hazard maps were classified into five sub-classes using natural break algorithm, such as
very high, high, moderate, low, and very low hazard zones (Figure 9). Results showed
that area under very high, and high landslide hazard zones were gradually increased at 2
to 100 year return periods. According to landslide hazard map at 2 and 100 year return
period, 6.09 and 20.44 km? area come under very high landslide hazard zone, followed by
high (26.28 and 40.52 km?) moderate (47.93 and 49.71 km?), low (61.01 and 50.27 km?), and
very low (56.72 and 37.29 km?) hazard zones (Table 4). On the contrary, an area under very
low and low landslide hazard zones have been decreased at 2-100 year return periods. For
instance, area under very low landslide hazard area was 56.72, 43.23, 42.32, 41.1, 37.47, and
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37.29 km? at 2, 5, 10, 20, 50, and 100 year return periods (Table 4). Based on the findings,
it could be stated that if intense rainfall increases in the study area, the landslide affected
area would be increased accordingly. The predicted landslide hazard-prone areas should
be paid more attention to reduce damages in future.
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Figure 9. Landslide hazard modeling at (a) 100, (b) 50, (c) 20, (d) 10, (e) 5, and (f) 2 year return periods.

Table 4. Area coverage under different landslide hazard zones at different return periods.

Area (km?) in Different Return Periods

Landslide Hazard Zones

2 Year 5 Year 10 Year 20 Year 50 Year 100 Year
Very low 56.72 43.23 42.32 41.10 37.47 37.29
Low 61.01 54.91 50.88 50.41 4891 50.27
Moderate 47.93 53.83 53.23 51.67 50.51 49.71
High 26.28 37.59 40.26 40.02 42.36 40.52
Very high 6.09 8.90 11.53 15.03 18.97 20.44

3.3. Landslide Risk Assessment Using the Theory of Danger Pixel

In order to assess landslide risk, a variety of socio-economic and landslide damage
data are highly required. The present study area is data-scarce regions; therefore, the
socio-economic and landslide damage data are not available and very difficult to collect.
Considering the data scarcity, a semi-quantitative approach like the theory of danger pixel
was adopted to assess the landslide risk. Following Kanungo et al. [87], the theory of
danger pixel and resource map were combined to produce landslide risk assessment maps
at different return periods.

3.3.1. Identification of Danger Pixel

The danger pixel was identified from the landslide hazard maps at different return
periods. Each pixel of landslide hazard maps contains information regarding the magnitude
of potential hazards caused by landslides. As a consequence, the areas or pixels under
very high and high hazard zones have a very high potentiality to be exposed to landslides
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and could be observed with very high magnitudes of damages. Therefore, based on this
concept, danger pixels were extracted from very high and high landslide hazard zones at 2,
5,10, 20, 50, and 100 year return periods. Results showed that danger pixels are 37.28, 48.21,
53.55, 56.81, 63.07, and 62.57 km? at 2, 5, 10, 20, 50, and 100 return periods, respectively
(Figure 10).
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Figure 10. Identification of danger and non-danger pixel at (a) GW-ANN model, (b) 2, (c) 5, (d) 10, (e) 20, (f) 50, and (g)
100 year return periods.

3.3.2. Risk Assessment by the Integration of Danger Pixel and Resource Map

The spatiotemporal landslide risk assessment maps were constructed by integrating
with the resource map and danger pixel. The identification of the resource map is the
most important element for risk assessment. In the present study, natural resources and
human made resources were identified from the generated LULC map. All LULC types
cannot be considered as a resource because bare soil, wadis debris, and exposed rocks
in the study area do not provide important goods and services. On the contrary, the
built-up, water bodies, dense vegetation, sparse vegetation, and scrubland in the study
area provide a variety of goods and services. Therefore, the resource map was prepared
by excluding bare soil, wadis debris, and exposed rocks from the LULC map. The final
resource map contains various natural and human made resources, such as built up, water
bodies, dense vegetation, sparse vegetation, and scrubland. Subsequently, the resource
map was integrated with the danger pixels at different return periods. The resources
located in the danger pixel can have a very high potentiality to be damaged if a landslide
occurs. The final risk map at different return periods showed that scrubland is the most
affected resource. The area under scrubland at risk was 96, 19.02, 24.89, and 24.56 km? at 2,
5,50, and 100 year return periods (Table 5 and Figure 11), respectively. The least affected
resources were water bodies and agricultural land, albeit the area of these resources at risk
also increased over time (2-100 year return periods). Therefore, based on the findings, it
could be stated that intense rainfall can trigger the landslide at a large scale, which can
cause huge damages. Therefore, the identified risk element and their location should be
maintained very carefully to minimize the damages in future.
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Table 5. Area coverage of different resources at risk at different return periods and best model.

Area (km?) in Different Return Periods

GW-ANN 2Year 5Year 10Year 20 Year 50 Year 100 Year

Resources at Risk

Built up 0.14 0.16 0.26 0.31 0.40 0.56 0.63
Waterbodies 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Dense vegetation 1.43 1.53 1.43 1.39 1.32 1.28 1.16
Sparse vegetation 2.78 3.00 2.60 2.45 2.33 2.26 213
Agriculture 0.01 002 001 001 001 001 0.02
cropland
Scrubland 13.65 14.96 19.02 21.02 22.15 24.89 24.56
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Figure 11. Landslide risk assessment for (a) GW-ANN model, (b) 2, (c) 5, (d) 10, (e) 20, (f) 50, and (g) 100 year return periods,

and (h) resource map of the study area.

4. Discussion

The present study was designed to assess the spatiotemporal landslide risk in Agabat
Al-Sulbat Asir region of Saudi Arabia. Four ensemble metaheuristic machine learning
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algorithms, such as GW-ANN, GW-RF, PSO-ANN, and PSO-RF were developed and tested
for landslide susceptibility modeling. The generated LS models were validated using
the ROC curve. GW-ANN model appeared as the best representative for LS modeling,
followed by PSO-ANN, GW-RF, and PSO-RF models. All models achieved AUC value
>0.8 indicating the good performance of all models. ROC based sensitivity analysis was
developed to investigate the importance of the landslide triggering factors for landslide
susceptibility modeling. The slope, LULC, geology, elevation, and texture appeared as
the dominant and sensitive factors for landslide susceptibility. Landslide hazard models
at 2-100 year return periods were constructed by integrating with the best landslide
susceptibility model and extreme rainfall at 2-100 year return periods. The study area
lacks socio-economic and damage data, therefore, a semi-quantitative approach, like the
theory of danger pixel was employed to assess the landslide risk. The danger pixels at
2-100 year return periods were combined with the resource map of the study area to
produce landslide risk assessment maps at 2-100 year return periods. The assessment of
long-term landslide risk maps will be helpful to planners and government authorities to
take disaster mitigation strategies. Some drawbacks existed in the present work, which
could be investigated further.

4.1. Landslide Susceptibility Modeling

One of the major aims of the study was to develop ensemble metaheuristic machine
learning models to construct landslide susceptibility mapping. During the training process,
GW-ANN model had a high correlation between actual and predicted data and low error.
Moayedi et al. [88] reported high correlation and low error between actual and predicted
landslide data using metaheuristic models. Results of the present study showed that GW-
ANN model outperforms other models for LS modelling as per the AUC value during the
validation process. Chen et al. [89] reported that grey wolf optimizer performs better than
whale optimization algorithm for landslide susceptibility mapping. Li et al. [90] accounted
that PSO-ANN outperforms other models for LS modeling in Shicheng County in China,
and it was identical to our findings. Because, in the present study, PSO-ANN appeared as
the second-best model for LS modeling and had very slight differences with GW-ANN in
terms of performance. Xi et al. [91] also reported that PSO based ANN model performs
better for LS modeling than other models. Pham et al. [92] reported that PSO-RF appears
as the best model for LS modeling and observes lower error during the training process
(RMSE = 0.453) and a higher correlation between actual and predicted data (R = 0.89). This
work is identical with our findings for LS modeling, although the error was less in the case
of our study. Therefore, it could be stated that all ensemble metaheuristic machine learning
algorithms perform better for LS modeling.

4.2. Sensitivity Analysis

ROC based sensitivity analysis was introduced and employed for investigating the
performance of parameters for landslide susceptibility. However, rare studies have been
carried out for sensitivity analysis at a spatial scale [93]. Ilia and Tsangaratos [94] employed
changing criteria weights methods for sensitivity analysis. They changed the weights of
input parameters to generate the LS models and reported good results. In the present,
nothing was changed during modeling, while we just excluded individual parameters
at one time. Therefore, the influence of the parameters for landslide susceptibility could
be identified accurately. On the other hand, no researchers have yet validated the LS
models produced by excluding individual parameters at one time. Generally, researchers
have compared the area coverage under different landslide susceptibility categories with
each other and original models. In the present study, the generated twelve models were
validated using the ROC curve. The higher AUC value of ROC curve indicates lower
sensitivity for LS modeling and vice-versa. Pal and Paul [93] conducted a similar type
of ROC based sensitivity analysis for wetland vulnerability studies. However, during
modeling they gradually excluded each parameter one by one until the AUC values
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reached to 0.7. The low AUC value of the models could automatically be produced if each
parameter excludes one by one. Therefore, the influence of the input parameters cannot be
identified accurately. Based on the discussion, it could be stated that ROC based sensitivity
analysis can be used in different studies for conducting sensitivity analysis.

4.3. Landslide Risk Assessment Analysis

Research on landslide risk assessment is not new work. Many pieces of research on
landslide risk assessment have already been conducted in mountainous regions [95-100].
Researchers reported that estimation of potential risk directly associated with the landslide
susceptibility maps, spatial-temporal probability and intensity of events. Many researchers
have employed socio-economic data for landslide risk assessment [52,53,101-103], but
in data-scarcity regions like Saudi Arabia, socio-economic, and damage data are not
available and very difficult to collect. Therefore, to model risk assessment, the present
study employed the theory of danger pixels. Althuwaynee and Pradhan [104] employed
the theory of danger pixels for landslide risk assessment in Kuala Lumpur city, which was
identical with the present study. Kanungo et al. [87] incorporated the theory of danger
pixel for evaluating the landslide risk assessment. In addition to this, very rare studies on
landslide risk assessment at a temporal scale have been conducted [105]. In the present
study, landslide risk assessment at 2-100 year return periods were constructed to propose
long-term planning for reducing the damages of resources. Based on the above discussion,
it could be stated that the present study provides a comprehensive work on rainfall induced
landslide risk assessment.

Prediction of long-term risk due to rainfall induced landslides can provide lots of
information about the upcoming damages of natural resources and artificial resources if
different magnitudes of landslide occur. If authorities take serious steps by considering
the prediction of long-term risk assessment, economic loss, natural resource destruction
and human lives loss would be possible to minimize. Therefore, sustainable development
along the landslide affected regions could be possible. In fact, this study provides huge
information, which are required for proposing landslide management plans for a long time.

5. Conclusions

The present study provides comprehensive knowledge of the development of ensem-
ble metaheuristic machine learning algorithms, such as GW-ANN, GW-RF, PSO-ANN,
and PSO-RF for LS modeling. The very high LS zone covered by the 6 km?-16 km? area,
according to the four LS models. The LS models were validated using the ROC curve. The
GW-ANN (AU = 0.905) model appeared as the best representative model for LS modeling,
followed by PSO-ANN, and GW-RF. ROC based sensitivity analysis was proposed to
explore the importance of the input parameters for LS modeling. Slope, Geology, LULC,
and elevation were reported to be the most dominating and sensitive parameters for LS
modeling. The landslide hazard maps were prepared at 2-100 years return periods. Very
high landslide hazards zone increased gradually over the increasing of return periods
(6 km? at 2 year return period to 40 km? at 100 year return periods). While the area under
very low landslide hazard decreased at 2-100 year return periods. Finally, the resource risk
assessment models at 2-100 year return periods were produced by an integration of the
theory of danger pixels. Scrubland, dense vegetation, sparse vegetation and built-up area
were at risk of a landslide. The area coverage of these resources at risk increased over the
increasing return periods.

The present study provides a detailed framework of the development of four ensemble
metaheuristic machine learning algorithms, which can be utilized for predicting the differ-
ent natural hazards, such as flood susceptibility, gully erosion, fire susceptibility etc. The
proposed ROC based sensitivity analysis can be incorporated in other studies for sensitivity
analysis. Finally, landslide risk assessment maps provided the spatial map of resources
which are at risk at 2-100 year return periods. Therefore, huge information regarding the
identification of resources, which are at risk, can be obtained from spatiotemporal risk
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maps. This work can be helpful to the planners to propose disaster management strategies
so that future damages due to landslides could be under control. The present study has
some limitations, such as the utilization of moderate resolution satellite images instead of
high-resolution image, use of a semi-quantitative approach due to data scarcity instead of
quantitative approach, rainfall layer using fewer numbers of rainfall gauge stations, and
use of a small number of landslide locations for modeling instead of more data. The future
study on risk assessment can be improved if the mentioned issues resolve.
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