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Abstract: Rapid, low-cost methods for large-scale assessments of soil organic carbon (SOC) are
essential for climate change mitigation. Our work explores the potential for citizen scientists to
gather soil colour data as a cost-effective proxy of SOC instead of conventional lab analyses. The
research took place during a 2-year period using topsoil data gathered by citizen scientists and
scientists from urban parks in the UK and France. We evaluated the accuracy and consistency of
colour identification by comparing “observed” Munsell soil colour estimates to “measured” colour
derived from reflectance spectroscopy, and calibrated colour observations to ensure data robustness.
Statistical relationships between carbon content obtained by loss on ignition (LOI) and (i) observed
and (ii) measured soil colour were derived for SOC prediction using three colour components:
hue, lightness, and chroma. Results demonstrate that although the spectrophotometer offers higher
precision, there was a correlation between observed and measured colour for both scientists (R2 = 0.42;
R2 = 0.26) and citizen scientists (R2 = 0.39; R2 = 0.19) for lightness and chroma, respectively. Foremost,
a slightly stronger relationship was found for predicted SOC using the spectrophotometer (R2 = 0.69),
and citizen scientists produced comparable results (R2 = 0.58), highlighting the potential of a large-
scale citizen-based approach for SOC monitoring.

Keywords: Munsell soil colour charts; quantitative colour analysis; spectroscopy; CIELAB; soil
carbon prediction; citizen scientists

1. Introduction

Soils are the second largest active pool of carbon after the oceans, and account for more
than three times the amount of carbon stored in the atmosphere and terrestrial vegetation
combined [1]. The carbon storage capacity of soils has been a subject of great interest in
recent environmental literature, exemplified by an increasing number of publications in
mapping soil carbon stocks [2]. Globally, it has caught the attention of a wide audience,
including policymakers, NGOs, and land managers. This growing interest is mainly due
to the realization of soils’ key role as either a natural sink of carbon for climate change
mitigation [3–5] or as a potentially large and uncertain source of CO2 emissions [6]. Whether
soils accumulate or lose carbon—and thus function as carbon sinks or sources—depends
on several factors, such as the type of management practices, biomass input levels, and on
climatic conditions [6].

Globally, soils are thought to have lost between 50% to 70% of the carbon they once
held [7]. Nonetheless, our ability to monitor soil organic carbon (SOC) changes are still
limited. Accurate baselines of soil carbon are missing for many countries. Where base-
line data are present, reported values vary considerably among authors since there is no
standardised approach for the measurement [1,8–10]. A wide range of data sources and
methodologies are used, which has led to sources of error in SOC determination at the
sample, profile, plot, and landscape scales [11,12]. Whilst conventional laboratory methods,
such as loss on ignition (LOI) and elemental analysis, can quantify SOC precisely, they are
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inadequate for large-scale monitoring because they require direct measurements of many
samples to capture the inherently dynamic nature of SOC, making them slow and expen-
sive [1,8–12]. Laboratory methods also require access to specific equipment, narrowing the
scope of who can make these measurements and how many measurements can be made.

Hence, there is a need for methods that can rapidly, inexpensively, and relatively easily
characterize SOC status for reliable monitoring and reporting [1,8,9,11]. This knowledge is
crucial to understand where we should seek to preserve or increase SOC stocks to provide
the best opportunities to mitigate and adapt to climate change [1]. This is particularly the
case for cities, which are relatively understudied and are likely to become net sources of
GHG emissions if not managed appropriately [9,10].

Soil colour determination could be a cost-effective and time-saving method for the
spatio-temporal monitoring of SOC [8,11,13]. Soil colour descriptions have long been used
by soil scientists in the field to aid soil classification and mapping [14–16]. Soils can exhibit
a wide range of colour: grey, black, white, reds, browns, yellows, and greens [17]. These
colours result from the different processes and conditions that the soil is subjected to, the
mineralogy of the soil, and the soil organic matter (SOM) content [18]. Organic matter
content is the most important pigment that influences soil colour [19], which is why there
is a long history of relating soil colour darkness to SOM content [8,17,20,21]. In general,
darker soil colours often indicate an increase in decomposed organic matter known as
humus. These carbon-containing polymers absorb most visible wavelengths of light, giving
soils rich in organic matter a dark brown, nearly black appearance [22].

Qualitative estimates of soil colour made using Munsell soil colour charts (1975) have
been routinely made by pedologists in soil surveys for >60 years to describe the normal
range of colours found in soils [23]. This method involves the visual determination of
colour by comparison with standard chips systematically arranged according to their
Munsell notation. In this system, colour is characterized by three parameters: Hue, which
refers to the dominant wavelength or basic colour; value, which represents the overall
brightness or lightness; and chroma, which expresses the saturation or intensity of hue. For
example, a brown soil may be noted as Hue Value/Chroma (10YR 5/2). The most recent
edition of the Munsell soil colour chart (MSCC) consists of 443 colour chips, divided among
13 pages. This perceptual colour system was designed by artist Albert H. Munsell to allow
for direct comparison of soils anywhere in the world for any observer with a normal colour
vision, under controlled illumination conditions.

Hence, given the MSCC’s ease of use and that capturing SOC status requires many
observations spread over time and space, this method could be used in a large-scale citizen
science-based approach to overcome some of the current limitations of conventional SOC
analysis mentioned [10,11,24,25]. The main challenge with the Munsell colour scheme
is that several problems have been routinely mentioned in the literature with the consis-
tency and accuracy in colour determination [20,26–30]. This is because the perception of
colour attributes is affected by numerous psychophysical factors, such as environmental
conditions (e.g., moisture content, illumination conditions) [31], sample characteristics (e.g.,
size, roughness), difficult statistical analysis (e.g., limited colour chips, cylindrical colour
coordinates) [32,33], and the observer’s sensitivities (e.g., colour blindness, subjectivity,
poor colour memory, eye fatigue) [20,29,31–35].

These shortcomings mean that soil scientists have generally used colour data de-
scriptively despite its potential in the application of soil carbon determination [13,14,36].
Instead, the rapid development of modern technologies and instrumental methods, such
as UV VIS spectrophotometry, allow a more precise and quantitative approach to colour
quality control [16,19,37]. They overcome some of the limitations of the Munsell method
by removing the human ‘judgement’ from the analysis and using standard values, such
as observer viewing angle and fixed lighting conditions to control the conditions of the
measurement [8,9,16,23,38–40]. For this reason, quantitative measures of colour (e.g., spec-
trophotometers) have seen apparent exponential growth worldwide and there are new
applications of colour data in different fields [16,37].
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However, despite the consensus that quantitative assessments of colour increase
precision and that they are available, they have not been widely adopted by soil scientists
for a variety of reasons, including costs, speed, lack of portability, familiarity with the
Munsell method, and small-scale heterogeneity [33]. Consequently, field colour assessment
using Munsell soil colour charts are likely to prevail as the standard practice, particularly
in the Global South [9,16,20,23,35,38,39].

Thus, given that limited and controversial data exists regarding the uncertainty in
colour determination using MSCCs, its prevalence in soil science, and the use of this data
for important soil applications, our work evaluates the consistency and accuracy of colour
observations collected by scientists and citizen scientists and explores its potential for reli-
able SOC prediction. The objectives were to (1) develop an objective, quantitative measure
of soil colour using a spectrophotometer; (2) compare scientists’ and citizen scientists’ Mun-
sell colour observations with spectrally derived colour, to validate the former; (3) calibrate
colour observations using spectral readings for data robustness; (4) measure how well
the colour dimensions (hue, lightness, and chroma) can be related to SOC obtained by
laboratory analysis (viz. loss on ignition method) for reliable soil colour-SOC predictions.

2. Materials and Methods
2.1. Study Area and Research Design

Soil data were collected by citizen scientists during 28 organised events in Spring
and Autumn 2018–2019 over 2 consecutive days. Citizen scientists attended a 1 h training
session led by professional scientists prior to the data collection to better understand urban
soils and the methods used.

The study was conducted at three urban parks: Kew Gardens (London) and Cannon
Hill Park (Birmingham) in the UK, and Les Fontaines Campus of Capgemini (Chantilly) in
France. These areas experience similar climatic conditions (average annual temperature):
9, 11, and 11 ◦C and average annual precipitation: 64.1, 57.5, and 60 mm in Birmingham,
London, and Chantilly, respectively [41].

At each site, there were 6 study trees, approximately 30 years old, of genus Tilia
species (viz. Lime tree). For each tree studied, citizen scientists took a series of direct soil
and tree measurements in the field and collected samples for analysis in the laboratory
by scientists. Measurements and samples were collected below and outside of the canopy
across a north-south transect. Trees were selected within each park to fall within one of
three management categories to compare the effect of management in other related work.
Management categories were managed, unmanaged, or street trees. Managed sites were
defined as those where the majority of leaf and woody litter was cleared; unmanaged sites
where debris was left in situ and had no human intervention; and street trees, those in
tree pits where all debris and undergrowth vegetation was removed. The data collected
by citizen scientists were part of a wider research campaign looking at soil and tree health
in urban areas (https://earthwatch.org.uk/working-with-business/climate-proof-cities
(accessed on 1 April 2021)).

From the soil data available, we selected a subsample of topsoil (0–10 cm) Munsell soil
colour data collected in the field by trained citizen scientists (n = 270 measurements) and
paired readings of the same samples, which were carried out in the laboratory by scientists
(n = 270 measurements). Additionally, spectrally derived colour assessments were selected
from within that sub-set (n = 90 measurements). In total, for the 30 sampling locations, we
analysed 540 soil colour observations collected by scientists and citizen scientists using the
Munsell method, and 90 quantitative colour measurements derived from spectral data.

Soil samples were analysed for soil organic carbon (SOC) content using the percent
weight loss on ignition technique, referred to as ‘loss on ignition’ (% LOI) [42]. This is one of
the most widely used methods for measuring the content of organic matter in soils [42,43].
The content of organic carbon was calculated by multiplying the total C content by a factor
of 1.724 [44]. This conversion factor assumes organic matter contains 58% organic carbon.

https://earthwatch.org.uk/working-with-business/climate-proof-cities
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The study was designed to test the reliability of the observed soil colour estimates
taken by scientists and citizen scientists in comparison to soil colour measured using the
spectroscopic method, and to explore the soil colour–SOC relationship for SOC prediction.
For soil colour–SOC predictions, only data from UK sites were used for the analysis since
these sites have a similar soil landscape, experience comparable environmental conditions,
and undergo the same management practices. Table 1 shows a summary of the variables
for the 30 sampling locations selected and soil measurements.

Table 1. Variables of the sampling locations and soil measurements.

Sampling Location Number of Colour Measurements

Park Site Land
Management

Tree
Number Orientation Canopy

Position
Citizen

Scientists Scientists Spectral SOC by
LOI (%)

1 Cannon Hill Managed 1 North Inner 8 8 3 7.1
2 Cannon Hill Managed 1 South Outer 8 8 3 5.8
3 Cannon Hill Managed 2 North Inner 8 8 3 7.5
4 Cannon Hill Managed 2 South Outer 8 8 3 6.4
5 Cannon Hill Managed 3 North Inner 8 8 3 5.8
6 Cannon Hill Managed 3 South Outer 8 8 3 5.8
7 Cannon Hill Unmanaged 4 North Inner 8 8 3 4.0
8 Cannon Hill Unmanaged 4 South Outer 8 8 3 3.7
9 Cannon Hill Unmanaged 5 North Inner 8 8 3 11.3
10 Cannon Hill Unmanaged 5 South Outer 8 8 3 6.1
11 Cannon Hill Unmanaged 6 North Inner 8 8 3 9.4
12 Cannon Hill Unmanaged 6 South Outer 8 8 3 9.3
13 Kew Garden Managed 7 North Inner 9 9 3 6.3
14 Kew Garden Managed 7 South Outer 9 9 3 5.1
15 Kew Garden Managed 8 North Inner 9 9 3 6.4
16 Kew Garden Managed 8 South Outer 9 9 3 7.0
17 Kew Garden Managed 9 North Inner 9 9 3 6.4
18 Kew Garden Managed 9 South Outer 9 9 3 4.7
19 Kew Garden Unmanaged 10 North Inner 9 9 3 7.4
20 Kew Garden Unmanaged 10 South Outer 9 9 3 8.4
21 Kew Garden Unmanaged 11 North Inner 9 9 3 7.9
22 Kew Garden Unmanaged 11 South Outer 9 9 3 6.4
23 Kew Garden Unmanaged 12 North Inner 9 9 3 8.3
24 Kew Garden Unmanaged 12 South Outer 9 9 3 7.5
25 Les Fontaines Street tree 13 North Inner 11 11 3 -
26 Les Fontaines Street tree 14 North Inner 11 11 3 -
27 Les Fontaines Street tree 15 North Inner 11 11 3 -
28 Les Fontaines Managed 16 North Inner 11 11 3 -
29 Les Fontaines Managed 17 North Inner 11 11 3 -
30 Les Fontaines Managed 18 North Inner 11 11 3 -

Managed, removal of leaf and woody litter; unmanaged, leaf and woody litter left in situ; street tree, in tree pits with all debris and
undergrowth vegetation is cleared; SOC, Soil Organic Carbon; LOI, Loss on Ignition (%). SOC by LOI data not applicable for Les Fontaines
site (-).

2.2. Visual Determination of Soil Colour

Colour was visually determined by comparison of soil samples with the colour chips
in the Munsell soil colour chart (MSCC) [45]. The Munsell soil colour system consists of
approximately 250 coloured chips arranged on hue cards. On the Munsell colour chart, hue
is denoted categorically by the letter abbreviation of the colour of the spectrum (R = red,
YR = yellow-red, Y = yellow) followed by numbers from 0 to 10. Within each letter range,
the hue becomes more yellow and less red as the numbers increase. Value and chroma are
both denoted on a numerical scale. Value, or lightness, is on a scale from 0 (absolute black)
to 10 (absolute white). Chroma, or saturation, is on a scale from 0 for neutral greys (the
achromatic point) to a maximum value of 20. Each sample was assigned the nearest integer
unit of hue, value, and chroma. All colours were estimated to the nearest whole chip. This
colour notation will be referred to as “observed.”
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2.2.1. Citizen Scientists

Soil colour was estimated in field visits by citizen scientists. Individuals were trained
to visually identify and match colour at each of the sampling locations using a copy of the
7.5 YR extract of the Munsell soil colour book. The method was adapted by preselecting
a single chart following preliminary work at the field sites to facilitate data collection for
citizen scientists. To ensure consistency under varying field conditions, if the soil was dry
and formed a ped, it was broken down and water was added to slightly moisten samples
before colour determination.

2.2.2. Scientists

In the laboratory, 3 scientists familiar with the Munsell method independently assessed
soil colour for the same samples under controlled lighting conditions. Soil was sieved
prior to the analysis to 2 mm following standard soil analysis procedures. Soil colour was
determined for moist soil samples to be broadly consistent with conditions in the field.
This is important because moisture content is one of the main factors that affect soil colour,
making it appear darker than dry soil.

2.3. Determination of Colour from Spectroscopic Analysis

After all visual analysis of colour was complete, we used spectral reflectance data to
calculate the true or “measured” soil colour from the water-extractable carbon samples.

For each sample, soil was sieved (2 mm) and a soil solution was created using 45 mL
of ultrapure water to extract 4.5 g of soil (ratio 1:10 soil to solution), shaken on an over-head
shaker for 24 h, and filtered using first a Whatman GF/A filter paper and next through
a 0.45 µm cellulose nitrate filter. The visible reflectance of the water-extractable carbon
sample was measured between 390 and 700 nm at 2nm increments using a Jenway 7315
spectrophotometer in the laboratory. The illumination source was a xenon lamp, which is
regarded as the universal reference illuminant and represents mean daylight (Illuminant
D65, ~6504 K).

The differences in the relative reflectance across the spectrum were recorded and
visualized as a curve. Following the three equations of Wyszecki and Stiles (1982), each
spectral reflectance curve was converted into three figures or tristimulus values (RGB) that
define the colour perceived as a numerical value [46]:

R =
∫ 700nm

390nm
S(λ) · I(λ) · r(λ)

G =
∫ 700nm

390nm
S(λ) · I(λ) · g(λ)

B =
∫ 700nm

390nm
S(λ) · I(λ) · b(λ)

(1)

S(λ) is the spectral reflectance; I(λ) is the wavelength dependent power of the illumi-
nant, and ‘r(λ), ‘g(λ), and ‘b(λ) are the colour matching functions.

The calculations were made with a 10 nm step and using Stiles and Burch (1959) RGB
colour matching functions for the illuminant D65 and 10◦ standard observer [47]. The
method used is similar in all respects to the procedure described in detail by Shields et al.
(1968) and Fernández and Schulze (1987), except that we used water-extractable soil carbon
solution [48,49].

Subsequently, we converted the RGB tristimulus values to the Munsell HVC system
for comparison. Figure 1 shows a summary of the steps of transformation from the soil
solution to the determination of the Munsell soil colour.
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Figure 1. Conceptual diagram of colour transformations required for comparison between observed
and measured colour.

2.4. Colour Transformations for Data Analysis

In order to compare “observed” and “measured” soil colour, all data was converted to:
Munsell HVC, CIELAB, and CIELCh (based on CIELAB). Figure 1 shows a conceptual dia-
gram of the steps required for the colour transformations for data analysis. RGB tristimulus
values were first converted into CIE XYZ by using CIE (1931) 3 × 3 M−1 conversion [50],
and from this, data were transformed to the CIELAB and CIELCh colour space using
different colorimetric equations [51]. The formulas and methods of transformation between
colour spaces are well documented in the literature. All the conversions were made using
the D65 CIE Standard illuminant and an observer angle of 10◦.

CIELCh coordinates were translated into equivalent Munsell values, and vice versa,
using Babelcolor software (2006), which uses the official Munsell renotation data from the
Munsell Color Science Laboratory at Rochester Institute of Technology (RIT). The data
can be downloaded from RIT: https://www.rit.edu/science/munsell-color-science-lab-
educational-resources#munsell-renotation-data (accessed on 1 April 2021). The CT&A
Help manual contains many sections dedicated to technical information, including detailed
equations for formulas and conversions between colour spaces: https://www.babelcolor.
com/tutorials.htm (accessed on 1 April 2021).

For quantitative data analysis involving Munsell measurements, Munsell hue was
converted into a numerical scale of continuous values (hue number) as suggested by Hurst
(1977) according to the redness rating (RR) [52]. In this system, the hue charts of interest
for our soil dataset were numbered as follows: 5 R was 5, 7.5 R was 7.5, 10 R was 10, 2.5
YR was 12.5, 5 YR was 15, 7.5 YR was 17.5, 10 YR was 20, and 2.5 Y was 22.5. The Munsell
value and chroma retained the same numerical value.

The choice was made to conduct the analysis using these colour spaces for several
reasons. Although using the Munsell soil colour chart (MSCC) is the prevalent practice in
soil science, several problems have been described with the consistency of colour identifica-
tion using this qualitative method. Thus, we chose to use the CIELAB and CIELCh colour
systems, which are contemporary colour spaces defined by the International Commission
on Illumination (CIE) that supersede Munsell by offering advantageous properties during
statistical analysis, while retaining the same perceptual framework, which is familiar to
soil scientists [53]. In fact, there is almost a 1:1 correlation between the Munsell hue, value,

https://www.rit.edu/science/munsell-color-science-lab-educational-resources#munsell-renotation-data
https://www.rit.edu/science/munsell-color-science-lab-educational-resources#munsell-renotation-data
https://www.babelcolor.com/tutorials.htm
https://www.babelcolor.com/tutorials.htm


Sustainability 2021, 13, 11029 7 of 17

and chroma attributes and the equivalent hue (h◦), lightness (L*), and saturation (C*)
polar coordinates [39]. Figure 2 illustrates the relationship between HVC and CIELCh.
Results are displayed in both colour spaces so that it is easier to interpret and apply data in
subsequent studies.

Moreover, we used the CIELAB system to pick up on small differences in soil colour
since these coordinates have a direct physical meaning, describing colour in the range
from green (–a*) to red (+a*), and from blue (–b*) to yellow (+b*). The lightness dimension,
represented by L*, ranges from pure black (0) to diffuse white (100) (Figure 2). For this
reason, it is possible to calculate the magnitude and direction of colour error and quantify
colour differences. We used CIELAB to calculate the average difference between the
“observed” and “measured” colour values of each sampling locations for parameters: ∆L*,
∆a*, and ∆b*.

By using this assessment, we were able to calculate the average deviation for each
parameter (L*, a*, b*) from the true, spectrally derived colour and apply this difference
to obtain a calibrated colour value. This “calibrated” colour was used in our study as the
benchmark or true soil colour for each sample location.

Figure 2. A 2-D representation of the 1:1 correlation between colour spaces (a) Munsell HVC and
(b) CIELCh. Munsell hue (dominant wavelength) or CIE hue angle (h◦); Munsell value and CIE
lightness (L*); and hue chroma or CIE chroma (C*) is the distance from grey. The h◦ is the angle
between the hypotenuse and 0◦ on a* axis, varying from 0 to 360◦, 0◦ (red colour); 90◦ + b* (yellow);
180◦-a* (green) and 270◦-b* (blue).

2.5. Data Analysis
2.5.1. Descriptive Statistics

Descriptive statistics (max., min., mean, mode, SD, CV%) were used to summarise the
characteristics of the spectroscopic and visual estimates of colour taken by scientists and
citizen scientists. While both the standard deviation (SD) and coefficient of variation (CV)
measure the variation of the data, CV also calculates the variability relative to the mean.
We defined minimally acceptable values in life sciences for SD as <2 and for CV <30% as
acceptable, 10–20% good, and <10% as very good.

2.5.2. Correlation and Regression Analysis

Correlation and regression analysis of the above data were conducted using SPSS
statistical package. We equated p < 0.05 with statistical significance.
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2.5.3. Colour Difference Calculations

“Observed” and “calibrated” colour estimates by scientists and citizen scientists were
tested against spectral measurements using the criteria defined by the USDA standard
methods [18]. Colorimetrical accuracy was based on the assumption that spectral laboratory
measurements were the true soil colour.

Levels of colour difference were divided into 3 groups or contrast classes: faint, distinct,
and prominent: faint, where colour difference is evident only on very close examination;
distinct, where colour difference is readily seen and contrasts only moderately with the
colour to which it is compared; and prominent, where colour contrasts strongly. The criteria
for determining contrast class can be found in USDA (2017) Soil Survey Manual [41]. The
colour contrast class was calculated using (a) the three Munsell parameters: hue, value,
and chroma (HVC); and (b) the only value and chroma (VC).

3. Results
3.1. Reproducibility of Spectral Measurements

Spectroscopic data were used to evaluate the accuracy of the visual soil colour mea-
surements; hence, we evaluated the level of precision afforded by the spectrophotometer
by taking five measurements of the same soil solution. Table 2 depicts the magnitude of
variation between the spectrally derived colour values for the Munsell parameters: hue,
value, and chroma.

Table 2. Descriptive statistics for five repeated measurements of spectrally derived colour.

Hue Number Munsell Value Munsell Chroma

Range 11.7 to 20.5 3.5 to 3.6 0.9 to 1.3
Mean 16.7 3.6 1.1

SD 3.1 0.04 0.1
CV (%) 18.3 1.1 12.8

Munsell hue number, basic colour; Munsell value, lightness, or darkness of a colour; Munsell chroma, saturation
of a colour; SD, standard deviation; CV, coefficient of variation.

Measured values ranged from 11.7 to 20.5 for Munsell hue (on average 16.7); from 3.5
to 3.6 for the Munsell value (on average 3.6); and from 0.9 to 1.3 for Munsell chroma (on
average 1.1). A low standard deviation was observed for the Munsell value (SD = 0.04) and
chroma (SD = 0.1), whereas Munsell hue measurements were more spread out and had
a high SD (SD = 3.1). Similarly, Munsell value measurements had the lowest coefficient
of variation (CV = 1.1%), whereas there was a slightly greater level of dispersion for the
Munsell chroma measurements (CV = 12.8%), and Munsell hue measurements exhibited
the highest variation from the mean (CV = 18.3%).

3.2. Comparison of Visual and Spectroscopic Soil Colour Measurements

Table 3 shows a statistical summary of the range, mean, and mode of colour attributes
Munsell hue, value, and chroma determined by scientists, citizen scientists, and a spec-
trophotometer.

Table 3. Descriptive statistics for the Munsell colour attributes (hue, value, and chroma) determined by scientists, citizen
scientists, and a spectrophotometer.

Munsell Hue Number Munsell Value Munsell Chroma

Range Max.–
Min. Mean Mode Range Max.–

Min. Mean Mode Range Max.–
Min. Mean Mode

Scientists 15.0–20 5.0 19.2 20 1.0–4.0 3.0 2.7 3.0 1.0–4.0 3.0 1.6 2
Citizen Scientists 17.5 0 17.5 17.5 3.0–8.0 5.0 5.0 5.0 2.0–8.0 6.0 5.1 6.0
Spectroscopic 13.3–23.2 9.9 18.5 18 3.5–3.8 0.3 3.7 3.6 1.3–3.5 2.2 2.4 2.5

Max., maximum; Min., minimum; Munsell hue number, basic colour; Munsell value, lightness, or darkness of a colour; Munsell chroma,
saturation of a colour.
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The reflectance data revealed that in our dataset, the soil colour (hue) ranged from
3.2 yellow-red (YR) to 3.2 yellow (Y), with approximately 77% of the soil samples in the
yellow-red (YR) category, and 23% in the yellow (Y). A narrower hue range was determined
by scientists in comparison with the spectrophotometer recordings, extending between
three categories: 5 YR, 7.5 YR, and 10YR. 10YR was the most frequent hue page selected for
soil samples. Citizen scientists used a single page (viz. 7.5 YR) from the 13 Munsell soil
colour charts available for colour determination; hence, the analyses were not applicable
for Munsell hue.

The range for the spectroscopic Munsell value was very narrow in comparison to
the observed colour Munsell value for the same samples. The spectroscopic Munsell
value varied from 3.5 to 3.8 (on average 3.7). Instead, citizen scientists had a highly
dispersed range for the Munsell value from 3.0 to 8.0 (on average 5.0). Likewise, scientists’
range for the Munsell value varied from 1.0–4.0 (on average 2.7). A similar trend was
observed for Munsell chroma, exhibiting the broadest range for citizen scientists’ visual
assessments in comparison to spectroscopic recordings. While spectrally derived Munsell
chroma values ranged from 1.3 to 3.5 (on average 2.4), citizen scientists’ chroma extended
from 2.0 to 8.0 (on average 5.1). Instead, scientists’ Munsell chroma range was similar to
spectrophotometer-measured chroma, varying from 1.0 to 4.0 (on average 1.6).

The relationship between observed colour parameters and those derived from spectral
reflectance is plotted in Figure 3. There is a linear relationship between the observed and
measured colour assessments for the same perceptual phenomena: Munsell value and
chroma. The Munsell value shows the strongest correlation, with an R2 = 0.42 for scientists
and R2 = 0.39 for citizen scientists compared to Munsell chroma: R2 = 0.26 and 0.19 for
scientists and citizen scientists, respectively. Instead, no linear relationship was found for
hue. Measured soil colour (Hue) extended from 44 to 88 degrees, yet visual estimates had
a narrower range, from 59 to 74 degrees. On average, both observed and measured hue
values fell within the yellow–red (YR) category.

We calculated the total colour difference between the observed and measured colour to
validate the former, based on the assumption that spectrally derived colour measurements
were the true soil colour. The relative frequency bar graph (Figure 4) shows there were
significant differences between associated colours. Examining the three colour parameters
hue, value, and chroma (HVC), 23% of scientists’ colour observations were classed as
“prominent” errors (in red), contrasting strongly with true soil colour whereas 73% of
citizen scientists’ colour assessments were “prominent” (Figure 4a). For the Munsell value
and chroma (VC), colorimetric accuracy improved slightly for citizen scientists from 73%
“prominent” errors to 67%, and improved greatly for scientists, with no “prominent” errors
and 85% of the observations falling within the “faint” category, where the degree of colour
difference is very low and only evident on very close examination (Figure 4b).

Colorimetric accuracy for calibrated colour observations improved significantly for
both groups. Examining the three parameters (HVC), calibrated citizen scientists’ colour
values improved from 73% of the measurements in the “prominent” category to 27% and it
elevated the number of “faint” differences in colour from 13% to 50% (Figure 4a). Likewise,
for scientists, the category of “distinct” or moderate colour errors (orange) lowered and the
percentage of “faint” colour differences increased. This improvement was greatest when
focusing only on the Munsell value and chroma attributes (Figure 4b). For citizen scientists,
“prominent” errors lowered from 67% to 0%, the percentage of observations in the “faint”
category increased to 53%, and 30% of the values showed an exact colour match (green)
with the spectroscopic-measured colour. As for scientists, 47% of the calibrated values were
classed as “correct,” and only 3% of the calibrated colour observations were categorised as
“distinct” errors (orange).



Sustainability 2021, 13, 11029 10 of 17

Figure 3. Relationship between observed and measured colour values for hue (h◦), lightness (L*),
and chroma (C*) for scientists (in blue) and citizen scientists (in orange).

Figure 4. Contrast class category for observed and calibrated visual estimates compared to spectro-
scopic measured colour for 2 groups: citizen scientists and scientists. (a) Contrast class for Munsell
parameters: hue, value, and chroma (HVC), (b) Contrast class for Munsell attributes: value and
chroma (VC).
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3.3. Soil Colour and Carbon

Figure 5 shows the extent to which “measured” spectrally derived colour attributes
can be related to SOC. There is a negative, linear relationship for lightness (Munsell value
or L*), saturation (Munsell chroma or C*), and dominant wavelength (hue number and h◦)
and SOC. The L* value or CIE lightness is the best predictor of SOC (R2 = 58). The CIELAB
colour space improves the statistical relationship, with a higher R2 for the different colour
components than the Munsell HVC system.

Figure 5. Relationship between soil organic carbon (SOC) and hue, lightness, and chroma in both the Munsell HVC and
CIELAB colour space.

Figure 6 shows the relationship between the measured SOC from LOI with predicted
SOC using a simple regression (L*) in black and a three-factor regression equation (L+A+B)
for citizen scientists in orange, and spectrophotometer in green. The three-factor regression
equation raised the correlation coefficient from R2 = 0.58 to 0.69 for spectrally derived
colour and from R2 = 0.51 to 0.61 for citizen scientists.
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Figure 6. Relationship between measured SOC from LOI with predicted SOC using simple regression in black and the
three-factor regression equation for (a) citizen scientists in orange and (b) spectrophotometer in green.

4. Discussion

Measurement of soil organic carbon (SOC) stocks requires a large number of samples
that are costly and time-consuming to analyse [8]. Thus, this study sought to evaluate
efficient and accurate methods of predicting SOC contents using simple and rapid Munsell
soil colour assessments as an alternative to conventional laboratory analyses, such as loss
on ignition.

Our results support the immense potential for citizen scientists with minimal training
to collect reliable soil colour data using the Munsell soil colour chart (MSCC). During
28 organized events, trained citizen scientists participating in our research project collected
over 600 soil colour measurements, as well as other soil data that will be used in subsequent
studies [54]. These big data sets that are collected rapidly go beyond the scope of traditional
field researchers [24,25] and can help to overcome some of the barriers associated with
current limitations in time and resources required for SOC reporting and mapping [8,11,13].

Here, we analysed a sub-sample of 540 visual soil colour measurements collected by
citizen scientists and professional scientists by comparing them to each other and to an
objective assessment of colour using a spectrophotometer. We found that the agreement in
visual soil colour observations between appraisers over time for the same sample points
or “repeatability” was low for our experiment for both scientists and citizen scientists
alike. Colour observations from both groups had a wider range for the Munsell value
and chroma than corresponding spectrophotometer readings. This is consistent with
other studies that have found a lower percentage agreement for these colour attributes
because observers making these measurements show a preference for extreme numbers to
differentiate amongst similar colours [26,30]. This work brings up the potential biases in
observer colour perception, and the dilemma of uncertainty in colour determination using
MSCC that is routinely mentioned in the literature [20,30,33,34].

Yet, despite the variation between observers and the comparison of very different
methods of colour identification, our data shows a linear relationship between traditional
Munsell soil colour estimates and quantitative colour analyses for the same perceptual
phenomena: value and chroma (Figure 3). The relationship is coherent but weak for both
scientists (R2 = 0.42; R2 = 0.26) and citizen scientists (R2 = 0.39; R2 = 0.19) for lightness and
chroma, respectively. Instead, no relationship was found for hue. Nevertheless, spectrally
derived Munsell hue could not be used confidently in our study because the reproducibility
of this parameter was low, showing a high dispersion from the mean (SD = 3.1) (Table 2).

We assessed the colorimetric accuracy or levels of colour difference between “ob-
served” and “measured” colour attributes using the USDA standards (2017), based on the
assumption that spectrally derived measurements were correct [43]. Our results demon-
strate that the Munsell method can lead to significant errors for both scientists and citizen
scientists. Although scientists determined colour more accurately than citizen scientists,
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overall, there was a high percentage of observations that contrast strongly with the spec-
trally derived colour values. For example, analysing three parameters (HVC), 23% of the
colour observations for scientists were classified as “prominent” and contrasted strongly
from spectral recordings for the same sampling locations whereas 73% of citizen scientists’
colour measurements were classed as “prominent”. These results contrast with earlier
findings in the field that suggest there is a high overall agreement using this method.
One of the most cited studies in the literature is Post et al.’s (1993) experiment, which
states that 52% of soil scientists agreed on all three colour components [35]. Instead, our
findings are similar to more recent studies that indicate a very low overall agreement of
appraisers vs. the standard, such as Marqués-Mateu et al.’s (2018) experiment (<5%) [30].
Like Marqués-Mateu et al. (2018), we examined a larger data set and used an objective
standard (viz. spectrophotometer) to assess the reliability of the Munsell method, whereas
past experiments were based on very few samples (<20) and only tested consistency in
colour-matching between appraisers [30,35].

This work brings up one of the primary drawbacks of using the MSCC for any observer:
the variation in individual perception of soil colour [20,29,31–35]. However, aside from
the observer’s sensitivities, there are numerous other psychophysical and physical factors
that users have identified as potential sources of discrepancy in the results [37], including
(1) sample characteristics (e.g., size, roughness), (2) environmental conditions (e.g., moisture
content, lighting conditions) [31], and (3) difficult statistical analysis (e.g., limited colour
chips, cylindrical colour coordinates) [32,33].

Instead, our results demonstrate that using the spectrophotometer allowed a more
sensitive and precise measure of colour. We took five repeated measures of the same soil
solution and the low standard deviations and coefficient of variations for the Munsell value
and chroma showed the high reproducibility of this technique (Table 2). A quantitative
approach to colour determination can overcome some of the limitations of the Munsell
method by removing the human ‘judgement’ from the analysis and controlling the condi-
tions of the measurement (e.g., using standard values for the observer viewing angle and
fixed lightning conditions). This is on par with studies showing that modern technologies
and instrumental methods, such as UV VIS spectrophotometry, offer an accurate means for
analysing and measuring soil colour [8,9,16,19,22,23,26,37–39]. For this reason, quantitative
measures of colour have seen apparent exponential growth worldwide and there are new
applications of colour data in different fields [16,37].

Nevertheless, at this point, spectrophotometers are not a simple replacement for Mun-
sell soil colour books because they are substantially more expensive, require a laboratory,
and are time-consuming [8,37]. Thus, pending the development of portable and affordable
spectrophotometers or other quantitative field devices [11,29], colour assessments using
Munsell charts will remain the standard practice for a variety of reasons, including cost,
facility, rapidity, and familiarity with the measurement process, particularly in the Global
South [8,23,37,39].

Therefore, in our study, we tested the opportunity of improving the reliability of Mun-
sell visual estimates by calibrating observations through spectroscopy using the CIELAB
colour space. Our results indicate that the calibration was successful, with colorimetric
accuracy increasing significantly for both groups, particularly when focusing only on
the following colour components: Munsell value and chroma (Figure 4b). For citizen
scientists, “prominent” errors dropped from 67% to 0%, the percentage of “faint” errors
increased to 53%, and 30% of the calibrated observations were an exact match and labelled
as “correct”. As for scientists, 47% of the calibrated values were classified as “correct”,
and there were only 3% “distinct” errors. These results suggest that this is a promising av-
enue to complement traditional Munsell colour assessments, while ensuring more reliable
colour identification. Moreover, it emphasizes the importance of using the contemporary
CIELAB colour space in soil science to calibrate soil colour observations using ∆L*, ∆a*,
and ∆b*, and for numerical statistical or predictive analyses [16,21,22,52]. This colour space
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overcomes many of the limitations of the Munsell, while retaining a similar perceptual
framework that is familiar to soil scientists [32,39,52].

Further work in this area is essential because soil colour is relied on heavily in soil
science for a wide variety of practical applications. In particular, our results indicate the
importance of calibrating Munsell soil colour assessments for their potential use in SOC
estimation. We found that there is a strong negative correlation between soil lightness (L*)
and SOC. In other words, soil lightness decreases linearly as the content of organic matter
increases. This trend is well documented in the literature and widely accepted [8,9,16,20,22].
However, our results demonstrate that to account for the SOC in soils more accurately,
it is important to use all three colour components (L + A + B) instead of a single linear
regression with soil lightness (L*). This three-factor regression strengthens the statistical
relationship from R2 = 0.51 to 0.61 for citizen scientists (Figure 6a) and R2 = 0.58 to 0.69
for the spectrophotometer (Figure 6b). It supports that the organic carbon content not
only affects the lightness or neutralization of white pigments but also influences other
colour pigments (e.g., red, yellow, and green). These results coincide with work by Liles
et al. (2013) and Vodyanitskii and Savichev (2017) that supports the use of three-factor
regressions for stronger soil colour–SOC predictive relationships [9,22].

Furthermore, this study demonstrates that soil colour gathered by citizen scientists
for soil colour–SOC estimations is comparable with results obtained from spectrally de-
rived colour (R2 = 0.58 ∼ 0.69). This reinforces the potential use of calibrated Munsell
soil colour measurements collected by citizen scientists as a cost-effective and time-saving
method for the spatio-temporal monitoring of SOC. Widespread participation in colour
determination could significantly accelerate the work of traditional scientists because of the
capacity of these projects to provide large sample numbers and survey vast geographical
areas [8,11,13,55]. This would overcome some of the barriers associated with conventional
laboratory methods, such as loss on ignition, which are inadequate for large-scale monitor-
ing of SOC stock changes since they are time- and cost-intensive and laborious [1,8–12,55].
Soil colour–SOC predictions could provide a detailed assessment of SOC over time and
space, which is key to better understanding SOC changes within and between landscapes
to implement effective SOC management strategies [1].

We suggest further developments to (1) establish universal protocols for soil spec-
troscopy to be able to calibrate observations and compare data amongst studies [11,56];
(2) explore soil colour–SOC relationships using the CIELAB space in conjunction with
other important climate and soil characteristics, such as illumination, moisture, and tex-
ture for stronger soil colour–SOC predictions similarly to recent studies [29,56–59]; and
(3) increase the size of the dataset and the study area to construct a robust database that is
representative of soil variability [8,11].

5. Conclusions

This work sheds light on the use of simple Munsell soil colour assessments for estimat-
ing SOC. The main challenge is that soil colour determination using the MSCC is subjective
and there is concern over low overall agreement amongst measurements made by scientists
and citizen scientists. Therefore, we developed a quantitative method to measure “true”
soil colour using a spectrophotometer and calibrated soil colour observations using the
modern CIELAB colour system to increase their accuracy.

Our results indicate that colorimetric accuracy increased significantly for both groups,
particularly when focusing on the colour components: Munsell value and chroma. This
work represents an important step towards improving visual colour determination in soil
science for reliable SOC estimation.

Additionally, our findings demonstrate that soil colour–SOC estimations from data
collected by citizen scientists are comparable to scientists and to spectrally derived colour
predictions, highlighting the potential use of these projects as an alternative to support or,
to some extent, replace time-consuming and more expensive SOC laboratory analyses with
methods, such as loss on ignition.
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Similar to other studies, our results show that soil colour lightness (L*) (or Munsell
value) is an effective predictor of SOC, with soil lightness decreasing linearly as organic
carbon increases. However, we emphasize the importance of using a three-factor regression,
with all the three colour characteristics (L + A + B), to account for organic carbon in soils
more accurately.

The next steps are to strengthen soil colour–SOC predictions with important soil
characteristics, such as moisture and texture data, and construct a robust database that is
representative of different soil landscapes.
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