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Abstract: UAS (Unmanned Aircraft Systems) technologies, also known as UAV (Unmanned Aerial
Vehicle), drones, or Remotely Piloted Aircraft System (RPAS) and GIS (Geographic Information
System) are recognised for the value of the results that can be achieved by their combined use.
However, their use and the results achieved are rarely framed within the context of Digital Era
Governance (DEG), an undertaking that would significantly reduce the capabilities of knowledge
transfer from the academic and/or private environment to the public domain. The purpose of this
study was to highlight, by a bibliometric analysis, the areas of proposed use of this team of tools and
the extent to which these can enter the sphere of interest of public administrations, especially local
ones. From a methodological point of view, based on the 439 articles filtered from the Web of Science
database where UAS/UAV and GIS technologies were used, several bibliometric analyses have
emerged. VOSviewer and R (Bibliometrix tool) were used to conduct the bibliometric analyses. Most
scientific publications that used UAV technology as a working tool have predominant applicability
in photogrammetry, while GIS applications are found in publications dedicated to image processing,
landslides, and cultural and archaeological heritage. We point out that from the point of view of
international cooperation, at the level of institutions or countries, certain international organisations
from the USA, China, and the central and northern European states have a high interest in this topic,
and a low cooperation between academia and public administration is exhibited. The conclusion is
represented by the apparent lack of framing of the results of UAS–GIS technologies usage into wider
and more topical contexts, such as digital era governance, and also a reduced applicability of the
research results.

Keywords: Unmanned Aircraft Systems; GIS; digitalisation; digital transformation; bibliometric analysis

1. Introduction

Digital era governance (DEG) is the descendant of New Public Management (NPM),
a dominant set of theoretical and practical ideas related to management and governance
from the 1985–2002 time period. DEG brings a new series of ideas and reform proposals,
reaffirming the priorities neglected by NPM [1]. Digital era governance means an entire
complex of changes, whose main core of concerns are the changes in IT and informa-
tion management but develop simultaneously in more dimensions than in the previous
case [1,2]. This concept is also associated with those of Public Value Management and
New Public Governance, all three insisting on the cooperation in partnership, promoting
governance, and innovation, and acknowledging the transformation potential of the digital
technology [3]. According to Kosenkov et al. [4], digital governance has six dimensions:
information dissemination, communication with citizens, service delivery, socioeconomic
monitoring, advanced social analytics, and regulation of social life.
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A sustainable transition from digital government to digital governance is the transi-
tion from a technical structure to multiple processes at different levels. From the current
perspective, digital government is seen as a part of the digital governance concept, to-
gether with the business aspects and those related to political decision making (digital
democracy) [5]. In more specific terms, the impact of DEG practices is translated by a
reconfiguration of the electronic channels where the agency (institution) “becomes its Web
site” [1].

Within digital governance, Artificial Intelligence (AI) is one of the technologies that
attracts the interest of public administration due to its potential impact [3]. Three additional
important terms are frequently mentioned in DEG, especially in view of the thick confusion,
i.e., “digitisation”, “digitalisation”, and “digital transformation” [6,7]. The first term,
digitisation, refers to the audio or video conversion into a digital format, while the third
one, digital transformation, contains, de facto, a series of digitalisation projects [8]. Digital
technology is ”implemented with the intent of establishing a communication infrastructure
that connects various activities of the actor’s various processes” [7]. Some studies show that
adoption of information innovation is often incomplete, with low impact on administrative
tasks [9]. Moreover, many local administrations adopt technical innovations such as
websites, while their implementation is achieved as a unidirectional source of information
for residents with access to the internet.

In the context of digital governance, we can also discuss the technologies that facilitate
the visualisation of some extended surfaces, at low cost, from a variable altitude (low alti-
tude airspace-LAA), the purchase of high utility data in decision making and management
of highly complex operations, which also provide solutions in data processing and analysis.
Starting from this challenge, in our paper we analysed how frequently and in what combi-
nation are the UAV/UAS and GIS technologies used in the context of digitalisation through
the lens of bibliometric maps. The complementarity of UAS–GIS is given by the fact that the
first technology is mainly intended to collect spatial data and the second to highlight them.
Reference is made to most applications, otherwise each of these technologies develops
other capabilities: UAS processes the sensor-based information and GIS takes over through
GNSS applications or other types of sensors. Visualisation of the relevant affiliations of
the paper authors, the frequency of the co-keywords, and the international cooperation
network became relevant indicators for the scientific production associated with the use of
GIS–UAS as a team.

Two research questions were formulated:

(1) When implemented, what are the main application sectors for the teaming of GIS–
UAS/UAV in DEG?

(2) What is the scientific production associated with the use of GIS–UAS and the main
attributes of the working tools used?

1.1. Unmanned Aircraft Systems (UAS) and Unmanned Aircraft Vehicles (UAV)

Unmanned Systems (US) or Vehicles (UV) are defined as electromechanical systems
without a human operator [10]. US can be remote (by a remote pilot) or can navigate
autonomously based on preprogrammed plans, generated in First-Party Apps or Third-
Party Apps [11,12] or in automatic, more dynamic, and more complex systems [13].

Unmanned Aircraft Systems (UAS), Unmanned Aerial Vehicles (UAV), Drones, or
Remotely Piloted Aircraft Systems (RPAS) refer to the unmanned systems navigating in
the air [14], capable of flying over hard-to-reach areas [15]. This study was based only on
the references regarding civilian UAS, not those used in the military sector.

As the UAS application sectors diversify, their taxonomy also becomes more complex.
So far, distribution into four main classes was proposed, based on embedded mechanism,
power, user capabilities, and operating environment [16]. These make plausible the image
of future smart cities where drone flights will become a normality, similar to road vehi-
cles today [17], together with other technologies that include wireless sensor networks
(WSNs), the Internet of Things (IoT), cloud computing, fog computing, and big data ana-
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lytics. Among the expected applications in the literature, based on the use of UAV/UAS
technologies, we mention: traffic monitoring and management, health emergency ser-
vices, disaster management, security and crowd monitoring, UAS-based infrastructure
inspections, agriculture management and environmental monitoring, tourism support,
UAS-based surveying, merchandise order delivery, UAS-aided wireless communication,
UAS taxi, virtual retrofitting applications, cinematography, human–robot interaction-based
applications, UAS-based fog computing, both for urban and for rural residential environ-
ments [18–21].

On the other hand, the UAS currently address some challenges such as the prevention
of risks that define rural spaces or aspects regarding the quality of life and conservation of
cultural heritage [22]. Furthermore, the applicability of the UAS technology is proved also
in the case of ensuring their IoT sustainability, thus making efficient the energy consump-
tion of some IoT devices for data transmission [23]. UAS contribute also to the configuration
of the future 6G internet network, a component of the Internet of Everything (IoE), a new
paradigm that provides ubiquitous connections, aerial intelligence, self-maintenance of
communications, sensor powering, and deployment [24,25].

We believe that all these advantages of the UAS will be powerful enough to overcome
all existing barriers (threats to the data privacy and security, lack of procedures, public
perception, environmental, or even technical aspects), by implementing drones in the
logistics industry [17,26]. Special attention is paid to Unmanned Aerial Vehicle Regulation
Policies and Technologies in Urban Low Altitude [27], because the urban environment
is the testing environment of most of the technological progress elements, in the context
of complexity and diversity of needs that need to be solved. Use of UAS images and the
structure in motion photogrammetry with stereo multi-view (SfM-MVS) enables rapid
reconstructions of the surface geometry (digital elevation models, orthophotoplans) based
on the achieved and overlapped images [14].

1.2. Geographic Information Systems (GIS)

Information gathered in digital format with the sensors carried by UAS, processed in
photogrammetry software, become, most of the time, an alternative to existing topographic
and planimetric maps. In addition, digital maps are often used in GIS and CAD applications
for design analysis [14]; in this case, we refer to monitoring or data collection activities [17].

At the same time, GIS also represents a frontier technological discipline based on
information theory, cybernetics, system engineering, and artificial intelligence [28], with es-
tablished implications in land management, urban and rural planning, traffic management,
and environmental management [29]. A more complex image of GIS applicability, as was
already provided by Usmani et al., would include five domains, each with a few distinct
subdomains, such as: (a) environmental and natural resource management, (b) decision
system, (c) planning and engineering, (d) street network, and (e) facilities management.
Another important aspect to pursue is also the positive impact of the large databases in the
GIS industry, with beneficial results in all application sectors [30].

Aside from the partnership between UAS (mainly as data processing means) and GIS
(means of spatial data storage, processing, and visualisation), the latter work instrument
has multiple applications. It is worth mentioning that this teamwork is not established
in all application sectors. Sometimes, even if the visualisation component has become
more important over the last years, the main advantage of GIS derives from its capacity
to conduct complex spatial analyses. A bibliometric analysis of spatial analyses in the
1950–2019 interval highlights the utility of this tool for ecology, geography, or interdis-
ciplinary fields such as environmental sciences, public environmental and occupational
health, and multidisciplinary geosciences [31].

Spatial analyses present a high degree of utility, belonging to the Spatial Multicriteria
Evaluation (SME) or GIS Multicriteria Evaluation (GME) equation, one of the most valuable
techniques for management planning and decision making [32,33]. Going further, one
of the development tendencies of GIS is Question Answering (QA), a process for the
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identification of valid answers to the questions asked by the user in natural language. This
implies that the analyst may interrogate certain pieces of spatial information regarding the
use of geographical resources, without having the necessary knowledge for understanding
the GIS working techniques [34] or the online access to a GIS environment by inexperienced
users [35].

The sample outlined communities (smart cities/smart villages) would be GIS-based,
while an enterprise architecture framework/EAF would be proposed for the smart cities,
supported by a hybrid model based on GIS and graphic databases (GDB). Therefore, the
augmented space model created is based on the principles of an augmented and virtual
reality, which include, in turn, augmented systems, maps, images, and models [36]. Appli-
cability of the GIS tools was also proven in the implementation of sustainable development
principles for rural environments [37]. When it comes to spatial data, the development
trend needs to be directed towards the infrastructure of spatial data activated in the cloud
(SDI), due to the numerous advantages that they imply, including the possibility of inte-
grating with the IoT [38].

If we refer to the need of managing a territory, the basis of a twin digital model
is represented by Land Information System (LIS), whose key/basic component is the
cadastral survey. This begins to manage 3D, 4D (time) [39], or even 5D (level of detail)
information [40]. Today, an LIS cannot be imagined without the combined contribution
of GIS (which provides a macro representation of the external environments of some
buildings) and BIM (which focuses on the microscale representation of the buildings),
which provides an overview of a built environment based on integrated data, supporting
the transition towards the architecture, engineering, and construction industry (AEC) in the
digital era [41]. Cooperation between BIM and GIS is not fruitful only for the maintenance
of LIS, but also for the automation of construction, especially if we consider the accelerated
evolution rhythm of robots [42].

Public health policies represent one of the sectors where the geographical aspects
have an increased importance. GIS becomes, in this case, a decision instrument for the
remediation of some aspects related to the geographical heterogeneity, neighbourhood
effect, small population problem, health-care market delineation, and planning towards
equality [41,43]. Consequently, web mapping made possible the transmission of data
associated with the realtime monitoring of the COVID-19 crisis, at various detail scales [44].

GIS, considered among the important big data technologies, together with remote
sensing imagery, social media data, crowdsourced data, and mobile data, can be easily
used also in various disaster management phases and in resilience building or in the testing
of some prediction models [45–48].

2. Materials and Methods

From a methodological point of view, literature analysis was based on several work
stages, from data collection to data reclassification and the actual development of the
bibliometric analyses (Figure 1). The Web of Science database was used due to the high
visibility of the scientific publications but also due to the acknowledgment of their impact
at international level. No other databases (Scopus, ERIH, etc.) were used in order to
avoid the juxtaposition of publications. The VOSviewer 1.6.15 and Bibliometrix 3.1 (R-tool)
software were used to conduct the bibliometric analyses and their visualisation. The main
work stages used were:

(i) data collection, for which the following words were used as search criteria: “GIS”
AND “UAV”, “GIS” AND “UAS”, “GIS” AND “Drone”, “GIS” AND “RPAS” (Table 1).
This was performed after the search for the “Digital era governance” AND “GIS”
AND “UAV” criterion displayed no results. The initial selection criteria regarding
the characteristics of these scientific publications took into consideration only the
publications in English.

(ii) reclassification of data, a necessary step, given the fact that the literature search
displayed 454 elements, exported in an Excel document, and that many of these
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elements were doubled (n = 109 doubled elements) (Table 1). A secondary filtering
criterion was applied to the same studies, as the publications that were eliminated
were incorrectly catalogued in the Web of Science database. The abbreviation used
had a different connotation than that investigated or the keyword mentioned was
written differently (n = 15). Table 1 highlights the frequency of using each of the four
terms associated with drone and the cases where at least two terms are interrogated
and selected. For each exported publication, the collected data were the title, authors’
affiliation, abstract, keywords, year of publication, source, type of document, etc.

(iii) data visualisation, conducted by bibliometric maps associated with the investigated
topics, by means of the cluster technique.
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Table 1. The frequency of using the words associated with the filter criteria of the scientific publications, except GIS.

Terms

20
21

20
20

20
19

20
18

20
17

20
16

20
15

20
14

20
13

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
04

20
03

20
02

Marginal
Row Totals

No. %

UAS 3 4 1 3 3 3 4 2 2 1 26 5.7
UAV 28 48 35 25 21 33 18 4 10 2 5 4 2 1 4 4 1 1 2 2 250 55.1
Drone 10 15 21 17 14 8 7 1 1 94 20.7
RPAS 2 2 0.4

UAS and UAV 2 1 2 3 1 2 1 12 2.6
UAS and Drone 3 1 1 1 6 1.3
UAV and Drone 5 12 7 10 5 9 1 1 50 11.0
UAV and RPAS 2 2 2 6 1.3

UAS and UAV and
Drone 2 3 1 1 7 1.5

UAS and UAV and
Drone and RPAS 1 1 0.2

Marginal
Columns Totals

Nr. 48 84 71 60 48 57 31 9 15 3 7 4 2 1 4 4 1 1 2 2 454 100
% 10.6 18.5 15.6 13.2 10.6 12.6 6.8 2.0 3.3 0.7 1.5 0.9 0.4 0.2 0.9 0.9 0.2 0.2 0.4 0.4 100

The limitations of the study derive from the use of a single international database
(Web of Science), but this does not mean that it underestimates the relevance.

3. Results
3.1. Scientific Literature Profile

The analysis of the 2052 keywords found in the 454 scientific publications associated
with the investigated topics, provided information related to their main content. Of the
total, only 81 keywords met the minimum threshold of five words in terms of frequency,
thus resulting in seven clusters (Figure 2, Table 2). The size of the nodes reflected the
frequency of the keywords, while the thickness of the line is directly proportional to the
interrelation degree of the keywords. Most representative clusters were those dominated
by UAV (cluster seven, with 79 links) and GIS (cluster two, with 76 links), followed by the
clusters governed by photogrammetry (cluster six) and remote sensing (cluster one). While
most of the scientific publications use the UAV technology as a working tool predominantly
in photogrammetry and DEM generation (cluster seven), GIS applications were found to
a greater extent in publications dedicated to image processing, landslides, cultural and
archaeological heritage.

Table 2. Clusters of keywords.

Cluster Number of
Keywords Selected Keywords

1 14
Airborne LIDAR, algorithm, forest fire, impact, LIDAR, model,
parameter, rates, reflectance, remote sensing, risk assessment,
satellite, satellite imagery, simulation

2 13 Archaeological site, area, city, cultural heritage, DEM, erosion, GIS,
GPS, hazard, image processing, landslide, orthophoto, river

3 13 Classification, crop, design, NDVI, precision agriculture, resolution,
sensor, system, UAS, vegetation, water, webgis, yield

4 12 Dynamics, evolution, forest, GIS analysis, imagery, monitoring,
prediction, RPAS, SFM, slope, susceptibility, UAV photogrammetry

5 11
Augmented reality, BIM, biodiversity, conservation, ecology,
information, management, morphology, restoration, technology,
UAV imagery

6 10 3D accuracy, basin, DSM, photogrammetry, point cloud,
reconstruction, soil erosion, tool, topography

7 8 3D GIS, 3D model, 3D reconstruction, archaeology, drone,
landscape, mapping, UAV
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The reporting of the analysed studies to DEG or to associated concepts is poor, no
matter what field we are talking about (Table 3). With the exception of “digitisation” and
“digitalisation” (which are often confused), the others appear in few or even no articles.
The situation has two explanations: (a) the authors of the studies do not intend to report
by integrating the results to wider known frameworks (DEG, Digitalisation); (b) other
newer concepts (Digital Twin, Internet of Things), in full theoretical development, hardly
reach the “table” of overspecialised authors. A logical solution in such situations is the
collaboration between the UAS and GIS operators, the specialists in public management, a
situation in which both camps would win.

3.2. Cooperation Network

Another important indicator associated with the scientific production is that related
to international cooperation created on a certain research topic, demonstrating on the one
hand the existing research potential, and, on the other hand, being a benchmark for the
identification of possible research networks. The relationships between the keywords,
countries, and sources were viewed by means of the Sankey diagram (Three Fields Plot)
(Figure 3). In this case, the most representative elements were highlighted on the graphic
by means of coloured triangles. The height of a rectangle depends on the intensity of the
existing relationships between the pursued elements. We signal the fact that, although at
institutional or country level, certain international organisations stand out, from the USA,
China, and the central and north European states, we notice a high polarisation coming
from Romanian researchers, who, starting in 2015, have been using more and more the
GIS–UAV combination of technologies.
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Table 3. The number of articles in which the concept of DEG or associated terms appears.
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Governance 1 1

Digital Governance
Digital era

Digital era governance
Digitisation 4 5 3 5 3 5 1

Digitalisation 2 1 1 1 1 1
Digital transformation

Big Data 3 1 2 1 2 2
Artificial Intelligence 1 2 1 1 2 1 1

Digital Twin 1
Internet of Things 2 1
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Of the 107 states that have cooperated in the drafting of at least one scientific publica-
tion, we notice an increased interest for the approach of GIS and UAV technologies among
some researchers in China and the USA or other European states (Italy, Switzerland, and
The Netherlands) or Italy and other central-northern European states (Figure 4). The same
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trend is similar for the affiliations of the authors (Figure 5). A lack of cooperation between
academic professionals and government entities was also highlighted.
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4. Discussion

In order for the digital government to become digital governance, some internal as-
pects (creation of a decision-making culture based on the data at administrative level) need
to be considered, together with some external ones (governance of various stakeholders
that are meant to integrate the various data sources). Another challenge for digital gov-
ernment that is valid also for digital governance is represented by Big Data implementation.
For this undertaking, the number of scientists that know how to work with such data is
limited, the management technologies are not mature enough, and the resources meant to
create technologies and talents are scarce [5].
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The relationship between the dimension of the department in an institution and the
administrative capacity has been demonstrated for one part of U.S. cities, where it was
proven that the implementation of the open data platform varied depending on the resources
of the department [9]. In the rural environment, where the overall administration capacity
is similar to a department of a local urban administration, the reduction in digital gaps
between the urban and the rural environment is all the more necessary [49].

Today, more and more researchers use the combination of UAV and GIS technologies
for the mapping of some territorial elements, for the testing of some prediction models,
creation of evolution scenarios, 3D modelling of space objects, etc. (Table 4). In summary,
the main application sectors of these technologies refer to:

• the preservation of cultural heritage, from the mapping of various cultural land-
scape elements, either applied to some ancient civilisations or to some contemporary
cultural landscape, to the 3D modelling of some heritage assets, mostly found in
archaeological sites;

• forestry, through the testing of some applications designed to identify the areas of
illegal cutting, fires, or biomass resources;

• land use management, focused mostly on the testing of some agricultural prediction
models, but also on land favourability analyses for certain crops or monitoring of
various parameters that can influence the stages of crop growth;

• risk management, including, the testing of possible models for the monitoring and
prediction of some extreme phenomena and postdisaster scenarios, on the other hand;

• geomorphology, where there is a propensity of scientists to map landslide areas and,
to a lesser extent, for the identification of other geomorphological processes, among
which earthquakes are the most common;

• engineering, infrastructure maintenance works, and estimation of new energy sources;
• medicine, where the large advantage of drone usage is the coverage of less-accessible

areas, which facilitates the saving of lives;
• tourism, with 3D modelling or creation of virtual tours;
• environmental-friendly practices intended to map the ecosystem services of some

areas, to identify the pollution sources or invasive species, or even to assess the
noise-impact.

Table 4. Main content of the investigated scientific publications (2016–2021).

Application Fields Specific Contents Methodological Tools
(UAV, Sensors, GIS) Location References

Cultural heritage
preservation

3D archaeological or
architectural

reconstruction

UAV (DJI Phantom 4, DJI
Phantom 3 Advanced, DJI

Phantom 3 Pro), LiDAR, GIS
(QGIS, City Engine, ArcGIS 10.3),

Google Earth

Romania, China, Italy,
Bulgaria, Malaysia,
Portugal, Ireland,
Australia, Russia

[50–60]

Mapping cultural
landscapes (Maya or

Amerindian landscapes,
open spaces)

UAV (DJI Phantom 4, DJI
Phantom 2, DJI Mavic Pro, eBee

Plus RTK-PPK), LiDAR, GIS
(QGIS, ArcGIS 10.3, 3D GIS),

GRASS

Mexico, Italy, Dominican
Republic, Spain, China,

Palestine, USA, Australia,
Slovakia

[61–70]

Creating viewshed
analysis UAV, GIS Peru [71]

Mapping archaeological
sites

UAV (SenseFly eBee, DJI
Phantom 4 K, DJI Mavic Pro),

LiDAR, GIS (QGIS)

Turkey, Chile,
Afghanistan, Italy, SUA,

Greece, South Africa,
Spain

[72–82]

Building facade
inspections UAV, GIS (2D GIS) N/A [28]

Extracting road surface
distress DJI GS RTK, GIS Turkey [83]
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Table 4. Cont.

Application Fields Specific Contents Methodological Tools
(UAV, Sensors, GIS) Location References

Forestry

Monitoring uncontrolled
forest UAV, GIS (ArcGIS, QGIS) Poland, New Zealand [84,85]

3D forest modelling UAV (DJI S800, DJI Mavic Pro),
GIS (ArcGIS)

Norway, Czech Republic,
USA [86,87]

Estimating the biomass
of riparian forests

SenseFly eBee, RGB SenseFly
SODA, GIS Portugal [88,89]

Land use
management

Monitoring crop factors,
parameters, attributes

UAS (DJI Phantom, DJI S1000,
DJI Inspire 1, AF1000), RGB and
Thermal sensors, GIS (ArcGIS)

Greece, Poland, China,
Saudi Arabia, Czech

Republic, Taiwan
[90–97]

Assessing land suitability Supercam S250F UAV, GIS
(ArcGIS 10) Russia, Italy [98]

Land cover classification UAV (RPAS eBee), GIS (ArcGIS),
Google Earth N/A [99–101]

Improving farming
practices DJI Matrice 100, GIS Greece, Russia [102,103]

Developing predictive
agricultural models

UAV (DJI Phantom 4, DJI
Matrice 210 V2, DJI Phantom 3

professional, DJI Phantom 2, DJI
Inspire 1), GIS (QGIS), GRASS

Portugal, Italy, Greece,
Ecuador [104–109]

Assessing tundra
degradation

Supercam S 250, GIS
(ArcGIS 10.2) Russia [110]

Geomorphology

Monitoring erosion or
landslide activity

UAV (Pegasus F-1000, DJI Mavic
2 Pro, DJI Matrice 600, DJI
Phantom 4, GIS Velodyne

VLP-16, RPAS, DJI Phantom 2,
AscTec Falcon, ATyges FV-8),
LiDAR, Micasense RedEdge

Sensor, GIS (SAGA GIS, QGIS
3.8., Quantum GIS, ArcGIS 10.2,

10.5), GRASS

Nepal, Iran, China,
Greece, Indonesia,

Russia, Italy, Canada,
Saudi Arabia, Czech
Republic, Romania,

Spain

[111–132]

Monitoring topography
UAV (DJI Phantom 2 Vision+,

DJI Phantom 4 Pro), GIS
(ArcMAP 10.6)

Norway, Greenland,
Indonesia [133–135]

Monitoring different
geomorphological
processes (debris

accumulation, fluvial
forms, earthquakes)

UAV (DJI Inspire 1 v2.0, eBee
Plus RTK, DJI Mavic Pro 2, DJI
Phantom 2), LiDAR, GIS (QGIS

3, ArcGIS), Google Earth

Poland, Brazil, Greece,
Portugal, Austria, Italy,

USA, Canada
[136–145]

Mapping glacial-related
landforms DJI Phantom, GIS Norway [146,147]

Mapping volcanic
processes

UAV (Blade 350 QX2, DJI
Phantom 4), GIS (ArcGIS Pro,

ArcGIS 10.2)
USA, New Zealand [148,149]

Hydrography

Flood modelling UAS (SenseFly eBee, DJI
Phantom 3 Professional), GIS

Central Asia, Spain,
Greece, Turkey, China [150–153]

Mosquito disease
mitigation

Multispectral sensor MicaSense,
Drone, GIS Australia [154]

Monitoring the batimetry
and the surface area of

reservoirs

UAV (Droning D650, Droning
D-820, WingtraOne, DJI

Phantom IV Pro, BRV-03F), GIS
(ArcGIS 1.3.2.)

Spain, Bulgaria [155–157]

Restoration of freshwater
inflows for wetlands

Quadcopter (NAZA M V2), GIS
(ArcGIS 10.6) USA [158]

Monitoring marine and
coastal activities

UAV (DJI Mavic Pro), GIS
(ArcGIS)

Cyprus, Scotland, Spain,
Portugal, Greece, India [159–165]
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Table 4. Cont.

Application Fields Specific Contents Methodological Tools
(UAV, Sensors, GIS) Location References

Engineering

Modelling different
infrastructure works UAV, GIS Poland, Greece [166–168]

Designing emergency
maps

UAV (DJI Phantom 4 Pro),
CMOS sensors, GIS (ArcMap

10.5, ArcGIS, 2D-GIS),
Google Earth

Italy, Greece [169–172]

Supervising road and
railway maintenance

works

UAV (Cumulus One, md4-1000
drones), GIS (ArcGIS) Malaysia, Japan, Croatia [173,174]

Digital surveying of
pipelines UAV, GIS N/A [175]

Estimating solar and
wind energy potential

UAV (Gatewing X100), GIS
(ArcGIS), GRASS Colombia [176–178]

Mapping quarries

UAV (SenseFly eBee, DJI
Phantom 3 Pro), RGB and
multispectral sensors, GIS,

Google Earth

Spain, Greece [179,180]

Cadastre mapping DJI Phantom 4 Pro, GIS (QGIS) India [181,182]

Medicine

Testing high-incidence
areas

DJI Matrice Pro 600, GIS
(ArcGIS Pro) Sweden [183]

Testing medical drones
for emergency purpose UAV, GIS (ArcGIS 10) USA, Sweden [184–186]

Nature and
eco-friendly

practices

Monitoring coastal
landscapes

UAV (DJI Phantom 4 Pro, DJI
Zenmuse X3-FC350), GIS

(QGIS v.2.18)
Italy, Bulgaria, Iran [187–189]

Detecting invasive
species

UAV (DJI Phantom 4, DJI Inspire
2), Multispectral sensor (Parrot

Sequoia), GIS (QGIS 2.18)
Germany, China, Canada [190–192]

Monitoring and
modelling environmental
contamination (landfills,

pollution sources)

UAV (Trimble UX5, DJI Phantom
4), GIS, Methane sensor (TGS

2611/MQ-2)

UK, China, Ukraine,
Germania, Lithuania,

China
[193–200]

Monitoring ecosystem
services

UAV (DJI Phantom 4 Advanced,
DJI Phantom 3 Pro, DJI Matrice

M100), GIS (ArcGIS, QGIS),
Google Earth

Russia, South Africa,
USA, China, Germany,
Chile, Serbia, Canada,
Australia, Republic of

Korea

[201–213]

Measuring
microtopography DJI Phantom 4 Pro, GIS (ArcGIS) Canada [214]

Asssessing the
noise-impact UAV, GIS Croatia [215,216]

Risk management
Monitoring forest fires UAV (CESSNA 310Q), GIS Croatia, Netherlands,

Greece, Indonesia [217–219]

Monitoring preventive
actions (flood prone

areas, tsunami
evacuation plans)

UAV, GIS, Google Earth
Afghanistan, Nepal,

Romania, Haiti, USA,
Taiwan, Italy, France

[220–225]

Testing scenarios for
real-life postdisaster

situations
UAV, GIS Brazil, Italy [226]

Smart cities Controlling traffic
management

UAV (Topcon Falcon 8), Sensors
(MEMS-based IMU), GIS Slovenia [227–229]
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Table 4. Cont.

Application Fields Specific Contents Methodological Tools
(UAV, Sensors, GIS) Location References

Tourism

Examining the profile of
UAV photographers UAV (DJI), GIS N/A [230]

Creating touristic story
maps

DJI Phantom 4 Pro Plus, GIS
(ArcGIS) Greece [28]

Mapping old hiking trails DJI Mavic 2 Pro, GIS China [231,232]

Virtual
cinematography

Modelling autonomous
driving and

human–robot interaction
DJI M210, GIS N/A [233]

Virtual reality
3D archaeological and

architectural
reconstruction

UAV (3DR Pixhawk autopilot
system, DJI Phantom 4, DJI

Inspire 2), FARO Focus X330
scanners, GIS (City Engine),

Google Earth

Portugal, Greece, Italy,
Spain, Indonesia [231,234–243]

Many of the possible uses of the two components are presented separately in the
articles due to the high degree of focus of the subject. However, the significant number of
articles that see this tandem as a solution for managing different territorial phenomena
is an argument for several directions of the present study: (a) identification for each
area revealed here, but also for others, of those utilities of UAS whose results can be
capitalised on in the GIS environment; (b). identifying other possible applications in the
digital context. The 454 studies that consider UAS and GIS as compatible technologies
do not necessarily see their usefulness in a broader context [1], although connecting the
two technologies can increase the rate of knowledge transfer to the public and private
environment. This picture describing the usefulness of the technological tandem discussed
must be promoted through activities to popularise science among the population in general
and administration, in particular.

In addition, for the areas of applicability, it will be possible to create complex spatial
databases that allow realtime digitisation and monitoring, without which we cannot offer
a real digitalisation. Moreover, a digitalisation preceded by digitisation and continued
by monitoring will generate a digital twin. The scalability of the results of UAS–GIS
collaboration is emphasised by the diversity of current applicability and by the expected
technical progress. Significant results can be obtained through simultaneous bottom-up
and top-down reactions from all stakeholders.

The main findings and further recommendations associated with the use of UAS and
GIS technology are also provided in Table 5.

Table 5. Main findings and further recommendations of the investigated scientific publications (2016–2021).

Application
Fields Specific Contents Current Findings of UAV and GIS

Technologies Further Investigations References

Cultural
heritage

preservation

3D archaeological
or architectural
reconstruction

The use of UAV and GNSS technologies in field
survey and the construction of high-resolution

DEM allowed a more detailed study of the
fortified settlements territory and

defensive structures.
Combining laser scanner and drone

photogrammetric information provide
3D models.

Wider campaigns of
3D models;
Performing

automated methods

[59,60]
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Table 5. Cont.

Application
Fields Specific Contents Current Findings of UAV and GIS

Technologies Further Investigations References

Mapping cultural
landscapes (Maya

or Amerindian
landscapes, open

spaces)

UAV-DP high resolution surfaces granted the
coverage of the entire slope and allowed the

hydromodeling analysis to provide the
mapping of an ephemeral stream network up to

the 5th order.
This lower-technology solution improves the

management and conservation of cultural
landscapes by providing 3D models for

different time periods, seasons of the year, or
yearly intervals.

Using UAV in the case of imaging a small area
of polygons is much more effective than with

the use of civil aircraft, in terms of financing of
aerial work, human resources, fuel, and

operating costs.

N/A [67–70]

Mapping
archaeological sites

The combination of UAV-derived land surface
modelling and nearest neighbour analysis of
point-provenienced archaeological surface

distributions allows us to make better-informed
decisions about future research priorities at

open-air archaeological sites in arid and
semiarid environments.

Aerial imagery is useful in identifying and
marking site boundaries even in heavily

disturbed contexts such as plowzone sites that
dominate Chesapeake archaeology.

N/A [80–82]

Building facade
inspections

2D spatial modelling method simplifies the
UAV-image registration problem within a 2D

plane to reduce complicated 3D spatial
relationships and provides sources for the

documentation of building façade anomalies.

Developing
applications for

automated detection
[28]

Extracting road
surface distress

A high-density 3D model of the road was
created from UAV images with the SfM pipeline
and an analgorithm was developed and applied
to detect road distress over the extracted road

surface and to determine the perimeter,
diameter, length, and depth of the road distress.

New parameters [83]

Forestry

Monitoring
uncontrolled forest

Using LiDAR data showed a continuous
increase in the analysed forest area caused by

the succession of forest vegetation in
agricultural areas.

Training offers relating
to geospatial
technologies

[84,85]

3D forest modelling UAV can be used for monitoring urban forests,
possibly gathering tree data. N/A [87]

Estimating the
biomass of riparian

forests

The suitability of multispectral UAV imagery
data to indirectly estimate tree AGB via a priori

riparian species classification.
N/A [89]
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Table 5. Cont.

Application
Fields Specific Contents Current Findings of UAV and GIS

Technologies Further Investigations References

Land use
management

Monitoring crop
factors, parameters,

attributes

UAV imagery and spatial image analysis based
on GIS proved to be a fast and accurate method

to evaluate if patch-sprayed herbicides are
targeted at the locations given by preloaded

prescription maps.
Using unmanned aerial vehicle

photogrammetry in a post-earthquake scenario
provide reliable information about the state of

the damaged structures and infrastructures.
UAS data were analysed with soil and crop

parameters in two cotton fields during a
growing period and it offers a quick and

reliable way to monitor soil and plant capital.

Incorporating new
parameters (fields,

crops, growing seasons)
Translating the

outcomes of soil and
crop monitoring
through expert

decision-making tools

[95–97]

Assessing land
suitability

GIS-MCDA method weighted linear
combination was used to calculate the land

suitability index of Western Siberian
forest-steppe lands.

N/A [98]

Land cover
classification

By combining UAV and MMS technology, an
orthophotoplan was created, but also other

aspects related to vegetation.
N/A [101]

Improving farming
practices

Object based image analysis of the field was a
highly effective way of creating polygons of the
tree canopy and depicting each one of them in

the best possible way.

N/A [103]

Developing
predictive

agricultural models

An efficient combination of UAV/RPAS and
NDVI enables important savings in

productivity factors, promoting sustainable
agriculture both in ecological and economic

terms, and proposes a webGIS and
user-friendly solution for smart farming.

An open-source application, QVigourMap,
developed under QGIS software, is free to use,
intuitive, and has a tutorial to support the user;

it can be updated at any time and by any
other user.

Testing the workflow in
terms of effectiveness

and replicability
Targeting a wider

audienceCreating new
web service

New methods,
indicators, and
analysis tools

Improving
application’s usability

Providing more
customisation options

to the user

[106–109]

Assessing tundra
degradation

UAV and GIS technologies are used for
monitoring Arctic landscape changes under the

influence of global warming.
N/A [110]

Geomorphology

Monitoring erosion
or landslide activity

By acquiring high-resolution images and
terrain data by UAVs, a typical evolution model

of the loss disaster chain was proposed.
High-resolution data and GIS-based modelling
were used for an improved understanding of
spatial erosion processes, aiming to promote

environmentally sustainable viticulture.
Planoaltimetric changes computed from

multi-source DTM analysis can be used for
monitoring the space–time morphological

changes of landslides.
The combination of UAV-based imagery and
SfM algorithms were utilised for 2D and 3D

surface reconstruction.

Integrated analysis
based on hydraulic

modelling and
nonstructural design

[116,124–
132]

Monitoring
topography

Repeated UAV surveys provide a unique
opportunity to investigate geomorphic changes

that result from an extreme event.
N/A [135]
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Table 5. Cont.

Application
Fields Specific Contents Current Findings of UAV and GIS

Technologies Further Investigations References

Monitoring
different

geomorphological
processes (debris

accumulation,
fluvial forms,
earthquakes)

The joint use of UAV and GIS methodologies
proved to be a useful tool, not only for the rapid
analysis of spatial data from a large population
of sinkholes but also for providing an objective

approach with consistent measurement and
calculation processes.

The methodology for Rockfall Susceptibility
Assessment for 3D slope models in the form of

point clouds can be used to refine the
identification of potential rockfall source areas.

A geological–geometrical and kinematical
model of the Marzellkamm rock slide are the

basis for subsequent numerical modelling
campaigns that adopt the discrete element

method, which is used to provide data for a
comprehensive site-specific hazard assessment.

High spatial resolution images obtained by
UAVs can be of great use for the
characterisation of microreliefs.

Validating
methodology in rocky
slopes with different

discontinuity
characteristics

[138–145]

Mapping
glacial-related

landforms

With the use of low-cost UAVs equipped with a
consumer-grade camera it is possible to map

glacial-related landforms.
N/A [146,147]

Mapping volcanic
processes

Small UAV offer a cost-effective alternative to
traditional manned aerial surveying and
produce measurement logs for mapping

volcanic areas.

Technological
improvements;

Developing high
accuracy automatic
grain measurements

[148,149]

Hydrography

Flood modelling
DEM produced from different sources have

different capabilities to represent
topographic surfaces.

Optimising
representation of

topographic
characteristics of the

flow domain

[152,153]

Mosquito desease
mitigation

Satellite remote sensing provide potential in
mapping mosquito breeding habitats.

Technological
improvements [154]

Monitoring the
batimetry and the

surface area of
reservoirs

Improvements in understanding and
monitoring the water reservoirs. N/A [155]

Restoration of
freshwater inflows

for wetlands

The combination of spatial technologies
provides a template for future work in similar

sheet flow-fed landscapes affected by
hydrologic disconnection and modification.

N/A [158]

Monitoring marine
and coastal

activities

The use of UAV combined with other
techniques expand the knowledge about rocky

coasts and boulders displacements.

Increasing processing
capabilities and

applying multispectral
cameras

[164]
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Table 5. Cont.

Application
Fields Specific Contents Current Findings of UAV and GIS

Technologies Further Investigations References

Engineering

Modelling different
infrastructure

works

Data integrator allows user to automate the
updating infrastructure data. N/A [167]

Designing
emergency maps

An automated building seismic damage
assessment method provide a useful tool for the
rapid regional seismic damage assessment of
buildings and assist the contingency response

and management.

N/A [172]

Supervising road
and railway

maintenance works

The usage of UAV is more efficient than the
conventional method; it saves cost, produces
accurate data, and verifies road maintenance

work systematically.

N/A [174]

Estimating solar
energy potential

The UAV-DSM method improves the estimates
of the radiation potential from a highly detailed

inexpensive 3D model, and these solar maps
become tools for planning disciplines.

New parameters used
in estimating solar
energy potential

[176,177]

Mapping quarries

The photogrammetric and GIS methods
provides an accurate assessment of

open-pit mining.
A UAS-based protocol allows fast monitoring

land restoration and synthesis of various
remote sensing applications into a single

workflow in order to obtain
cartographic products.

Obtaining new
products like soil losses

by erosion or
vegetation change

maps

[179,180]

Cadaster mapping

A semi-automated technique reduces manual
efforts and human interventions, and there is a

substantial reduction in time as there is a
limited digitisation process.

Detecting segment
quality parameters [182]

Medicine

Testing
high-incidence

areas

Small number of drone systems increase
national coverage of OHCA substantially.

Prospective real-life
studies [183]

Testing medical
drones for
emergency
purposes

Identification of possible drone network
configurations that can reduce life-saving

equipment travel times for victims of
cardiac arrest.

Legal and technical
improvements [184–186]

Nature and
eco-friendly

practices

Monitoring coastal
landscapes

Improvements of the accuracy of raster map for
monitoring inaccesible coastal areas.

UAV is an affordable and fast survey technique
that can rapidly increase the number of studies

on cliff habitats and improve ecological
knowledge on their plant species

and communities.

Improving sensor and
drone technology [187,189]

Detecting invasive
species

Use of a multidisciplinary methodology to
quantitatively evaluate the role of plant species

in ecosystems, including invasive species
(density, clustering, and spread).

UAV low-altitude remote sensing allows
monitoring without destroying vegetation

because of its noncontact characteristic.

Improving the
efficiency and

scalability of the image
analysis

[190–192]

Monitoring and
modelling

environmental
contamination

(landfills, pollution
sources)

Use of remote sensing techniques shows the
different spatial scales of high risk areas.

Drone monitoring has the potential to expand
spatial coverage to larger areas, monitor fragile
or inaccessible sites, and provide maps of litter

abundance and distribution.

Testing new methods
for litter detection and

classification

[195,196,
198–200]
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Table 5. Cont.

Application
Fields Specific Contents Current Findings of UAV and GIS

Technologies Further Investigations References

Monitoring
ecosystem services

Use of a low-cost UAV with an RGB camera
UAV to quantify floral resources has potential
as an efficient method for predicting pollinator

populations over large spatial scales.
Considering the low-cost and portable

characteristics of the UAV-borne lidar system, it
opens new possibilities to provide

comprehensive 3D habitat information for
biodiversity studies.

UAV imagery is sufficiently applicable for
analysing the distribution of aquatic plants.

Improving processing
data Integrating the

floral resource
estimates with

decision-making tools
for improving habitat

structure in landscapes.
Ssurveying the

observer’s visual
experience and

psychological feelings
about the scenery.

[202,206,
209–213]

Measuring
microtopography

Measuring microtopography with a UAV and
SfM, this technology has the potential to

emerge as a useful Digital Terrain Analysis tool
in other studies of habitat selection.

Extending capabilities
of larger and more

powerful UAV
[214]

Risk
management

Monitoring forest
fires

Application of UAV contribute to reducing the
probability of errors, shortening reaction time,
increasing accuracy in decision making, and
shortening load of people and techniques in

peak days.
The operationalisation of the peatland

combustion algorithm for providing peatland
fire information is possible for the whole
Indonesian archipelago, including other
tropical peatland areas such as Malaysia.

Improving
infrastructure (public

server) so that data can
be appropriately

delivered to the users
in the field.

[217–219]

Monitoring
preventive actions
(flood prone areas,

tsunami evacuation
plans)

3D reconstruction process based on UAV
technology and the interpolation algorithm
“Daisy” is cheap, relying on open-source

solutions and the procedure is of noninvasive
nature and is applicable in the areas difficult to
reach or inaccessible by traditional technology.
Drone offers a new complementary means of

surveying which can map broad areas
efficiently while being more flexible and easier

to operate than other airborne means.
UAV imagery for assessing the hazard of the

coastal settlements is not only intuitive,
effective and fast, but also meets the needs of

assessing the exposure and resilience of
vulnerable coastal settlements.

Integrating more
groundtruth data
Providing donors,
governments, and

communities in
developing nations

access to low-cost data
collection and analysis

tools to assess and
minimise disaster risk

[220,221,
223,225]

Testing scenarios
for real-life
postdisaster

situations

The use of UAV technology sped up the process
of evaluation of the floods, which occurred in

Duque de Caxias in 2013.
N/A [138]

Smart cities
Controlling traffic

management

Data gathering times for simulated traffic
accidents are shorter in comparison to classical
police work with measurement type with the

UAV technology support.
Presence of sensor measurement integration
with map data to achieve navigation in areas
with intermittent GNSS availability during a

flight of an aerial vehicle.
Drone-following models have been developed

to manage drones in urban air traffic flows
based on the principle that keeps a safe distance

according to relative velocity.

Integrating data [227–229]
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Table 5. Cont.

Application
Fields Specific Contents Current Findings of UAV and GIS

Technologies Further Investigations References

Measuring
unauthorised

buildings

After computer-automated processing, new
DSM data were obtained from elevation

differences in two-stage images and illegal
buildings could be identified.

N/A [230]

Tourism

Examining the
profile of UAV
photographers

Investigating the photography behaviour and
preferences of emerging tourist groups by

introducing AI computing methods

Qualitative
analyseswith UAV

photography tourists
[28]

Creating touristic
story maps

Creation of a web map, while providing
information to a broad audience. N/A [231]

Mapping old
hiking trails

Developing a methodology to assess the safety
and suitability of an old close-downed forest

trail as an evocation to reopen it as a
hiking trail.

N/A [233]

Virtual reality
3D archaeological
and architectural

reconstruction

The use of advanced data acquisition and
analysis techniques offers considerable promise

in assisting the reconstruction of past
landscapes.

The generalised models and test datasets
construct individual image representations of

the depth and color of roof shapes.
Immersive data visualisation of the geospatial

GIS plant data may be rendered in a game
engine with high information fidelity to achieve

sensory accuracy.

Integrating image
processing and

machine learning
approaches.

Introducing new cost
functions that penalise
inter-drone collisions

Introducing slight
modification in the
definition of artistic

parameters that define
the desired artistic shot
for our motion planner.

Creating volumetric
reconstruction of

dynamic scenes in
natural environments
in real-life conditions.
Learning the artistic

reasoning behind
human choices.

New algorithms to
simulate the

natural world

[231,234–
243]

Aside from the further recommendations listed (Table 5), such as technical improve-
ments, testing new parameters, indicators, algorithms, or methods in order to increase data
accuracy, integrating different kind of data, we highlight the following features:

• promoting remote sensing study for crossdisciplinary research through new curricula,
education programs, and inclusion in projects which will increase the responsibility of
local communities for their natural environment [212,228];

• reducing the time required for the decision-making process and for preparation of the
response operation achieved by the adoption of UAVs and GIS technologies [138];

• geospatial technologies support decision makers in order to implement a “culture of
prevention” instead of a “culture of reaction” [160].

If the combined usage of the two technologies (UAV and GIS) has become more
frequent over in recent years (2019), we can currently notice a trend of the research fields
towards the management of some phenomena and 3D modelling of some spatial objects
(Figure 6).
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Among the vulnerabilities associated with DEG we mention: (a) adaptation of organi-
sations, (b) information overload, and (c) data protection.

(a) In the context of the need identified by the United States Navy, in 2002: “ [. . .]
We need an organization that is very adaptive, that is very agile and is quick. Instead
of having cycles that take years, we need cycles that take months because the threat
changes [. . .]”. The government sector includes obvious changes of organisations and
organisational culture. Another common problem of the modern administration, regardless
of the level, is not as much the increase in the costs related to the employees’ wages, but the
artificial development by some of the employees of some “boutique-bureaucracies” and
the fragmentation of the decision-making process [2].

(b) The sudden transition from a quasi-lack of information to data overload, ampli-
fied especially by social media, accelerates the need for data and information that are
scientifically validated. A paradox is highlighted in the context of Big Data’s existence,
which is considered to be able to solve the lack of data problem in the digital era [5]. Data
warehousing sounds simple, but in the context of most of the national taxation, social
security, immigration, and defence systems, especially in developed countries, it needs
further development, with radical implications. The warehousing manner must activate
the anticipation of the citizens’ needs [2,4], including among other aspects, real-time gov-
ernment data-pooling by means of big data, from the local to regional level, open book
government and citizen surveillance, open data initiatives, government cloud, etc. [1].

(c) The transition towards an open government will not be possible without an efficient
protection of data and a free regime of the information for citizens [2]. With digitalisa-
tion, the individual will have more power to influence the policies of administration, the
entrepreneurs will be able to manage business by avoiding excessive bureaucracy, and
governments will be able to take more efficient measures in various sectors (public health,
climate, and traffic). There is a risk deriving from this that government services remain
inefficient [5].

5. Conclusions

Despite some uncertainties and alternatives, DEG continues to remain unique. It
keeps the promise of a possible transition towards a more integrated administration,
whose organisational operations are visible in detail both for the staff operating in the
public domain, and for the citizens and organisations of civil society. Changes brought
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by DEG are closely correlated and will be strictly carried out in parallel with the increase
in autonomous capacities of the citizens for the solving of social problems. The challenge
for public managers will be to help the stakeholders of civil society [1]. DEG provides
the theoretical and practical means for economies to shift from extractive economies into
inclusive economies [244]. This statement is valid also for institutions, the result being
the increase in their innovation capacity [5] because the digital infrastructure alone is not
sufficient. Equally important are the digital skills that enable the use of digitalisation
advantages [49].

Future research may focus on the ways to involve UAS and GIS users in the creation
of digital twin models or the encouragement of direct democracy, an attempt to return to
Athenian democracy, but by means of the current digital tools.
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