<@ sustainability

Article

A Novel Strategy for Optimal PSO Control Parameters
Determination for PV Energy Systems

Ali M. Eltamaly 123*

Citation: Eltamaly, A. M. A Novel
Strategy for Optimal PSO Control
Parameters Determination for PV
Energy Systems.

Sustainability 2021, 13, 1008.
https://doi.org/10.3390/su13021008

Received: 19 December 2020
Accepted: 14 January 2021
Published: 19 January 2021

Publisher’s Note: MDPI stays
neutral with regard to jurisdictional
claims in published maps and

institutional affiliations.

Copyright: © 2021 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license
(http://creativecommons.org/licenses

/by/4.0/).

1 Sustainable Energy Technologies Center, King Saud University, Riyadh 11421, Saudi Arabia
2 Department of Electrical Engineering, Mansoura University, Mansoura 35516, Egypt

3 K.A. CARE Energy Research and Innovation Center, Riyadh 11451, Saudi Arabia

* Correspondence: eltamaly@ksu.edu.sa or eltamaly@mans.edu.eg; Tel.: +966-55-3334130

Abstract: This study introduces a novel strategy that can determine the optimal values of control
parameters of a PSO. These optimal control parameters will be very valuable to all the online
optimization problems where the convergence time and the failure convergence rate are vital
concerns. The newly proposed strategy uses two nested PSO (NESTPSO) searching loops; the inner
one contained the original objective function, and the outer one used the inner PSO as a fitness
function. The control parameters and the swarm size acted as the optimization variables for the
outer loop. These variables were optimized for the lowest premature convergence rate, the lowest
number of iterations, and the lowest swarm size. The new proposed strategy can be used for all the
swarm optimization techniques as well. The results showed the superiority of the proposed
NESTPSO control parameter determination when compared with several state of the art PSO
strategies.

Keywords: acceleration parameters; metaheuristic techniques; nested PSO; parameters estimation;
photovoltaic; MPPT

1. Introduction

Swarm optimization techniques have displayed highly effective tracking of the
optimal solutions in various applications. These techniques send searching agents to
determine the values of fitness functions and use this information to move these agents
toward the optimal value. The first metaheuristic technique was proposed by Tillman
(1969) [1]. Particle swarm optimization (PSO) is one of the most popular metaheuristic
optimization techniques of the last two decades, owing to its simplicity and reliability,
with its usage increasing every day [2]. The PSO technique introduced by Kennedy and
Eberhart (1995) [3] is inspired by the behavior of the flocks of fish, birds, swarms, and
shoals searching for food, and it is used to determine the optimal solutions for multi-
dimensional problems. This technique uses several particles to search for the optimal
solution in the search space of the optimization problem. In the consecutive iterations
(movements), the PSO collects the information gained from the particles to guide them in
the next movement to the global optima. The new movement of each particle depends on
the experience gained from the previous movements, the information gained from the
best position of the particle itself (cognitive or self-experience), and the information
gained from the global optimum (social experience). The confidence of capturing the
global peak and the convergence speed are highly affected by the choice of PSO control
parameters (acceleration parameters cl and cg, and inertia weight w) that are affected
considerably by the fitness function. The equations governing the performance of the PSO
technique are expressed as shown in (1) and (2) [4]. The acceleration parameters cl and cg
are also called the self-confidence and the swarm-confidence parameters, respectively.
Increasing the value of c; affects the attraction of particles toward the best individual.
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Additionally, increasing the value of cl enhances the self-confidence search and vice versa.
The inertia weight w is used to enhance the stability of the particles, and its value affects
the performance of the PSO searching behavior such that a high value of @ enhances the
social search and reduces the cognitive search, and vice versa. The first usage of the w in
PSO was reported in [4]. The definitions of these symbols are listed in the list of symbols
shown in the Appendix.

Vilfrl :a)Vik +an (Lk _Xik)+ Coly (G_Xik)’ 1)

X=X 4V, 2

The performance of the PSO in its journey to capture the global optima is governed
by the values of w, ¢;, and ¢g. While evaluating the performance of the PSO, the premature
convergence rate (PCR) and the speed of convergence are the major concerns. The PCR is
used to measure the number of times the PSO failed to capture the global optima or was
trapped in one of the local peaks divided by the total number of attempts, which can be
obtained from (3). The convergence time consumed to reach the final convergence is
proportional to the number of iterations N, multiplied by SS, as shown in Equation (4).
The factor Nss is used to count the number of attempts to hit the fitness function, through
the optimization process, which can represent the convergence time.

PCR= N,/ N, *100, 3)

where Nrcr is the number of occurrences of premature convergence and Nw is the total
number of experimental occurrences.

Nss=N * S8, 4)

The purpose of any strategy used to modify the performance of the PSO is to reduce
the two factors PCR and Nss. These two factors are such that for a low PCR, a large Nssis
expected and vice versa. These two factors are vital to be minimized, especially in online
applications where the confidence and the convergence time are crucial issues and the
focus of this study. Many strategies have been suggested in the literature to minimize
these two factors. There are two major modification strategies, the first one is the mutation
of the particles’ positions [5-7] and the second one is the tuning of PSO control parameters
(w, c, and ¢g) [8-15]. Some researchers used these two improvement strategies together to
improve the performance of PSO [16,17]. The mutation strategy of the PSO changes the
position of the particles based on many stochastic strategies without changing the velocity
of the particles. Adjusting the next movement helps the particles to escape from
convergence at one of the local optimal solutions. An adaptive mutation strategy was
introduced in [18] to adjust the particle movement distance automatically. A Gaussian
mutation algorithm (GPSO) was introduced in [6] that uses neighbor heuristics and the
Gaussian cloud learning PSO algorithm. Cauchy mutation strategy uses a scaling factor
on the Cauchy mutation to control the distance the particle moves [7]. A detailed review
with the evaluation of the mutation strategies is introduced in [5]. The mutation strategies
slightly improve the premature convergence rate; however, they increase the convergence
time and add complexity to the PSO strategy. Therefore, they have not been discussed
further in this study.

The second improvement in the PSO is achieved by fine-tuning the PSO control
parameters w, ci, and cg, which considerably improves the performance of the PSO without
adding extra complexity to the conventional PSO technique. Numerous studies have
introduced different strategies to estimate the best values of the PSO control parameters
[8-15]. Most of these strategies include tuning these parameters to improve the
performance of the PSO using the trial-and-error mechanism or using the empirical
formulas. Few strategies have shown successful results in certain applications; however,
they have failed in some other applications. Thus, there is a need for fine-tuning the PSO
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control parameters for different applications. Two strategies were used for this purpose,
the first one depends on using fixed values of the PSO control parameters, which can be
determined using the different strategies suggested in [8-15,19-29], the other strategy is
called the online strategy, where the values of PSO control parameters are changing
during the execution of the code. Fixed control parameters are fixed during the entire
iterations of the searching space. Therefore, these PSO control parameters should be
known before running the PSO code to search for the optimal solution. Most of these
studies have used the recommended values of these parameters based on the previous
studies or after fine-tuning these parameters to be more effective in a certain application.
Some researchers introduced empirical formulas to assist in choosing the PSO control
parameters [16,19]. Some studies introduced a mathematical derivation for obtaining the
optimal values of the PSO parameters [20,21], considering the effects of these parameters
on the behavior of the PSO. Kennedy et al. [3] introduced the first study on the effect of
the PSO control parameters values on its searching performance; they recommended the
values of ¢g, ¢, and w as 2, 2, and 1, respectively. Another study discussed the effect of w
and other PSO parameters, ¢g and c;, on the performance of PSO using the trial-and-error
mechanism [30] and concluded that it is beneficial to use the linearly decreasing inertia
weight, as will be discussed later. Eberhart [20] introduced a modified strategy
considering the relation between the PSO control parameters called the constriction factor,
as expressed in (5) and (6). This strategy introduced the values of control parameters that
may work well with a certain application; however, they were not suitable for other
applications, as shown in the experimental results of this study.

2
o=

-0 -p a0 ©
where, 4- "%y, (6)

Clerck [9] concluded that the most suitable value of ¢ was 4.1, which showed many
positive results. Therefore, from (5) and (6), w = 0.729, and the author assumed ¢g = =
1.49445 [9]. Additionally, an empirical formula was introduced in [16] to examine the
performance of the PSO search with the varying PSO control parameters. The main
inference from this study was that the balance between the acceleration parameters, c; and
c, does influence the regions of the parameter space that leads to approximately optimal
performance. The relation between cg, ¢, and w is defined in (5). Additionally, this strategy
introduced a relation between w and (¢g + c1); however, the deterministic values of these
parameters that can fit with all optimization problems were not introduced. It was
checked with the optimal values of control parameters that show the highest performance;
however, it was not compatible with this condition, as shown in [16].
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Additional empirical formulas that can assist in determining or introducing the
boundary values of the PSO control parameters were introduced in [10,17,22,23].
Additionally, all these empirical formulas were tested, and it was found that they might
be suitable for a certain application, but not suitable for all optimization problems. The
authors of [10] recommended the values w = 0.715 and ¢;= c1=1.7, and concluded that the
most suitable values of the PSO control parameters depended on the experimental
findings. Nevertheless, this strategy was tested, and it was found that it was not suitable
for all the optimization problems, as shown in the results of this study. Most of the
recommended and popular strategies estimating the control parameters [8-15,19-29] were
tested with the final recommendations of this study. This study concludes that all these
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strategies may work well for a certain application; however, they will not work well in all
the optimization problems.

Another strategy is the online strategy; it changes the values of the PSO parameters
during the search progress to enhance the social search at the beginning of the search
operation to capture the global best (GB) and not fall in one of the local best (LB).
Additionally, it enhances the cognitive search to capture the GB accurately and with the
least oscillations around it [31]. Most of the online PSO parameter variations were
examined and compared in [32,33]. An online strategy can be subclassified into two types,
namely, the dynamic strategies [30,34-36] and the adaptive strategies [32]. A dynamic
strategy uses certain formulas to change the values of the PSO parameters with iterations.
The dynamic strategy enhances the social search at the beginning of the iterations by
increasing the values of the inertia weight parameter. Subsequently, it enhances the
cognitive search by reducing the values of the inertia weight parameter with increasing
the number of iterations. Meanwhile, the adaptive strategy adapts the PSO control
parameters, depending on the progress achieved during the search based on the online
results from the search progress. Reference [37] introduced a formula for dynamic
variation equations for the acceleration parameters besides the inertia weight. This
strategy requires the introduction of optimal dynamic equations for PSO control
parameters.

Based on the previous discussion, it was concluded that the performance of PSO
techniques is highly affected by the values of PSO control parameters, especially in online
applications where the confidence of capturing the GB and the convergence time are the
crucial factors. The previous strategies used recommended or tuned values of PSO control
parameters.

The proposed strategy introduced in this study focuses on the determination of the
optimal fixed control parameters, and therefore, the dynamic variation in the PSO control
parameters has not be further discussed. This is a pioneer study that has introduced a
strategy to determine the optimal PSO control parameters in the metaheuristic techniques
for minimum PCR and the shortest convergence time that suits all the applications. This
new proposed strategy uses two nested PSO loops and is called NESTPSO. The inner one
is to get the optimal solution of the fitness function and the outer one optimizes the PSO
control parameters of the inner loop to get the lowest PCR and Nss for the inner loop.
Thus, the control parameters of the inner PSO are used as optimization variables in the
outer PSO loop. The fitness function to be minimized in the outer loop is a multiobjective
function containing the PCR and the Nss of the inner PSO loop. The stunning results
obtained from using the NESTPSO in the optimization of many benchmark functions with
different levels of complexity and the real-world application show a substantial reduction
in convergence time and PCR compared to 10 state-of-the-art strategies. This
improvement gained from NESTPSO allows the use of the PSO in the online applications
that need very fast and reliable convergence, such as the maximum power point tracker
(MPPT) of the PV systems. Moreover, NESTPSO can determine the optimal swarm size
for optimal optimization performance. The author has ambition in this strategy to open a
new way of optimally determining the control parameters of all swarm optimization
techniques in the engineering optimization field.

The rest of the paper is designed thus: Section 2 explains the proposed strategy and
its logic. Section 3 introduces the experimental results of the proposed strategy compared
to the state-of-the-art strategies with four benchmark mathematical functions. Section 4
shows the application of NESTPSO as an MPPT of PV energy system compared to state-
of-the-art strategies. Section 5 shows the conclusions of the study and introduced future
work.

2. Proposed Strategy

The concept proposed in this study can be applied to all the PSO parameter
estimation strategies, where it can be used with fixed PSO parameters, dynamic PSO, and
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adaptive PSO parameter variations. Moreover, this strategy can be used to determine the
optimal parameters for all metaheuristic techniques. The proposed strategy for PSO
control parameter (w, c, and cg) determination is called the nested PSO (NESTPSO). The
term nested PSO has been introduced in many researches [38-44] to handle certain
functions. However, it has been used in this paper to determine the control parameters of
PSO or any other metaheuristic techniques. All the previous studies depended on non-
autonomous strategies to estimate the control parameters of the PSO. Two nested PSO
searching loops are used, where the inner PSO loop contains the fitness function required
to be optimized. The outer PSO loop uses the inner PSO as a fitness function to minimize
the PCR and Nss. The PSO parameters of the inner loop (wj, ¢i, and cgi) and swarm size
(5Si) are used as the variables to be optimized in the outer loop. The outer PSO loop control
parameters’ values are given in [20], where w.= 0.729, and cie= cg.= 1.49445. The swarm
size of the outer loop is chosen to be equal to 50 particles. A block diagram showing the
logic used to determine the optimal values of control parameters in the NESTPSO is
shown in Figure 1 and 2 for the outer and inner PSO loops, respectively. At the beginning
of the iteration process, the outer PSO loop initiated random values for the control
parameters and the swarm size of the inner PSO loop. These values are applied to the
inner PSO loop to minimize the benchmark mathematical functions used in this study. To
avoid the effect of the random nature inherent in the inner PSO loop, the function is
minimized for a certain number of iterations, Nw, to obtain the average results. After
performing N iterations for the inner loop, the times the inner loop is trapped in the local
optima are counted as a variable Nrcr and the PCR is determined from (3). The number of
average iterations in the inner loop, Nj, is determined and used to determine the average
value of Nss, as shown in (4). The multi-objective function is determined in terms of PCR
and Nss, as shown in (8), to get the optimal PSO parameters of the inner function for
minimum PCR and Nss. These two parameters displayed opposite performance, which
means to get minimum PCR, Nss had to be increased, and vice versa. Therefore, the multi-
objective function shown in (8) is introduced to achieve a trade-off between these two
factors.
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| Input data SSe, @, Cre, Cye, Ite, Dee M |
P .

SSe=Swarm size
of outer PSO loop

x/! initial position
of particle # k

X=Swarm particles™ positions
F=Fitness function values

= Privet best positions
LB=Privet best values

G~Global best position —
GB=Global bestvalue | LOB.OT=min(F)

[ i=itl } {

i=Tteration of outer loop counter
} { |

ir=Total number of iterations of outer loop

¥
_.l k=ktl |_.| k=1:SS. | k=Counter of particles in swarm.

T SS=Swarm size of outer loop

| Update particles” velocity v} and position X} using Eq. (1) & (2) |
+—’G) To inner PSO loop
Send x;/ to inner PSO loop and get 7/

Updating the particles best
positions and values

he global best positions and
es, G and GB, respectively

Print the optimal PSO control parameters
and swarm size, G

Figure 1. NESTPSO outer PSO loop flowchart.
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Inputs from outer PSO loop

Get the values of @, cj;, ¢y, SS; from outer loop

Initializati it=200, N,,=1000, D=10, Npcz=0, N=0
— N.,=Total number
Unla2} [2]:Nay of attempts
SSi=Swarm size of
k=k+1 k=1:8S | "inner PSO loop

s e i
g particle’s position

| Send x,,k to fitness function and get FI,," |

<isss 7>

FIf is r/lg initial
particle’s Value

¥
No X=Swarm particles’ positions
F=Fitness function values
L= Privet best positions
LB=Privet best values

{ =i+l ] [ =Lt

] i=Iteration of inner loop counter
it=Total number of iterations

[ =rr — j=Counter of particles in swarm
R k iss' | SS~Swarm size of inner loop

| Update particles” velocity v/ and position X! using Eq. (1) & (2) |

|Send X/ to fitness function and get FI,"l FIXis the fitness

function at iteration I
and particle k

Updating the particles best
positions and values

Updating the global best
positions and values, G
and GB, resp

Return to
outer PSO loop

>

Yes
Yes NO | PCR=Npc/Ny*100
F=MPCR+Nss

Figure 2. NESTPSO inner PSO loop flowchart.

F = M*PCR + Nss, (8)

where M is a weighting value to be multiplied with the PCR to express the importance of
PCR compared to the Nss. A detailed study to determine the value of M is shown in the
experimental results.

Minimizing the objective function, F in the outer PSO loop guaranteed optimal PSO
control parameters and swarm size of the inner loop for minimum PCR and Nss. The
optimal values of the control parameters of the inner loop are obtained as the optimal
solutions for the outer loop. The detailed pseudo-code explaining this new strategy
(NESTPSO) for obtaining the optimal values of the PSO control parameters is shown in
Figures 3 and 4 for the outer and inner loops, respectively. It is clear that the control
parameters and the swarm size of the inner PSO loop are fed from the outer PSO loop as
optimized variables. The concept of using the NESTPSO in the determination of the
parameters of metaheuristic techniques has not been reported in the literature before. The
proposed strategy can be used as an on-shelf optimal parameter estimation for any
metaheuristic technique, which will assist researchers and designers to use their proposed
metaheuristic techniques with optimal performance. This new strategy ensures fast and
reliable convergence for any fitness function used with any metaheuristic technique. The
proposed strategy will open a new way for the optimal determination of metaheuristic
techniques parameters estimation and other applications.
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Set the outer PSO loop values, (ci=cg=1.49445; w=0.729; 1it=200, M=300;,
55e=100,; D=4)
ve(l:D,1:S5S¢)=zeros;
X(1:D-1,1:88c)=rand([D-1 SSel) s
X(D,1:8Se)=randi ([2 100],1,5Se)
for k=1:SSe
[F(k)]=inner(X(l,k), X(2,k), X(3,k), X(4,k));

end
L=X; % Initial particle’s best positions
[GB,I]=min (F) ; % Initial Value of global best
G=X(:,I); LBe=Fe; % Initial global best position

for i=1:1:¢
V=@.VetCle.rand. (Le=X) +Cge.rand. (G-X) ;
v(D,1:SSe) =round(v(D,1:58Se)); % Make change in swarm size integer
new _pos=X+v; % Update the particles’ positions
for k=1:5Se
if new pos(D,k)>2 && new_pos(D,k)<100
X(D,k)=new _pos(D,k) ;

Outer PSO loop searching iterations Outer PSO loop initialization

end
[F(k]=inner(X(1,k), X(2,k), X(3,k), X(4,k));
end
if F(k)<=LB(k); $to update the particle best
LB (k) =F(k) ; $to update the particle best value
L(:,k)=X(:,k);
end
[GB,G]=min (LB) ; % to get the global best and positior
Stopping criteria

end

Figure 3. Pseudo-code for the outer PSO loop in NESTPSO.

function [F]=inner (®:,c1i,Cgi,SS1)
1t=200;14~=1000;D=10; PCR=0; N=0;

for 1=1:Na, 5
vi(l:D,1:SS;)=zeros; %Set initial velocities to zeros 'ﬁ
for i=k:SS:; o
s=0,; % s is storage to accumulate the fitness value S

for j=1:D; "é
X(j,k)=rand; s=s+(X(j,k))"2; %Evaluate fitness function .a

end 8
FI(k)=s; %$Value of fitness function 6

end ["d
L=X; LB=FI tInitial particles’ best positions and values %
[GB,G]=min (FI) ; *Initial global best value and position g
for i=1:it £

v=w.v+ci.rand. (L-X) +cy.rand. (G-X) ;

X=X+v;
for k=1:8S;
s=0; g
for j=1:D; s=s+(swarm(j,k))"2; end =
FI(k)=s; [<4
if FI(k)<=LB(k) <
LB(k)= FI(k); L(:,k)=X(:,k); 3
end L g‘
end K]
[GB,G]=min (LB) ; %Update the global best value and position (@]
if max(std(L))<=0.001,; N=N+i; break; end %Stopping criteria &
if i== it; N=N+it; end -
end q:)
if abs (GB-GP)>=g; Npcr= Npcr+l; end$% ¢ is a predefined tolerance £
end
Nss=N*SSi/Nay; PCR=Npcr/Nav*100;
F=M* PCR+Nss $F is the fitness function that will got to outer loop)

Figure 4. Pseudo-code for the inner PSO loop in NESTPSO.
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3. Experimental Results and Discussion

The experimental work of the proposed strategy, NESTPSO, is performed for four
benchmark mathematical functions, as shown in (9)—-(12). The results obtained from
NESTPSO are compared to 10 fixed control parameters in the PSO strategies [8-15].

3.1. Benchmark Mathematical Functions

The four selected benchmark mathematical functions have zero minimum value.
These benchmark functions are shown in the following Equations (9)-(12). The order of
these benchmark functions is set at D = 10. These function are drawn in Figure 5 for two
dimensional order (D = 2).

The first benchmark function, the sphere function is shown in the following equation:

Rx)=2x7, ©)

where x = [X31, X3, ..., Xp], and D denotes the variables that determines the order of fitness
function.

The second benchmark function is the generalized Rastrigrin function, which is
described by the following equation:

Fx)= 3 ~10c0d2m;)+10), (10)

i=1

The third benchmark function is the De Jong function, which is described by the
following equation:

Al)=35¢ (11)
=1

The fourth benchmark function is the Alpine function, which is described by the
following equation:
D
F4(x)=2|xl- sinx; +0.1x; (12)

i=1
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2000 -

1500

1000

500

F4(x)

()

Figure 5. The 3-D pslot of the benchmark function with D = 2. (a) sphere function. (b) Rastrigrin function. (c) De Jong
function. (d) Alpine function.

3.2. Stopping Criterion

The stopping criterion is a condition used to terminate the execution of the code when
the convergence occurred with a certain value. Many stopping criteria are introduced in
the literature [45] to decide to stop the execution of the code, such as:

a. Generation Number: The execution of the code is to stop when the iteration number
equals the predefined number of iterations.

b.  Best Fitness Threshold: This condition stops the execution of the code when the value
of the fitness function reached predefined value.

c. Population Convergence: This condition stops the execution of the code when the
difference between the maximum and minimum values of all particles’ position in
the population is less than the predefined tolerance. This idea also can be achieved
by using the standard deviation of the particle position of private best is less than
predefined tolerance, which has been used in this study for the first time based on
the knowledge of the author of this research.

d. Fitness Convergence: This stops the iteration when the difference between the
maximum and minimum values of objective function during one iteration is less than
the predefined tolerance.

In this study, the generation number and population convergence stopping criteria
have been used to stop the execution of the logic in the inner and outer loops. Regarding
the generation number, the stopping criterion has been used in the inner and outer loops
by setting the maximum number of iterations to 200 iterations for inner and outer PSO
loops. Regarding the population convergence of the inner loop, it is assumed that the
complete convergence occurs when the maximum value of standard deviation (std) for all
variables’ values of private particles’ best positions is lower than the predefined tolerance
value, e. The value of ¢ is chosen here by 0.001, as shown in the following Equation (13).
This condition ensures that all the particles are concentrated near to each other, and the
standard deviation of their position value is lower than 0.001. This criterion will reduce
the convergences time, but it will not highly affect the final results. The value of the
predefined tolerance ¢ is depending on the values of the optimal solutions of variables of
the fitness function, which needs a careful selection of ¢.

Max(std(Peest(1:5S1))) <= € (13)

where Pues(i) is the values of particle best positions of the inner loop, and ¢ is the acceptable
values of the standard deviation of the particle best positions.
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The above criteria used in the inner PSO loop will not work with the outer one,
because the variables in the outer one are composed of different values of PSO control
parameters w, ci, cs, and SS. The fitness convergence stopping criterion is used to stop the
outer PSO loop. This is accomplished by stopping the iterations of the outer PSO loop
when the difference between the maximum and minimum values of the fitness function
during one iteration is less than 1*10-°. This value has been chosen empirically after
studying the performance of the convergence of the outer loop.

3.3. Premature Convergence Rate Determination

The premature convergence occurred when the particles of PSO are all trapped in
one of the local optima to the end of the convergence iteration. It is not easy to deduce a
generalized formula to be used to judge if the GB is the right global optima (theoretical
optima), GO, or is one of the local optima, LO. To have a fair evaluation between all of
these strategies, the absolute difference between the GB and GO is higher than 0.01 will
be counted as premature convergence occurrence. The PSO searching strategy will be
performed 1000 times to reduce the random nature inherent in the PSO technique. The
PCR or sometimes called failure rate can be obtained from (3). Where the PCR equals the
ratio of the total occurrence of premature convergence, Nrcr divided by the total number
of searching occurrences (Nw), as shown in Equation (3). This value used to judge may be
varied from one fitness function to another, but this value performed very well in all the
benchmark functions (9)-(12) as well as the MPPT of the PV system.

The boundaries for the inner loop variables are set -5 to 5 for all benchmark functions
understudy. Regarding the variables of the outer PSO loop that will be used as input to
the inner PSO loop, the boundaries of these PSO control parameters (cs, ¢;, and w) are set
in between -5 and +5; meanwhile, the swarm size boundary is selected between 2 to 100.

3.4. Selecting of Multi-Objective Function Weighting Value

Two main studies are introduced here in this paper. The first one is introduced to
show the variations of PCR and Nss for different values of objective function weight
parameter, M, for the four benchmark functions under study. The second one is
introduced to compare the results obtained from NESTPSO with the recommended values
of control parameters introduced in the literature [8-15,19-29].

The objective of the first study is introduced to select the most suitable value of M to
achieve the lowest acceptable value of PCR and the lowest number of hitting the fitness
function Nss. As discussed above, the experiment of the benchmark mathematical
functions is performed 1000 times to overcome the random nature inherent in the PSO
technique. The variations in the control parameters of the inner loop (w;, ci, and cgi), PCR,
and Nss with M are shown in Figures 613 for the Sphere, the Rastrigrin, the De Jong, and
the Alpine benchmark functions, respectively. The results shown in Figures 6-13 have been
tabulated in Tables 1-4 to display the information accurately and to simplify the
comparison of these results. The detailed results of each benchmark function are shown
in the following sections:

3.4.1. Multi-Objective Weighting Value for the Sphere Benchmark Function

The variation of M, with the control parameters of the inner loop (w;, cli, and cg), PCR,
and Nss are shown in Figure 6 and Table 1. The objective of this section is to determine the
optimal value of M shown in Equation (8). It is clear from Figure 6 and Table 1 that the
maximum value of PCR is 7.34 at M = 70. However, this value is lower than the best value
obtained from the state-of-the-art strategies [8-15], as shown in Table 5. Additionally, it is
clear that the value of M is inversely proportional to the PCR and directly proportional to
the Nss in the lower values of M; meanwhile, it shows a saturated relation with the higher
values of M. The variation of SS;, N, and Nss with the value of PCR is shown in Figure 7.
For best operating performance, the PSO should have the minimum value of PCR and Nss.



Sustainability 2021, 13, 1008

12 of 30

Here the PCR is inversely proportional to M, and Nss is directly proportional to M.
Therefore, a trade-off between these two values is required. The value of M is selected
based on the acceptable lowest value of PCR, where, if PCR <=5% (Case 1) is the acceptable
value, the selected value of M =90, and the values of w;, cii, csi, SSi, PCR, and Nss are 0.8216,
0.0140, 0.803, 36, 4.5%, and 3342, respectively, as shown in Figure 6, Figure 7, and Table 1.
Meanwhile, if PCR <=1% (Case 2) is the acceptable value, the selected value of M is equal
to 190; the values of wi, ci, ¢csi, SSi, PCR, and Nss are 0.8484, 0.0506, 0.6538, 44, 0.98%, and
4162, respectively. These two cases are further compared to the state-of-the-art strategies
[8-15] to show the superiority of NESTPSO. The difference between these two cases is that
Case 2 required an additional 820 hitting the fitness function to reduce the PCR from 4.5%
to 0.98%.

<
o
% ¢
o

Il L
50 100 150 200 ZSOM 300 350 400 450 500

Figure 6. Variation of M with the performance parameters of the inner PSO loop for the Sphere
function.
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Figure 7. Relation of N, SSi, and Nss with PCR for the Sphere function.
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Table 1. Variation of m with the performance parameters of the inner PSO loop for the sphere function.
M Wi cli Csi SSi PCR Ni Nss
70 0.8151 0.0048 0.8374 32 7.3400 94.01 3004
90 0.8216 0.0140 0.803 36 4.5000 92.83 3342
100 0.825 0.0187 0.784 38 3.2800 92.53 3516
110 0.8274 0.0232 0.7666 39 2.8500 91.95 3586
130 0.8329 0.031 0.7359 40 2.1800 91.60 3664
150 0.8386 0.0386 0.7053 44 1.2600 91.95 4046
170 0.8437 0.0449 0.6792 44 1.1300 93.34 4107
190 0.8484 0.0506 0.6538 44 0.9800 94.59 4162
200 0.8509 0.0534 0.642 44 0.9750 95.09 4184
210 0.853 0.0556 0.6324 44 0.9500 95.77 4214
300 0.8706 0.0697 0.5725 44 0.7400 104.89 4615
400 0.8839 0.0677 0.544 44 0.5000 111.89 4923
500 0.8905 0.05 0.5500 45 0.4000 116.71 5252
3.4.2. Multi-Objective Weighting Value for the Generalized Rastrigrin Function
The experimental work for the generalized Rastrigrin benchmark function is
performed similarly to the Sphere function. The variation of M with the control parameters
of the inner loop (wj, ci, and cgi), PCR, and Nss are shown in Figure 8 and Table 2. It is clear
from this figure that the value of M is inversely proportional to PCR and directly
proportional to Nss in the lower values of M; however, it saturates after M increases. The
maximum value of PCR is 13.3% at M = 30. The value of M is selected based on the
acceptable value of PCR, where if PCR <= 5% (Case 3) is the acceptable value, the selected
value of M =90, as shown in Table 2 and Figure 8. The values of w, ci, ¢gi, SSi, PCR, and
Nss are 0.7455, 0.5068, 0.4133, 25, 4.5%, and 2127, respectively, as shown in Table 5. If the
acceptable value of PCR <= 1% (Case 4), the value of M =300 is selected from Figure 9 and
Table 2; the values of wj, ci, ¢gi, SSi, PCR, and Nss are 0.7795, 0.5717, 0.409, 0.99%, and 2857,
respectively. These two cases are further compared to the state-of-the-art strategies [8-15]
to show the superiority of the NESTPSO strategy. The difference between these two cases
is that Case 4 required an extra 730 hitting the fitness function to reduce the PCR from
4.5% to 0.99%. The variation in SSi, Ni, and Nss with PCR for the Rastrigrin is shown in
Figure 9.
Table 2. Variation of M with the performance parameters of the inner PSO loop for the Rastrigrin function.
M wi cli Cgi SSi PCR Ni Nss
30 0.7238 0.4824 0.4396 21 13.3 85.81 1805
40 0.7279 0.4867 0.4334 22 10.7 81.85 1862
50 0.7318 0.4909 0.424 22 9.5 87.47 1918
60 0.7355 0.495 0.42 23 8.2 89.5 1972
70 0.739 0.499 0.4173 24 6.4 81.94 2025
80 0.7424 0.5029 0.4142 24 5.5 81.464 2077
90 0.7455 0.5068 0.4133 25 45 90.83 2127
100 0.7485 0.5106 0.4126 25 4.1 87.34 2175
200 0.77 0.5448 0.4071 26 1.8 103.19 2586
300 0.7795 0.5717 0.409 27 0.99 98.87 2857
400 0.7822 0.5913 0.4158 28 0.4 110.71 2989
500 0.7828 0.6037 0.42 28 0.31 105.79 3005
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3.4.3. Multi-Objective Weighting Value for the De Jong Benchmark Function

The experimental work for the De Jong benchmark function is performed in the
beginning to determine the weight of the multi-objective function, M. The variation in M
with the control parameters of the inner loop (w;, ci, and cgi), PCR, and Nss are shown in
Figure 10 and Table 3. It is clear from this figure that the maximum value of PCR is
6.5059% at M = 30. The value of PCR reduces swiftly with variation in M compared to the
other two benchmark functions. The value of M is selected based on the lowest value of
PCR, where, if PCR <= 5% (Case 5) is the acceptable value, the selected value of M = 50;
values of wi, ci, ¢, SSi, PCR, and Nss are 0.783, 0.003, 0.9501, 29, 4.496%, and 1891,
respectively. If PCR <= 1% (Case 6) is the acceptable value, the selected value of M =110;
values of wi, ci, cgi, SSi, PCR, and Nss are 0.7838, 0.018, 0947, 42, 0.9936%, and 2210,
respectively. These two cases are further compared to the state-of-the-art strategies to
show the superiority of NESTPSO. The difference between these two cases is that Case 6
required an extra 319 hitting the fitness function to reduce the PCR from 4.496% to
0.9936%. The results of this experiment are shown in Table 3. Negative values of ci are
observed for the first time in the literature. Figure 11 shows the variation in SSi, Ni, and
Nss along with PCR.

Table 3. Variation of M with the performance parameters of the inner PSO loop for the De Jong function.

M wI cli Cgi SSi PCR Ni Nss
30 0.803 -0.0005 0.97 25 6.5059 73.04 1826
40 0.789 -0.0002 0.9588 27 5.4398 68.74 1856
50 0.7831 0.0003 0.9501 29 4.496 65.21 1891
70 0.7774 0.0036 0.945 33 2.9464 60.00 1980
90 0.778 0.012 0.945 38 1.7984 54.92 2087
110 0.7838 0.018 0.947 42 0.9936 52.62 2210
130 0.7927 0.0218 0.9563 48 0.4734 48.83 2344
150 0.805 0.0323 0.963 53 0.1791 46.91 2486
170 0.814 0.04 0.966 57 0.0522 46.18 2632
190 0.817 0.045 0.964 60 0.0341 46.25 2775
210 0.82 0.049 0.956 64 0.012 45.94 2940
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Figure 10. Variation of M with the performance parameters of the inner PSO loop for the De Jong
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3.4.4. Multi-Objective Weighting Value for the Alpine Benchmark Function

The experimental work for the Alpine Benchmark function is performed to determine
the weight of the multi-objective function, M. The variation of the control parameters of
the inner loop (wj, ci, and cgi), PCR, and Nss, along with M are shown in Figure 12, Figure
13, and Table 4. It is clear from the figure that the value of M is inversely proportional to
PCR and directly proportional to Nss in the lower values of M; however, it saturates after
M increases. It is clear that the maximum value of PCR is 12.42 at M = 70. This value is
lower than all the state-of-the-art strategies. The value of M can be selected based on the
lowest value of PCR, where if PCR <= 5% (Case 7) is the acceptable value, the selected
value of M = 190; the values of wj, ci, ¢4, SSi, PCR, and Nss are 0.8113, —0.0107, 0.6583, 47%,
and 5340, respectively. If the acceptable value of PCR <= 1% (Case 8), the selected value of
M = 250; values of wi, ci, cgi, SSi, PCR, and Nss are 0.8585, —0.0154, 0.5761, 50, 0.92%, and
8215, respectively. These two cases are further compared to the state-of-the-art strategies
to show the superiority of NESTPSO. The difference between these two cases is that Case
8 needs an extra 2875 hitting the fitness function to reduce the PCR from 4.33% to 0.92%.
This implies that Case 7 is faster than Case 8, but with a higher PCR (failure rate).
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3.5. Comparison of NESTPSO to State-of-the-Art PSO Strategies

After studying the performance of the NESTPSO with the variation of M in the
previous section, two values of M are selected for further study and comparison in each
benchmark function under study. The selection of M depends on the allowed PCR, as has
been discussed. The PSO control parameters of state-of-the-art strategies have been used
to determine the PCR and the Nss, to be compared to the values obtained in Cases 1-8, as
discussed in Section 3.4. The following list is summarizing the different cases understudy:

e  Case 1: sphere function and (M = 90)

e Case 2: sphere function and (M = 190)

e  Case 3: Rastrigrin function and (M = 90)
e  Case 4: Rastrigrin function and (M = 300)
e  Case 5: De Jong function and (M = 50)

e  Case 6: De Jong function and (M = 110)

e  Case 7: Alpine function and (M = 190)

e  Case 8: Alpine function and (M = 250)

The experimental work is performed 1000 times to achieve the average value that
reduces the dependency of the output results on the stochastic nature of the PSO. Ten
popular strategies are selected to be compared to the NESTPSO, as shown in Table 5 [8-
15]. The results shown are the PCR and the Nss. All state-of-the-art strategies [8-15]
understudy had SSi = 50; however, SSi of the proposed strategy is the optimization
variable determined from the NESTPSO. This implies that the proposed simulation
program is optimizing the PSO control parameters and SSi to achieve the lowest possible
PCR and the lowest Nss.

Table 4. Variation of M with the performance parameters of the inner PSO loop for the Alpine function.

M ) cli Cgi SSi PCR Ni Nss

70 0.7934 -0.0013 1.0005 32 12.4200 107.25 3,432
100 0.7940 -0.0014 0.7961 38 10.1600 100.71 3,827
130 0.7950 -0.0016 0.7229 42 9.1800 98.90 4,154
160 0.8004 -0.005 0.6762 45 7.1700 103.11 4,640
190 0.8113 -0.0107 0.6583 47 4.3300 113.62 5,340
220 0.8248 -0.0132 0.6115 48 2.9500 124.77 5,989
250 0.8585 -0.0154 0.5761 50 0.9200 164.30 8,215

280 0.8800 -0.017 0.5664 52 0.4500 199.00 10,348
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Table 5. Fixed control parameters strategies compared to the NESTPSO.

Parameter Fi,D=10 F,D=10 F;, D =10, Fs, D=10

Strategy o c ¢SS TN PCR Ne PCR Nss PCR Nss _ PCR
S18] 07298 14962 1.49618 6962 1087 6868 040 3981 260 7,452 16.64
2 19] 0729 14945 1.4945 6932 1111 7,053 040 4,022 260 7,392 16.18
S3[10] 0715 17 17 8073 1349 8330 0.60 4765 2.60 8228 20.63
s4[12] 0729 205  2.05 10936 2506 11,625 2.60 6989 9.00 10,126 32.37
S5 [11] 0729 20412 09477 6190 863 6349 060 3707 240 7,148 13.68
S6 [12] 0724 1468 1468 6535 1165 6664 060 4,056 3.00 7,068 1755
S7[13] 072 1108  1.108 4511 1478 4759 020 2979 280 5161 18.80
S8 [14] 042 155 155 1682 9534 2159 4240 1,707 6220 1,702 9554
S9 [15] 05 19 1.9 3232 6926 4054 10.60 3,044 2940 3,620 71.01
S10 [15] 06 18 1.8 4815 3890 5590 320 3951 1020 5397 42.92
Case (M=90) 0.8216 0014 0803 36 3342 450
Case2(M=190) 0.8484 0.0506 0.6538 44 4162  0.98

O Case3(M=90) 07455 05068 04133 25 2,127 4500

£ Cased (M=-300) 07795 05717 0409 27 2,857 0.99

9 Case5(M=50) 07831 00003 09501 29 1,891 4496

Z  Case6(M=110) 07838 0018 0947 42 2,210 0.994
Case7 (M=190) 0.8113 -0.0107 0.6583 47 5340 433
Case 8 (M=250) 0.8585 -0.0154 05761 50 8215  0.92

Increasing the value of M gives more weight to the PCR than the Nss and vice versa.
Therefore, it depends on the user’s requirements to give more weight to PCR or Nss. The
comparisons between the results obtained from the state-of-the-art strategies and the
results obtained from the NESTPSO for the four benchmark mathematical functions are
shown in the following subsections:

3.5.1. Comparison of NESTPSO with the State-of-the-Art PSO Strategies for the Sphere
Function

The NESTPSO experimental work for the Sphere function is introduced in Table 1 and
Figures 6 and 7. Case 1 (PCR <= 5%, M =90) and Case 2 (PCR <= 1%, M =190) are selected
to be further compared with the results obtained from the state-of-the-art strategies shown
in Table 5.

The results of state-of-the-art strategies shown in Table 5 for the Sphere benchmark
function show that the lowest PCR is 8.63% with Nss= 6190 corresponding to strategy S5
[11]. This means that this strategy loses the global minimum by 8.63% of the total try for
the Sphere function; meanwhile, it needs 6190 hits to the fitness function to converge.
Meanwhile, the fastest convergence strategy is S8 [14] that needs 1682 hits to the fitness
function to converge; however, it has the highest PCR at 95.34%, which indicates that it
loses the GB by 95.34%, showing low-performance results. The average value of PCR in
all state-of-the-art strategies is 29.91% and the average value of hitting the fitness function
during the searching criterion is 5987. These results show the importance of the control
parameters of PSO on the performance of searching in terms of PCR and Nss. The
NESTPSO is used to determine the optimal value of the control parameters of PSO to get
the best performance in terms of PCR and Nss. The results of NESTPSO show that, in Case
1, the nearest value for PCR <= 5% is achieved at M = 90 with PCR = 4.5% and Nss = 3342.
These values of PCR and Nss from NESTPSO are almost half the best value obtained from
the best state-of-the-art strategies (S5 [11]) and are much lower than the average value
obtained from the state-of-the-art strategies (S1-510). In Case 2, the value of PCR is 0.98%,
which is lower than the value achieved in Case 1 and state-of-the-art strategies. This
reduction in PCR is at the expense of increasing the value of Nss, where the value of Nss
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became 4162 in Case 2 instead of 3342 in Case 1 but still less than the fastest state-of-the-
art strategy, S8 [14].

Finally, the two cases achieved using NESTPSO displayed better results than all state-
of-the-art strategies shown in Table 5. The convergence of Case 1 and Case 2 compared to
the 10 state-of-the-art strategies (S1-S10) for the Sphere benchmark function is shown in
Figure 14. All Figures 14-17 are showing the average results for 1000 runs. It is clear from
Figure 14 that these cases are faster and get better convergence compared to the state-of-
the-art strategies shown in Table 5. This confirms the superiority of the NESTPSO.

3.5.2. Comparison of NESTPSO with State-of-the-Art PSO Strategies for the Generalized
Rastrigrin Function

Results similar to the Sphere function can be obtained for the generalized Rastrigrin
function, where Case 3 and Case 4 correspond to PCR <= 5% and 1%, respectively. These
two cases are compared to the state-of-the-art strategies shown in Table 5, from where it
is clear that the best PCR obtained from the state-of-the-art strategies is for S7 [13], where
PCR = 0.2% with Nss=4759. Notably, this strategy gives the lowest PCR value compared
to the other state-of-the-art strategies, and therefore is the best strategy to be used with
the generalized Rastrigrin function compared to the other state-of-the-art strategies. Case
3 and Case 4 obtained from NESTPSO gave better results than the state-of-the-art
strategies, where their PCRs and Nss are, 4.5%, 2127, and 0.99%, 2857, for Case 3 and Case
4, respectively. These values are considerably lower than the values obtained from the
state-of-the-art strategies. These results prove the superiority of NESTPSO in determining
the optimal control parameter for the generalized Rastrigrin Function. The variation of the
fitness function values in state-of-the-art strategies compared to the results obtained from
NESTPSO for the generalized Rastrigrin function are shown in Figure 15. This figure
shows the superior performance of the results obtained from NESTPSO strategy
compared to the state-of-the-art strategies.
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Figure 14. Fitness function value against Nss for the Sphere function.
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Figure 15. Fitness function value against Nss for the Rastrigrin function.

3.5.3. Comparison of NESTPSO with State-of-the-Art PSO Strategies for the De Jong
Function

A similar experimental study is performed for the De Jong function to compare the
performance of the state-of-the-art strategies with the NESTPSO strategy as shown in
Table 5. The best PCR from the state-of-the-art strategies is from S5, where PCR = 2.4%
with Nss=3707. Meanwhile, the maximum value of PCR is achieved with S8, where PCR
= 62.2% with Nss= 1707. Meanwhile with NESTPSO, as discussed before in Case 5 and
Case 6, the values of PCR are reduced to 4.496% and 0.994% with Nss= 1891 and 2210,
respectively. It is clear from the results shown in Table 5 that the control parameters
obtained from the NESTPSO substantially improved the performance of the PSO for the
De Jong function compared to the state-of-the-art strategies in terms of the PCR and Niss.
This proves the superiority of the NESTPSO strategy in determining the control
parameters of PSO for the De Jong function. The variation of the fitness function values in
all state-of-the-art strategies compared to the results obtained from the NESTPSO for the
generalized De Jong function are shown in Figure 16. This figure shows the superior
performance of the results obtained from NESTPSO strategy compared to the state-of-the-
art strategies [8-15].

3.5.4. Comparison of NESTPSO with State-of-the-Art PSO Strategies for the Alpine
Function

The last benchmark function tested to prove the superiority of NESTPSO is the Alpine
function. Ten state-of-the-art strategies are used with this function and the results
compared to the results obtained from NESTPSO, as shown in Table 5. The first notable
result is that the difference in the PCR values obtained from one of the state-of-the-art
strategies is extremely high. For S5, PCR = 13.68% with Nss=7148, and for S8, PCR = 95.54%
with Nss=1702. As mentioned before, NESTPSO determines the values of the control
parameters for any level of complexity or for any strange behavior of the fitness function,
which proves the superiority of the NESTPSO strategy. The PCR values for the Alpine
function are 4.33% and 0.92% for Case 7 and Case 8, respectively, which are substantially
lower than the similar values obtained from the state-of-the-art strategies [8-15]. The
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variation of the fitness function values of all state-of-the-art strategies compared to the
results obtained from NESTPSO for the Alpine function are shown in Figure 17. This figure
shows the superior performance of the results obtained from NESTPSO strategy
compared to the state-of-the-art strategies [8-15].
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Figure 16. Fitness function value against Nss for the De Jong function.
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Figure 17. Fitness function value against Nss for Alpine function.

4. Real-World Application

The MPPT of the PV system under partial shading conditions was the motive for
developing the new NESTED PSO technique. The PV system shown in Figure 18 is
showing PV arrays having five series groups of PV modules, connected to boost converter,
and three-phase pulse width modulation (PWM) inverter to be interconnected with the
electric utility. Each group of the PV array contains 300 modules placed in 60 parallel
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branches with five modules in series in each branch. The irradiance on each group is
assumed to be the same within the modules of each group; meanwhile, each group is
exposed to different irradiance than the others. The inductance and capacitance of the
boost converter are L = 0.5 mH and C =200 pF. The PV module used in this simulation is
(Sunperfect Solar CRM1855156P-54) [46], and its specifications are that maximum power
per module is 185.22 W and open-circuit voltage and short circuit currents are 32.2 V and
7.89 A, respectively.

The relation between the PV power from the PV arrays and the duty ratio of the boost
converter is shown in Figure 19 for uniform irradiance and partial shading conditions
(PSC). For uniform irradiance as shown in SP0 of Figure 19, there is only one peak in the
P-V characteristics of PV array. Meanwhile, in the case of PSC, many peaks are generated
in the P-V characteristics of the PV array, as shown in SP1-SP3 of Figure 18. Shading
patterns based on PSC (SP1-SP3) are having one global peak (GP) and many local peaks
(LPs) in each curve. A conventional technique like hill-climbing [47] or perturb and
observe [48] are effective in tracking the MPPT of the PV system in uniform irradiance,
because there is only one peak. Meanwhile, these techniques may stick at one of the LPs
in the case of PSC. For this reason, swarm techniques like the PSO have been used as an
MPPT of the PV systems [49-59]. Although these techniques, especially the PSO, showed
great improvement; meanwhile, they are suffering from two shortcomings, which are the
sluggish convergence and premature convergence possibilities. The main reason for these
two shortcomings was the improper selection of the PSO control parameters, which was
the main motive to propose a new technique to determine the optimal values of these
parameters. The two shortcomings can be measured using the Nss and PCR. The actual
convergence rate of the boost converter is equal to the value of Nss times the sampling
time or switching signal period ts. The sampling period is chosen in this study to be 0.05
s. The PV system is simulated in Simulink, and the Matlab code of the PSO is simulated
in Matlab code. The simulation is carried out for the PV system shown in Figure 18 1000
times to avoid the random nature of PSO. The swarm size is selected to be equal to the
maximum number of peaks in the P-V characteristics, which is recommended in the
literature [46], [50]. For this reason, the swarm size is chosen to be equal to five. Random
initialization for the values of duty ratios of boost converter prolongs the convergence rate
and increases the value of PCR, and for this reason, the initialization of duty ratios can be
obtained from (14). As an example, if SS =5, then the initial values of duty ratios are [0.166
0.333 0.5 0.667 0.833]. The boundaries for the inner loop variables (duty ratio of boost
converter) are set between 0.02 to 0.98. Regarding the variables of the outer PSO loop
variables that will be used as input to the inner PSO loop, the boundaries of these PSO
control parameters are selected as the same for the benchmark function.

_k
SS +1

k (14)
where, k is the counter representing the particles of the swarm, k=1, 2, ... S5, and SS is
the swarm size.

The simulation is performed for the same strategies shown in Table 5 compared to
the results obtained from NESTPSO, and the results are shown in Table 6. The
multiobjective function is as shown in (8), where M is chosen to be equal to 1000. It is clear
from the results obtained that the PCR is equal to zero for all strategies under study thanks
to initialization from Equation (14), and the evaluation of these strategies will be based on
the convergence time fc. It is clear from the results shown in Table 6 that the longest
convergence time is 15.0175 s for S3 [10] strategy. Meanwhile, the shortest convergence
time is 5.171175 s for S8 [14] strategy. The simulation used to determine the optimal PSO
control parameter values using the NESTPSO is started in the beginning using the same
logic discussed above. The values of the control parameter obtained from the NESTPSO
are used online to see the convergence time for online control where random radiations
are chosen for the 5 PV module groups are used. The convergence time with the NESTPSO
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strategy is 2.7672 s, which is less than half the convergence time of the best state-of-the-
art strategy shown in Table 6. This reduction in convergence time shows the superiority
of using the NESTPSO in many online optimization applications where the fast response
of this strategy allows the PSO to work effectively with the fast-changing weather
conditions.

Boost Converter

Constant Frequency

PWM Converter
= = — — — -1 Three Phase

q 1F utility

3|
]

PSO MPPT

Figure 18. The PV energy system with a PSO-based MPPT.
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Figure 19. Power vs duty ratio of the boost converter with five modules in series having different
irradiances.
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Table 6. The performance evaluation of the PSO with state-of-the-art strategies and the NESTPSO.

t
aameters ci coi e () PCR (%) % Reduction by NESTPSO
Strategy

S1[8]
S2[9]
S3[10]
S4[12]
S5[11]
S6[12]
S71[13]
S8 [14]
59 [15]

S10[15]

NESTPSO

0.72980;  1.49618  1.49618 13.38600 0.00000 383.73810
0.72900 1.49445  1.49445 13.28518 0.00000 380.09470
0.71500 1.70000  1.70000 15.01750 0.00000 442.69660
0.72900 2.05000  2.05000 14.43200 0.00000 421.53800
0.72900 2.04120  0.94770 12.62018 0.00000 356.06320
0.72400 1.46800  1.46800 12.78300 0.00000 361.94710
0.72000 1.10800  1.10800 9.68083 0.00000 249.84190
0.42000 1.55000  1.55000 5.17117 0.00000 86.87390
0.50000 1.90000  1.90000 10.15718 0.00000 267.05620
0.60000 1.80000  1.80000 12.64768 0.00000 357.05700
-0.00450 -0.0028  1.45720 2.76720 0.00000 0.00000

To show the superiority of performance of the NESTPSO in MPPT of the PV system,
it will be compared to the longest convergence (S3 [10]) and shortest convergence (S8 [14])
time strategies. Figure 20 shows the performance of the PV system with the longest
convergence time (S3 [10]) state-of-the-art strategy. It is clear from this figure that the PSO
captured the GP after 15.02 s convergence time. Figure 21 shows the performance of the
PV system with the shortest convergence time (S8 [14]) state-of-the-art strategy. It is clear
from this figure that the PSO captured the GP after 5.17 s convergence time. Figure 22
shows the performance of the PV system with the control parameters obtained from
NESTPSO. It is clear from this figure that the NESTPSO strategy captured the GP with
2.76 s, which is substantially lower than the convergence time from all state-of-the-art
strategies, which proved the superiority of the NESTPSO in determining the control
parameters of the PSO when it is used as an MPPT of the PV energy systems. This
reduction in convergence time will enable the PSO and other swarm optimization

techniques to work in online tracking of MPPT with very fast performance.
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Figure 20. Performance of PSO MPPT of PV system with the parameter of S3 [10] as shown in

Table 6.
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Figure 21. Performance of PSO MPPT of the PV system with the parameter of S8 [14] as shown in

Table 6.
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Figure 22. Performance of PV energy system using NESTPSO as an MPPT strategy.

5. Conclusions and Recommendations

Applying the PSO to search for the optimal conditions in any optimization needs high
confidence in getting the global optimal solution and a fast convergence rate, especially in the
online applications of the PSO. The high confidence of getting the global optimal solution can
be achieved by minimizing the PCR and the convergence time. Therefore, the PCR and
convergence time are the key issues to evaluate the performance of the PSO or any other
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metaheuristic technique. These two factors should be minimized for the high performance of
the PSO. These two factors are affected considerably by the control parameters of the PSO.
Therefore, these two factors are minimized by varying the control parameters of the PSO that
can be achieved by using the new proposed strategy (NESTPSO). It comprises of two nested
PSO loops. The NESTPSO has been introduced in this study to determine the optimal PSO
control parameters offline, and they will be used in online applications. The NESTPSO is
performed with four popular benchmark functions to compare it with the existing PSO
strategies. The NESTPSO strategy showed a considerable improvement in the performance of
the PSO in terms of reduction in the values of the PCR and convergence time. This
improvement in the performance of the PSO will further encourage the researchers, designers,
and operators to use the PSO and all the metaheuristic optimization techniques in the
optimization of many online problems where the inferior performance of these techniques
was a barrier in the online applications in the past. With the superior results obtained from the
NESTPSO, the metaheuristic techniques will have big support to surpass any other
optimization techniques, especially in online applications. In the future, the NESTPSO can be
applied to many applications to achieve the optimal values of control parameters of the PSO
to improve their performance. The practical applications in real life or engineering
optimization issues such as the MPPT of PV energy system shows the superior of the
NESTPSO in terms of the convergence time, where it reduced the convergence time from
442.7% to0 86.9% compared to the convergence time of state-of-the-art strategies when they are
used in the MPPT of the PV system:s.
Major conclusions from this study can be summarized in the following points:

e  The control parameters have a great effect on the performance of a PSO technique.

e  Desired values of control parameters of PSO for a certain fitness function do not
guarantee the same for other fitness functions. This means that every fitness function
has different values of optimal PSO control parameters for an optimal PSO
performance, and it is not recommended to use fixed values of these parameters in
all the applications.

e Tuning the PSO parameters needs high expertise designers, and there is no guarantee
that these tuned parameters are the best choice. The NESTPSO provides a guarantee
that its results of control parameters display the highest performance.

e The proposed strategy exhibits a rapid convergence to reach the optimal solution
compared to the time required by the state-of-the-art strategies.

e The optimal value of inertia weight is approximately constant for all the applications
and varies from 0.7536 to 0.8764. Meanwhile, the acceleration parameters have
widely different values from one fitness function to another.

e Thevalues of PCR and Nss reduced considerably for all the benchmark functions with
NESTPSO, compared to the state-of-the-art strategies.

. The private PSO parameter ¢ is sometimes going to a negative value, which is not
shown before in the literature.

Suggested applications of NESTPSO in the future are:

e  Determining the control parameters for the dynamic variation control parameters in
the PSO strategies.
e  Determining the control parameters of other metaheuristic techniques.
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Appendix
Abbreviation Long Form
PSO Particle swarm optimization
MPPT Maximum power point trackers
PV Photovoltaic
NESTPSO Nested particle swarm optimization
PB Particle or privet best
GB Global best
GP Theoretical global best
SS Swarm size
PCR Premature convergence rate
GPSO Gaussian mutation algorithm
LB Local best
std Standard deviation
Symbols Definitions
wi Inertia weight, suffix i is standing for the inner loop
We Inertia weight, suffix e is standing for the outer loop
¢ and & Acceleration parameters or the self-confidence and the swarm-
confidence parameters
ci and cgi Acceleration parameters for inner PSO loop
cle and cge Acceleration parameters for outer PSO loop
Vik The speed for particle i at k iteration.
X l.k The position for particle i at k iteration.
rgand 71 positive random values between 0 and 1
Ni The total number of iterations for inner PSO loop
Gand L The GB and particle best (PB) positions
SSi Swarm size, suffix i is standing for the inner loop
Nss Number of attempts to hit the fitness function, Nss= Ni *SSi
Nrcr Number of occurrences of premature convergence
Nw Total number of experimental occurrence.
M Weighting factor in the multiobjective function
F. Multiobjective function
D Variables that determine the order of fitness function.

Fi, F, Fs, and Fs Sphere, generalized Rastrigrin, De Jong, and Alpine benchmark functions

E.

P best

positions.
Particles private best

Acceptable values of the standard deviation of the particle’s best
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