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Abstract: With the increase in pollution and people’s awareness of the environment, reducing
greenhouse gas (GHG) emissions from products has attracted more and more attention. Companies
and researchers are seeking appropriate methods to reduce the GHG emissions of products. Currently,
product family design is widely used for meeting the diverse needs of customers. In order to reduce
the GHG emission of products, some methods for low-carbon product family design have been
presented in recent years. However, in the existing research, the related GHG emission data of a
product family are given as crisp values, which cannot assess GHG emissions accurately. In addition,
the procurement planning of components has not been fully concerned, and the supplier selection has
only been considered. To this end, in this study, a concurrence optimization model was developed for
the low-carbon product family design and the procurement plan of components under uncertainty.
In the model, the relevant GHG emissions were considered as the uncertain number rather than
the crisp value, and the uncertain GHG emissions model of the product family was established.
Meanwhile, the order allocation of the supplier was considered as the decision variable in the model.
To solve the uncertain optimization problem, a genetic algorithm was developed. Finally, a case study
was performed to illustrate the effectiveness of the proposed approach. The results showed that the
proposed model can help decision-makers to simultaneously determine the configuration of product
variants, the procurement strategy of components, and the price strategies of product variants based
on the objective of maximizing profit and minimizing GHG emission under uncertainty. Moreover,
the concurrent optimization of low-carbon product family design and order allocation can bring
the company greater profit and lower GHG emissions than just considering supplier selection in
low-carbon product family design.

Keywords: low-carbon design; product family design; green manufacturing; mass customization

1. Introduction

Over the last few decades, greenhouse gas (GHG) emissions have attracted more and
more attention. The Intergovernmental Panel on Climate Change indicates that human-
made GHG emissions are the cause of global warming [1]. To reduce GHG emissions,
many countries have issued relevant policies to encourage enterprises to design and
manufacture low-carbon products, such as ISO 14064, PAS 2050, and ISO/TS 14067. Low-
carbon product design has received more and more attention from academia and industry.
To meet the various needs of customers, the product design method has changed from
single product design to product family design. In recent years, some researchers have
begun to study low-carbon product family design. For example, Wang et al. [2] presented
an approach for modular product family design considering cost and GHG emissions.
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Xiao et al. [3] studied a method for collaborative optimization of product family design
and manufacturing process planning. To focus on core competitiveness, more and more
businesses choose to outsource the components to external suppliers. Since supplier
selection affects both the production cost of the product and the GHG emissions of the
product, Wang et al. [4] presented a method to simultaneously optimize supplier selection
and the low-carbon design of the product family. Although some studies have discussed
the low-carbon product family design, there are several shortcomings that need further
research. First, the related GHG emissions data of the product family were considered as
crisp values in the existing studies. However, in the realistic environment, some information
is uncertain in the product family design stage, such as the mass of materials and the
assembly process. Therefore, it is very difficult to accurately evaluate the GHG emissions
of a product family from each stage. Second, it is meaningful that the product family
design and the supply selection are considered simultaneously. Nevertheless, in previous
studies, regardless of the number of requirements, one module instance of a product
variant can only be provided by a single supplier. Yet, often, one module instance of
a product variant can be provided by multiple suppliers. In other words, the order
allocation of multiple suppliers has not been fully considered, and it will influence the
low-carbon product family design. To make up for the above research gaps, this study
proposes a concurrence optimization method for low-carbon product family design and
the procurement decision of components under uncertainty. In the model, the relevant
GHG emissions were considered as uncertain rather than as crisp values, and the uncertain
GHG emissions model of the product family was established. Furthermore, instead of just
considering the supplier selection, the order allocation of suppliers was considered as the
decision variable in the model. Moreover, the genetic algorithm was developed for solving
the uncertain optimization problem. The results showed that the decision model can assist
managers/decision-makers to simultaneously determine the product family design and
the procurement plan of components based on their goal preferences.

The structure of this article is as follows. Relevant existing studies, including low-
carbon product design and product family design, are reviewed in Section 2. In Section 3,
the problem is described. An optimization model is established in Section 4. Section 5
addresses the solution algorithm for solving the optimization model. To demonstrate
the benefits of the proposed approach, a case study is provided in Section 6. Section 7 is
the summary.

2. Literature Review
2.1. Low-Carbon Product Design

In recent years, low-carbon product design has attracted the attention of many schol-
ars. Song et al. [5] developed a design auxiliary system using the bill of materials to
design a low-carbon product. Qi et al. [6] integrated low-carbon technology into product
modular design. Su et al. [7] proposed an approach to assess the carbon emissions and
the cost in conceptual product design. According to the connection characteristics among
components, Zhang et al. [8] approached the connection units with great carbon emissions.
Kuo et al. [9] reported an optimization method for low-carbon product design considering
cost, supplier capacity, and component transport. Xu et al. [10] built a low-carbon-product
multi-objective optimization approach to deal with the contradictions among firms, con-
sumers, and governments. He et al. [11] reported the low-carbon product design for
the product life cycle. Chiang et al. [12] studied a method for developing a low-carbon
electronic product. He et al. [13] proposed a conceptual framework for low-carbon prod-
uct design. Zhang et al. [14] investigated a hybrid low-carbon optimization model for
structural components considering material selection, structure layout, and structure pa-
rameters. The low-carbon product design method mentioned above is oriented to a single
product. For meeting the diversified needs of customers, product family design with
multiple product variants has been widely adopted in recent years. Since the design of
product variants included in the product family are interrelated, the low-carbon design



Sustainability 2021, 13, 10764 3 of 22

approach for a single product is not suitable for low-carbon product family design. To this
end, some researchers began to study the low-carbon design method for product family.
For example, Tang et al. [15] proposed an optimization model for low-carbon product con-
figuration. Kim et al. [16] investigated an approach to identify a sustainable platform based
on sustainability values, risk values, and commonality. Wang et al. [17] proposed a model
to simultaneously optimize the low-carbon product family design and the remanufactured
products. Table 1 shows some recent optimization models for low-carbon product design
and our model. In the product family design stage, some information is uncertain, such
as carbon emission factors, the mass of materials, and assembly process. As a result, it is
very difficult to accurately evaluate the GHG emissions of the product family from each
stage as crisp values. Therefore, the uncertain GHG emissions of the product family should
be considered in low-carbon product family design, and it has not been concerned in the
previous study.

Table 1. Some recent studies in low-carbon product design optimization models and our model.

Source Model Description

Object-Oriented Objectives Decision Variables Uncertain
GHG

Emissions
Single

Product
Product
Family Single Multiple Product

Configuration
Supplier
Selection

Order
Allocation

Kuo et al., 2014 [9]
√

– –
Carbon

footprints and
cost

√ √
– –

He et al., 2015 [11]
√

–
Carbon

foot-
prints

–
√

– – –

Chiang et al.,
2015 [12]

√
–

GHG
emis-
sions

–
√

– – –

He et al., 2015 [13]
√

– Carbon
footprint –

√
– – –

Wang et al., 2016 [2] –
√

– Cost and GHG
emission

√ √
– –

Tang et al., 2017 [15]
√

– –
Profit and
customer

satisfaction

√
– – –

Wang et al., 2018 [4] –
√

– Profit and GHG
emission

√ √
– –

Wang et al., 2019 [17] –
√

– Profit and GHG
emission

√
– – –

The proposed
method of this

research
–

√
– Profit and GHG

emission
√ √ √ √

2.2. Product Family Design

The product family design was considered a very useful way to enable mass cus-
tomization because it can offer diversified products with a relatively low cost. In the past,
many studies on product family design have been reported. Jiao et al. [18] presented a
product family architecture for describing the logic mapping between functional, structural,
and technical views of a product family. Du et al. [19] adopted a generic product structure
to express hierarchical and structural organization of function modules, module instances,
and product variants in a product family. Other studies focus on how to configure a product
family from a set of alternative module instances. For instance, Oivares-Benitez et al. [20]
used tabu search algorithms for selecting the product platform. Zacharias et al. [21] devel-
oped an optimal product family platform with consideration of engineering and marketing
factors. Beyond that, many methods were proposed to address the measure of commonality
in product platform design [22,23].

At present, supplier selection is very critical in manufacturing companies. The rea-
sonable selection of suppliers cannot only reduce production costs but also enhance the
competitiveness of products. There is no doubt that product family configuration and sup-
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plier selection are closely related. To this end, some scholars have optimized the product
family design and supplier selection simultaneously. Huang et al. [24] addressed the prob-
lem of platform product decisions, manufacturing process decisions, and supply-sourcing
decisions by adopting and extending the concept of the generic bills of materials of a prod-
uct family. Huang et al. [25] adopted game-theoretic method to optimize the configuration
of product family and supply chain design. In these studies, it is supposed that a product
platform is predetermined. Luo et al. [26] investigated the concurrent optimization method
of product family design and supplier selection in consideration of the choice behavior of a
consumer. Cao et al. [27] presented a technique to optimize product family design and sup-
plier selection under the multinomial logit consumer choice rule. Khalaf et al. [28] adopted
a tabu search algorithm to configure product lines in consideration of time limits and
assembly line constraints. With consideration of the quality and price, Rezapour et al. [29]
presented a model for joint design of the product family and supply chain network.
Luo et al. [30] studied the optimization of product family design with consideration of
the supply risk and the discount. Yang et al. [31] investigated the joint design problem
of the product family and the supply chain by adopting the leader–follower Stackelberg
game method. From what has been discussed above, although the supplier selection and
price decision of the product variant have been considered as decision variables in the
low-carbon product family design, the procurement planning of components was not
fully considered. Due to the fact that the order allocation of suppliers affects not only the
profit of the product family but also the GHG emissions of the product family, the order
allocation of suppliers should be considered as the decision variable in low-carbon product
family design.

3. Problem Presentation

The optimization problem of this study is described as follows: a product is developed
into a modular architecture, that is, a product can be considered to be composed of a
group of function modules. For meeting the diverse needs of customers, the company
plans to develop a product family that includes some product variants. Each function
module of all product variants needs to be configured with module instances. In this
study, it was supposed that module instances are provided by external suppliers and
that the main company assembles the product. Several types of module instances can
be supplied by a supplier, and multiple vendors can provide a module instance required
by a product variant. In order to encourage business, different suppliers offer different
discount schemes. The research problem of this study was how to simultaneously optimize
the module instance configuration of all product variants included in the product family,
the order allocation of suppliers, and the selling price of each product variant based on the
objectives of maximizing profit and minimizing the GHG emissions of a product family.

The following basic assumptions were used in this research. (1) The total market can be
divided into several market segments, and the purchase preferences of the customers in the
same market segment were considered as the same [27]. (2) The candidate instances of each
module had the same interface, and thus they can replace each other [27]. (3) The unquali-
fied suppliers were excluded, and all candidate suppliers were qualified [4]. (4) A supplier
can provide several different module instances [4]. (5) One module instance of a product
variant can be provided by multiple suppliers. (6) All candidate suppliers can deliver on
time, and the supplying capacity of candidate suppliers meets the requirements [4].

To formulate the optimization model, the following notations were defined:

(1) Indices

m: (m = 1, 2, . . . , M) index for modules
n: (n = 1, 2, . . . , N) index for module instance
Mm,n: nth instance of mth module
t: (t = 1, 2, . . . , T) index for product variant
z: (z = 1, 2, . . . , Z) index for supplier
a: (a = 1, 2, . . . , A) index for market segment
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(2) Parameters

Ut(a)
pro : the utility of the tth product variant in the ath market segment

µ
(a)
mn: the utility of module instance Mm,n in the ath market segment

λt(a): the surplus utility of tth product variant in the ath market segment
δ: the scaling parameter in the MNL rule
E: the number of similar products launched by other companies
λe(a): the surplus utility of eth similar product in the ath market segment
Q(a)

t : the possible demand of tth product variant in the ath market segment
nq: the total product demand in the ath market segment
RT: the expected revenue
C: total cost
Cin: production cost within the enterprise
Cout: external procurement cost
Cin(fix): fixed production cost within the enterprise
Cin(var): variable production cost within the enterprise
cin(var)

mn : unit variable production cost of module instance Mm,n
Cout(fix): fix cost of using suppliers
Cout(var): variant cost from procurement
Ez: fixed cost of selection the zth supplier
Gz: binary variable such that Gz = 1 if the zth supplier is selected, and Gz = 0 otherwise
pz

mn: purchase price of Mm,n provided by the zth supplier
δz: discount rate provided by the zth supplier
mz

mn: the weight of Mm,n provided by the zth supplier
Sz: distance from the zth supplier to the assembly firm
CTr: unit transportation cost
ET: total greenhouse gas (GHG) emissions
ET

com: GHG emission from component
ET

tra: GHG emission from transportation
ET

pro: GHG emission from production within the assembly firm
Esel

sup: GHG emission from supplier selection
gz

mn: Order poportion of zth supplier to supply module instance Mm,n.

(3) Decision variables

y(t)mn =


1 if nth instance of mth module (Mm,n) is used to configure to the tth product variant

(m = 1, 2, . . . , M; n = 1, 2, . . . , N; t = 1, 2, . . . , T)
0 otherwise

(1)

Nz
mn : the purchase amount of nth instance of mth module

(
Mi,j) from zth supplier (2)

pt : the price of tth product variant (t = 1, 2, . . . , T) (3)

4. Establishment of the Optimization Model
4.1. Establishing Customer Preference Model

To establish the customer preference model, the product market was divided into
several segments in advance. Clustering technology can be used to complete market
segmentation [32]. Moreover, it is necessary to estimate the size of each market segment.

In previous studies, the utility function has been widely used to measure customer
preference. The customer preference model was established based on the utility function.
In light of the part-worth model [33], the utility of the tth product variant in the ath market
segment, Ut(a)

pro , was calculated as follows:

Ut(a)
pro =

M

∑
m=1

N

∑
n=1

y(t)mn µ
(a)
mn + ηr (4)
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where µ
(a)
mn is the utility of module instance Mm,n in the ath market segment, and it can be

estimated by conjoint analysis; ηr is a constant.
When customers buy products, they should consider the selling price of a product

as well as the utility. Considering the selling price of product, the surplus utility of tth
product variant in the ath market segment (λt(a)) is evaluated as:

λt(a) = Ut(a)
pro − pt (5)

where pt is the the selling price of tth product variant.

4.2. Market Demand of Products and Expected Revenue

Generally, customers’ decisions to buy a product is not only affected by the surplus
utility of the product but also by other similar products. For this reason, the probabilistic
choice rule was adopted in many studies to represent customers’ decisions for purchases.
The probabilistic choice rule supposes that utility is a random variable and that customers
choose products based on the criterion of random utility maximization. In the probabilistic
choice rule, the multinomial logit choice (MNL) rule was adopted in this research due to
its simplicity. According to the MNL rule, the probability of the tth product variant being
selected in the ath market segment is calculated as follows:

P(a)
t =

eδλt(a)

T
∑

t=1
eδλt(a)

+
E
∑

e=1
eδλe(a)

(6)

where δ in the MNL rule is the scaling parameter and E represents the number of similar
products launched by other companies. λe(a) is the surplus utility of eth similar product in
the ath market segment.

The possible demand of tth product variant in the ath market segment (Q(a)
t ) is

expressed as follows:
Q(a)

t = nqP(a)
t (7)

where nq is total the product requirement in the ath market segment.
When the market demand and the price of each product variant included in the

product family are known, the expected revenue (RT) can be estimated as follows:

RT =
A

∑
a=1

T

∑
t=1

Q(a)
t pt (8)

4.3. Price Discount of Suppliers

Generally, a company procures components from multiple suppliers rather than a
single supplier. To get a large order, suppliers may offer price discounts. The volume
discount based on order income is widely used by suppliers, and it was considered in this
research. Table 2 shows an example of a discount. For instance, there was no discount
when the purchase value was less than USD 20,000. When the total purchase value was
in the range of USD 20,000 to USD 80,000, the buyer can enjoy a 5% discount of the total
purchase value.

Table 2. An example of discount.

Sales Volume (USD) Discount (%)

[0, 20,000) 0
[20,000, 80,000) 5

Equal to or more than 80,000 10



Sustainability 2021, 13, 10764 7 of 22

4.4. Production Cost of a Product Family

The total cost can be divided into the production cost within the enterprise (Cin)
and the external procurement cost (Cout), and the total cost C is formulated as:

C = Cin + Cout (9)

Cin is the production cost within the enterprise, and it consists of two parts. The two
parts are the fixed cost (Cin(fix)) and the variable cost (Cin(var)). Cin(fix) includes the de-
velopment cost, the management cost, etc. Cin(var) indicates the product assembly cost,
the product packaging cost, etc.

The number of product variants (v) developed in a product family affects the Cin(fix),
and Cin(fix) is expressed as follows:

Cin(fix) =


Y1 v = 1
Y2 v = 2

...
Yv v = V

(10)

where Yv represent the fixed cost, and it corresponds to the number of product variants.
The Cin(var) can be expressed as:

Cin(var) =
A

∑
a=1

T

∑
t=1

M

∑
m=1

N

∑
n=1

Q(a)
t cin(var)

mn y(t)mn (11)

where cin(var)
mn is the unit variable production cost of module instance Mm,n.

Based on Equations (10) and (11), Cin is reformulated as follows:

Cin = Yv +
A

∑
a=1

T

∑
t=1

M

∑
m=1

N

∑
n=1

Q(a)
t cin(var)

mn y(t)mn (12)

Cout is also divided into two parts, including the fixed cost of using suppliers (Cout(fix))
and the variant cost (Cout(var)).

Cout(fix) is related to the adopted suppliers, such as the negotiation cost and so on.
Cout(fix) is expressed as:

Cout( f ix) =
Z

∑
z=1

EzGz (13)

where Ez represents the fixed cost of selection of the zth supplier; the value of Gz is 1 when
the zth supplier is selected, and, if not selected, the value of Gz is 0.

Cout(var) indicates the purchasing cost of module instances and the transportation cost.
Cout(var) can be formulated as follows:

Cout(var) =
Z

∑
z=1

[
M

∑
m=1

N

∑
n=1

A

∑
a=1

T

∑
t=1

Q(a)
t y(t)mnNz

mn pz
mn

]
(1− δz) +

Z

∑
z=1

[
M

∑
m=1

N

∑
n=1

A

∑
a=1

T

∑
t=1

Q(a)
t y(t)mnNz

imnmz
mn

]
SzCTr (14)

where pz
mn represents the purchase price of Mm,n provided by the zth supplier; δz is the

discount rate, which can be provided by the zth supplier; mz
mn indicates the weight of

Mm,n provided by the zth supplier; Sz represents the distance from the zth supplier to the
assembly firm; CTr represents the unit transportation cost.

By combining Equations (13) and (14), Cpur is reformulated as:

Cout =
Z

∑
z=1

EzGz +
Z

∑
z=1

[
M

∑
m=1

N

∑
n=1

A

∑
a=1

T

∑
t=1

Q(a)
t y(t)mnNz

mn pz
mn

]
(1− δz) +

Z

∑
z=1

[
M

∑
m=1

N

∑
n=1

A

∑
a=1

T

∑
t=1

Q(a)
t y(t)mnNz

mnmz
mn

]
SzCTr (15)
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4.5. Greenhouse Gas Emission Model of a Product Family

The total greenhouse gas emission (GHG) emissions, ET, was divided into four
parts. The four parts were GHG emissions from the component (ET

com), GHG emissions
from transportation (ET

tra), GHG emissions from production within the enterprise (ET
pro),

and GHG emissions from the supplier selection (Esel
sup). ET is expressed as:

ET = ET
com + ET

tra + ET
pro + Esel

sup (16)

ET
com is formulated as follows:

ET
com =

M

∑
m=1

N

∑
n=1

A

∑
a=1

T

∑
t=1

Q(a)
t y(t)mn[ez−L

mn ,ez−R
mn ] (17)

where [ez−L
mn , ez−R

mn ] is an interval number, and it is the possible GHG emission for the module
instance Mm,n provided by zth supplier.

The total GHG emissions from transportation of the module instance, ET
tra, can be

described as follows:

ET
tra =

Z

∑
z=1

M

∑
m=1

N

∑
n=1

A

∑
a=1

T

∑
t=1

Q(a)
t y(t)mnNz

mnmz
mnSz[EL

Tr, ER
Tr] (18)

where [EL
Tr, ER

Tr] is an interval number, and it indicates the possible unit transportation
GHG emissions.

ET
pro, including the fixed part [E f ix(V)−L

pro , E f ix(V)−R
pro ] and the variable part Evar

pro , is the

GHG emissions from production within the enterprise. [E f ix(V)−L
pro , E f ix(V)−R

pro ] is an interval
number, and it represents the possible fixed GHG emissions of the product family with
development V product variants, and this part is mainly from product development,
management, etc. Evar

pro is mainly from product assembly, packing of products, etc. and can
be formulated as:

Evar
pro =

A

∑
a=1

T

∑
t=1

M

∑
m=1

N

∑
n=1

Q(a)
t y(t)mn[e

(ass)−L
mn , e(ass)−R

mn ] (19)

where [e(ass)−L
mn , e(ass)−R

mn ] is an interval number, representing the possible GHG emissions of
assembly for Mm,n.

ET
pro can be reformulated as follows:

ET
pro = [E f ix(V)−L

pro , E f ix(V)−R
pro ] +

A

∑
a=1

T

∑
t=1

M

∑
m=1

N

∑
n=1

Q(a)
t y(t)mn[e

(ass)−L
mn , e(ass)−R

mn ] (20)

Esel
sup is mainly from negotiation communication, relationship maintenance between

company and suppliers, etc. It can be formulated as follows:

Esel
sup =

Z

∑
z=1

[FL
Z , FR

Z ]Gz (21)

where [FL
Z , FR

Z ] represents the possible GHG emission when the zth supplier is adopted.

4.6. Objective Function of the Optimization Model

Profit maximization is the first considered by enterprises, and the first optimization
objective f 1 can be expressed as:

f1= max ∆ = Trev − C (22)
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Based on Equations (8), (12) and (15), f 1 is rewritten as follows:

f1= max ∆ = max
A
∑

a=1

T
∑

t=1
Q(a)

t pt −Yv −
A
∑

a=1

T
∑

t=1

M
∑

m=1

N
∑

n=1
Q(a)

t cin(var)
mn y(t)mn −

Z
∑

z=1
EzGz

−
Z
∑

z=1

[
M
∑

m=1

N
∑

n=1

A
∑

a=1

T
∑

t=1
Q(a)

t y(t)mnNz
mn pz

mn

]
(1− δz)−

Z
∑

z=1

[
M
∑

m=1

N
∑

n=1

A
∑

a=1

T
∑

t=1
Q(a)

t y(t)mnNz
mnmz

mn

]
SzCTr

(23)

Minimizing GHG emissions, f 2 is another optimization goal in low-carbon product
family design. f 2 is expressed as follows:

f2 = min ET (24)

According to Equations (17), (18), (20) and (21), f 2 is formulated as follows:

f2 = min (ET) = min
M
∑

m=1

N
∑

n=1

A
∑

a=1

T
∑

t=1
Q(a)

t y(t)mn[ez−L
mn ,ez−R

mn ] +
Z
∑

z=1

M
∑

m=1

N
∑

n=1

A
∑

a=1

T
∑

t=1
Q(a)

t y(t)mnNz
mnmz

mnSz[EL
Tr, ER

Tr]

+[E f ix(V)−L
pro , E f ix(V)−R

pro ] +
A
∑

a=1

T
∑

t=1

M
∑

m=1

N
∑

n=1
Q(a)

t [e(ass)−L
mn , e(ass)−R

mn ]y(t)mn +
Z
∑

z=1
[FL

z , FR
z ]Gz

(25)

4.7. Optimization Constraints

(1) Selective constraint in product variant configuration

Although there are several candidate module instances for each function module, only
one instance can be selected for each function module of each product variant. It can be
formulated as follows:

N

∑
n=1

y(t)mn = 1, (t = 1, 2, . . . , T; m = 1, 2, . . . , M) (26)

(2) Order quantity constraint of the module instance

For a module instance, it can be provided by one supplier or several suppliers.
The total amount of module instances provided by all suppliers is equal to the number of
requirements, and it can be described as follows:

A

∑
a=1

T

∑
t=1

(Q(a)
t y(t)mn) =

Z

∑
z=1

Nz
mn (m = 1, 2, . . . . . . , M; n = 1, 2, . . . . . . , N) (27)

(3) Minimum order quantity

If supplier z is selected to provide Mm,n, the purchase amount from supplier z cannot
be less than MNz

i,j.

Nz
mn ≥ MNz

mn (z = 1, 2, . . . . . . , Z; m = 1, 2, . . . . . . , M; n = 1, 2 . . . . . . , N) (28)

(4) Configuration constraint.

The configuration of any two product variants cannot be exactly the same.

4.8. Treatment of the Uncertain Objective Function (f2)

The optimization goal, f 2, of the proposed model contains an interval number, and it
is treated in this section.

In interval mathematics, an uncertain objective function f can be transformed into the
following double-goals optimization problem [34]:

m( f (
∼
x, B)) =

1
2
( f L(

∼
x, B) + f R(

∼
x, B)) (29)

w( f(
∼
x, B)) =

1
2
( f L(

∼
x, B)− f R(

∼
x, B)) (30)
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where m is called the midpoint value, w is called the radius of the interval number, B is the
uncertain vector, and its components are all interval numbers, B =

{
bL ≤ b ≤ bR}.

In Equations (29) and (30), f L and f R are calculated as follows [35]:

f L(
∼
x, B) = min

C∈Γ
f (
∼
x, B), f R(

∼
x, B) = max

C∈Γ
f (
∼
x, B) (31)

This study adopted the linear combination approach to deal with two objective func-
tions: f L and f R. Adopting this approach to integrate f L and f R is relatively easy, given
that the preference of the objective function is available. It is expressed as:

f = d1m( f(
∼
x, C)) + d2w( f(

∼
x, C)),

d1, d2 ≥ 0, d1 + d2 = 1
(32)

According to the approach mentioned above, in this study, the uncertain objective
function f 2 of the proposed model can be treated as:

f2 = min
(

ET) = min(d1m(ET) + d2w(ET)) (33)

where d1 is the weight for m(ET), d2 is the weight for w(ET), and m(ET) and w(ET)
are formulated as follows:

m(ET) =
M
∑

m=1

N
∑

n=1

A
∑

a=1

T
∑

t=1
Q(a)

t y(t)mn × 1
2
(
ez−L

mn + ez−R
mn

)
+

Z
∑

z=1

M
∑

m=1

N
∑

n=1

A
∑

a=1

T
∑

t=1
Q(a)

t y(t)mnNz
mnmz

mnSz × 1
2
(
EL

Tr + ER
Tr
)

+ 1
2

(
E f ix(V)−L

pro + E f ix(V)−R
pro

)
+

A
∑

a=1

T
∑

t=1

M
∑

m=1

N
∑

n=1
Q(a)

t × 1
2

(
e(ass)−L

mn + e(ass)−R
mn

)
y(t)mn +

Z
∑

z=1

1
2
(

FL
z + FR

z
)
Gz

(34)

w(ET) =
M
∑

m=1

N
∑

n=1

A
∑

a=1

T
∑

t=1
Q(a)

t y(t)mn × 1
2
(
ez−R

mn − ez−L
mn

)
+

Z
∑

z=1

M
∑

m=1

N
∑

n=1

A
∑

a=1

T
∑

t=1
Q(a)

t y(t)mnNz
mnmz

mnSz × 1
2
(
ER

Tr − EL
Tr
)

+ 1
2

(
E f ix(V)−R

pro − E f ix(V)−L
pro

)
+

A
∑

a=1

T
∑

t=1

M
∑

m=1

N
∑

n=1
Q(a)

t × 1
2

(
e(ass)−R

mn − e(ass)−L
mn

)
y(t)mn +

Z
∑

z=1

1
2
(

FR
z − FL

z
)
Gz

(35)

4.9. Optimization Model Representation

According to the above analysis, the problem is a constrained bi-objective program-
ming problem, and it is shown as follows:

objective :
{

f1 : Equation (25)
f2 : Equation (33)

s.t.


Equations (26)−(28)

Con f iguration constraint
Equations (3)−(5)

y(r)ij ∈ {0, 1} , Nz
ij ≥ 0, and pr > 0

(36)

5. Solving the Optimization Model Using Genetic Algorithm (GA)

The proposed optimization model is a combinatorial optimization problem and,
thus, is an NP-hard one. As a consequence, it is very difficult to be solved by classi-
cal mathematical programming methods, especially considering the large-sized problem.
The meta-heuristic algorithm is more effective than the traditional methods. Many heuristic
algorithms have been proposed to solve the combinatorial optimization problem. Due to
its simple calculation and robust search ability, the genetic algorithm was employed in
this study.

5.1. Chromosome of GA

The essential part of GA implementation is the representation of the problem to
be solved with a finite-length string called a chromosome. Every chromosome in the
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population represents one solution for the problem. This study adopted the integer-
coding method, and the chromosome was a 1-dimensional array with multiple cells. Each
cell is called a gene. Figure 1 shows the chromosome structure used in this research.
A chromosome was divided into three sections, including the product variant configuration
section, the price decision section, and the order allocation section. The three sections were
further divided into several sub-sections. As shown in Figure 1, the chromosome contained
two sub-sections in the product configuration section. It means that two product variants
need to be developed in the product family. Each sub-section has three genes, which means
that the module instances need to be configured for the three function modules of each
product variant. The numerical value in the gene indicates which module instance is
selected. For example, the numerical value was “3” in the fourth gene, and it represents
that the module instance M2,3 was selected to configure the second module of product
variant 2. In this research, the price was discretized, and the discrete prices were coded in
advance. The price selected for each product variant was indicated by the gene value in
the price selection section. For instance, the numerical value was “5” in the first gene of the
price decision section, and it means that the fifth discrete price was selected for product
variant 1. In the order allocation section, it represents the proportion of the order allocation.
The numerical value in the gene was an integer value varying from 1 to 9. For example,
as shown in Figure 1, three suppliers (S1, S2, and S3) can supply the module instance M1,1,
and the proportion of order allocation was 4:5:2, which is indicated by the numerical value
in the gene. Therefore, when the total demand of the module instance M1,1 was known,
the order volume allocated for three suppliers can be calculated. Assuming that there are
Z′ suppliers who can provide module instance Mi,j, the order volume allocated to the zth
supplier (Nz

ij) is computed as follows:

Nz
mn =

T
∑

t=1

A
∑

a=1
Q(a)

t yt
mn

Z′

∑
z=1

gz
mn

gz
mn (m = 1, 2, . . . , M; n = 1, 2, . . . , N; z = 1, 2, . . . , Z) (37)

where gz
mn is the order proportion of the zth supplier to supply module instance Mm,n.
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5.2. Fitness Function

For solving the proposed bi-objective optimization problem, this study adopted the
weighting approach to integrate the two optimization objectives. The weights u1 and
u2 (u1 + u2 = 1, u1 ≥ 0, u2 ≥ 0) were assigned for the two optimization objectives. u1
was allocated for profit (f 1), and u2 was allocated for GHG emissions (f 2). The order of
magnitude of the profit and GHG emissions may be different; therefore, f 1 and f 2 need to
be normalized. The normalized objectives with weights were formulated as follows:

F′(k) = u1 f1
′(k) + u2 f ′2(k) (38)
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where fi
′ is the normalized values and was obtained as follows:

fi
′(k) =

fi(k)− fi,min

fi,max − fi,min
(39)

where fi,min and fi,max indicate the minimum and maximum values of fi(k).

5.3. The Operation of GA

(1) The uniform crossover was adopted in this research. As shown in Figure 2, the crossover
operation includes two steps. The first step is to produce a crossover mask, and each
gene in the chromosome corresponds to a crossover mask value. The crossover mask
value is 0 or 1, and the value is randomly produced. The second step is to swap the
values of genes for two parents when the corresponding crossover mask value is 1.
If the crossover mask value is 0, the values of genes for two parents are not exchanged.

(2) This study adopted the mutation operation according to the idea of a neighborhood.
The neighborhood of the gene is considered as the incremental or decremental change
to the integer values. An individual of the population is mutated with a probability.
In a mutation operation, some genes of an individual are first randomly selected,
and then these gene values are changed to their neighborhood.

(3) In this research, the roulette selection method was employed as a selection mechanism,
and the individual with a better fitness function value was more likely to be chosen
as a parent to produce the offspring in the next generation.
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6. Case Study
6.1. Case Introduction and Test Solving Algorithm

The industrial case of radio was applied for the case study. A producer of elec-
tronic products in Ningbo city plans to develop a product family of radio. The radio has
been developed into a modular structure, and six mainly function modules are identified.
The six function modules are the product case module (M1), the storage module (M2),
the voice module (M3), the key module (M4), the control module (M5), and the display
module (M6). There are several candidate module instances for each module, and dif-
ferent candidate instances of the same module have similar functionality but different
performance. The customers in the market are surveyed and then grouped into three
segments by clustering analysis, and the market demand of the three segments is estimated
by market experts, as shown in Table 3. By using conjoint analysis, the utility of each
module instance can be obtained. Given some possible combinations, the orthogonal array
selector provided in SPSS software was used to generate the number of some orthogonal
product profiles. With the profiles, a fractional factorial experiment was designed to obtain
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the customer preferences. In the market, there were three similar products, and the surplus
utilities of similar products were obtained by analyzing the product utility and the price,
as shown in Table 3. Table 4 shows the information about module instances. The variable
unit cost of the module instance was evaluated by cost experts based on the assembly
process. The variable unit emission of the module instance was estimated by experienced
engineers based on the energy consumption in the assembly process. Through early eval-
uation, the information of candidate suppliers is shown in Table 5. Table 6 shows the
discount information of the module instance given by candidate suppliers. By analyzing
market and cost, the product price was estimated at (USD 49.7, USD 78.8). In the case study,
the product price was discretized as a set of integer prices from USD 50 to USD 80. Based
on the market price, CTr was 0.35 USD/km per ton. [EL

Tr, ER
Tr] = [0.25, 0.66], Ez = $15, 000,

and Fz ∈ [485 , 510] were estimated by experienced engineers based on the energy consumption.

Table 3. Utility surpluses (USD) of similar products and market segment sizes.

Market Segment 1 Market Segment 2 Market Segment 3

Demand quantity (PCS) 210,000 300,000 70,000
Utility of similar product 1 62.01 59.12 64.10
Utility of similar product 2 57.06 61.05 59.00
Utility of similar product 3 55.13 58.22 60.03

Table 4. Related information about module instances.

Module Instance Utility in
Segment 1

Utility in
Segment 2

Utility in
Segment 3

Variable
Unit Cost

(USD)

Variable Unit
Emission

(g)

Weight
(g)

GHG
Emission

(g)

M1

M1, 1 16.8 15.4 15.2 0.8 [0.23, 0.31] 120 [36.1, 37.5]
M1, 2 17 15.6 15.2 0.8 [0.45, 0.53] 118 [32.5, 34.8]
M1, 3 17.2 16 16 1 [0.28, 0.32] 119 [33.2, 36.4]
M1, 4 17.2 16.7 14.9 1 [0.27, 0.34] 122 [35.2, 38.3]

M2

M2, 1 27.2 27.6 26.9 0.7 [0.08, 0.12] 78 [190, 198]
M2, 2 27.3 28.6 26.9 0.8 [0.29, 0.31] 81 [208, 215]
M2, 3 27.3 27.5 27.5 0.8 [0.09, 0.12] 84 [219, 228]
M2, 4 27.3 27.5 28.7 0.9 [0.19, 0.22] 80 [200, 210]

M3

M3, 1 13.3 15 13.9 0.7 [0.47, 0.52] 92 [260, 272]
M3, 2 13.2 15.2 14.3 0.7 [0.48, 0.54] 90 [248, 264]
M3, 3 13.3 14.8 15 0.8 [0.29, 0.32] 93 [278, 288]

M4

M4, 1 11.3 11.3 11.1 0.6 [0.27, 0.33] 89 [297, 308]
M4, 2 11.3 11.5 11.1 0.6 [0.09, 0.12] 92 [347, 358]
M4, 3 11.5 11.5 11.5 0.8 [0.08, 0.14] 95 [262, 372]

M5

M5, 1 22.9 22.4 18.8 0.7 [0.17, 0.22] 101 [420, 431]
M5, 2 23 22.8 20.2 0.8 [0.24, 0.38] 103 [422, 448]
M5, 3 23.1 22.5 20.7 0.8 [0.33, 0.48] 104 [458, 464]

M6

M6, 1 19.2 17.2 17.2 0.6 [0.05, 0.2] 83 [136, 148]
M6, 2 19.3 17.2 17.2 06 [0.19, 0.33] 81 [118, 128]
M6, 3 19.3 17.1 17.3 0.6 [0.24, 0.38] 84 [143, 157]
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Table 5. Information of suppliers.

Supplier Number Available Module Instances (Purchase Price USD) Distance
(km)

S1 M1,1(4.8), M1,2(5.0), M1,3(5.1), M1,4(5.3), M3,1(6.5),M3,2(6.6), M3,3(6.6) 681
S2 M2,1(11), M2,2(11.3), M2,3(11.5), M4,1(5.3), M4,2(5.3),M4,3(5.4), M6,1(9.6), M6,2(9.7), M6,3(9.7) 1009
S3 M1,1(4.9), M1,2(5.1), M1,3(5.3), M1,4(5.4), M3,1(6.4), M3,2(6.5), M3,3(6.4), M5,1(11.6), M5,2(11.7), M5,3(11.8) 896
S4 M2,1(11.2), M2,2(11.3), M2,3(11.4), M4,1(5.2), M4,2(5.3), M4,3(5.3), M6,1(9.8), M6,2(9.9), M6,3(9.9) 987
S5 M1,1(4.9), M1,2(5.2), M1,3(5.3), M3,1(6.5), M3,2(6.5), M3,3(6.4) 1100
S6 M2,1(11.2), M2,2(11.4), M2,3(11.5), M2,4(11.6), M5,1(11.4), M5,2(11.5), M5,3(11.7) 756
S7 M2,1(11.3), M2,3(11.5), M2,4(11.7), M3,1(6.5), M3,2(6.6), M3,3(6.5) 653

S8 M1,1(4.8), M1,2(5.1), M1,3(5.3), M1,4(5.3), M3,1(6.5), M3,2(6.5), M3,3(6.5), M5,1(10.9), M5,2(11.2), M5,3(11.5),
M6,1(9.9), M6,2(9.9), M6,3(9.9) 782

S9 M4,1(5.4), M4,2(5.5), M4,3(5.6), M5,1(11.7), M5,2(11.7), M5,3(11.8) 914
S10 M1,1(5), M1,3(5.2), M1,4(5.3), M3,1(6.4), M3,2(6.5), M3,3(6.4), M6,1(10), M6,2(10.1), M6,3(10.1) 1045
S11 M2,1(11.2), M2,3(11.4), M2,4(11.5), M4,1(5.5), M4,2(5.5), M4,3(5.5), M5,1(11.5), M5,2(11.6), M5,3(11.6) 995
S12 M3,1(6.3), M3,2(6.4), M3,3(6.5), M4,1(5.3), M4,2(5.4), M4,3(5.3), M5,1(11.5), M5,3(11.6) 745
S13 M2,1(10.9), M2,2(11.2), M2,3(11.3), M2,4(11.4), M5,1(11.8), M5,2(11.8), M5,3(11.7), M6,1(9.9), M6,2(10), M6,3(10) 925

Table 6. Discount information about suppliers.

Supplier Number Sales Volume (in Thousand USD) Discount Rate (%)

S1 (0, 300], (300, 600], (600, 900], (900, +∞) 0, 3, 5, 9
S2 (0, 200], (200, 400], (400, 600], (600, +∞) 0, 2, 7, 12
S3 (0, 500], (500, 600], (600, 900], (900, +∞) 0, 5, 8, 13
S4 (0, 150], (150, 400], (400, 1000], (1000, +∞) 0, 1, 5, 15
S5 (0, 300], (300, 600], (600, 800], (800, +∞) 0, 3, 8, 10
S6 (0, 200], (200, 500], (500, 800], (800, +∞) 0, 2, 5, 10
S7 (0, 600], (600, 600], (600, 1100], (1100, +∞) 0, 5, 10, 17

S8 (0, 250], (250, 500], (500, 800], (800, +∞) 0, 3, 5, 8
S9 (0, 200], (200, 900], (900, 1200], (1200, +∞) 0, 1, 7, 13
S10 (0, 500], (500, 800], (800, 1000], (1000, +∞) 0, 4, 7, 10
S11 (0, 300], (300, 600], (600, 900], (900, +∞) 0, 5, 10, 19
S12 (0, 300], (300, 600], (600, 1000], (1000, +∞) 0, 3, 5, 10
S13 (0, 150], (150, 750], (750, 900], (900, +∞) 0, 1, 5, 9

To solve the proposed optimization model, two metaheuristic algorithms includ-
ing the genetic algorithm (GA) and the particle swarm optimization algorithm (PSO)
were developed, and they were programmed in Matlab 2014b. For comparison purposes,
two algorithms were used to calculate three test cases. The optimization conditions of three
test cases were as follows:

Test cases 1–3: develop two product variants; d1 = 0.75, d2 = 0.25.
(1) Test case 1: u1 = 0.48, u2 = 0.52; (2) test case 2: u1 = 0.5, u2 = 0.5; (3) test case 3:

u1 = 0.52, u2 = 0.48.
In the GA, the population size was set to 1000. The crossover rate was 0.8, and the

mutation rate was 0.2. In the PSO algorithm, the inertia weight was set to 0.7. The cognition
learning coefficient c1 and the social learning coefficient c2 were 1.49. The calculation results
are shown in Figure 3. It can be observed that the GA outperformed the PSO algorithm for
the proposed model. For example, in test case 1, the optimization results obtained using
the GA were better than the optimization results obtained using the PSO in terms of profit
and GHG emissions. Thus, the GA was used for solving the proposed optimization model.
In test case 2, the weight combination of the two objective functions means that reducing
GHG emissions was as important as profit. The fitness change curve of using the GA
calculation is shown in Figure 4. The fitness value improved from generation to generation
and became steady after approximately the 13th generation. The product configuration
and order allocation of suppliers are given in Table 7.
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M1,1 S1:S3:S8 = 2:2:4
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M5,2 S3:S6:S8:S9:S11:S13 = 3:2:1:3

M6,1 S4:S8:S13 = 1:3:4

M6,2 S2:S4:S8:S13 = 2:2:4

Profit: $1,068,426; GHG emission: 236,141.36 g
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6.2. Sensitivity Analysis of GHG Emission Weight

Generally speaking, in product family design, the company not only wants to maxi-
mize profits but also wants to minimize GHG emissions. Nevertheless, the two goals are in
conflict with each other. Therefore, enterprises must assign the weight for two objective
functions. When more weight is assigned for the profit, the optimization solution can
bring higher profit, but GHG emissions may be greater. Instead, when a greater weight
is assigned to the GHG emissions, the optimization solution may lead to lesser GHG
emissions and lesser profit. The following four different cases are discussed:

Cases 1–4: develop two product variants, d1 = 0.85, d2 = 0.15.
(1) Case 1: u1 = 1, u2 = 0; (2) case 2: u1 = 0.8, u2 = 0.2; (3) case 3: u1 = 0.7, u2 = 0.3;

(4) case 4: u1 = 0.5, u2 = 0.5.
Figure 5 shows the optimal configurations of the two product variants for cases 1–4.

It can be found that product family configuration in the four different cases are different.
Except for different product configurations, the procurement plan of components in the four
different cases was also different. The optimization results in cases 1–4 are given in Figure 6.
It can be seen that there is a contradiction between GHG emissions and profit. When the
profit is close to the optimal value, the GHG emissions value reaches the maximum.
As the u2 changes from 0 to 0.5, the GHG emissions value decreases by 35%, and the profit
decreases by 18%. Through this experiment, it can be seen that it is necessary to set the
weight of GHG emissions reasonably for reducing the environmental impacts of products.
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6.3. Sensitivity Analysis of Uncertain Weight (d1, d2)

The purpose of this section is to observe the influence of uncertain weight on opti-
mization results, and two different cases are discussed:

Case 5, case 6: develop two product variants; objective weight: u1 = 0.7, u2 = 0.3.
Case 5: d1 = 0.6, d2 = 0.4;
Case 6: d1 = 0.4, d2 = 0.6;

In this research, d1 is the weight of the midpoint value (m(ET)) for the uncertain
optimization objective f 1, and d2 is the weight of the radius (w(ET)) of the uncertain op-
timization objective f 2. For comparative purposes, except for uncertain weight (d1, d2),
other optimization conditions were the same in case 5 and case 6. The optimal product
family configuration is shown in Figure 7. It can be seen that product configuration is
different. For instance, in case 5, the module instances M1,1, M5,1, and M6,1 were selected
to configure the product family, and these module instances were not chosen in case 6.
The relevant results of case 5 and case 6 are shown in Figure 8. With respect to GHG,
the GHG emissions of the product family in case 5 were greater than that in case 6.
The reason is that the weight d1 in case 5 was greater than that in case 6. In fact, the midpoint
value (m(ET)) was similar to the average value of the uncertainty optimization objective
function, and the radius value (w(ET) of the objective function was similar to the devia-
tion of the uncertainty optimization objective function. By optimizing the radius of the
objective function, the objective function’s sensitivity to uncertain factors can be reduced,
and it is to ensure the robustness of the design. Therefore, if designers pay more attention
to the robustness of the design solution, they can assign a large weight to d2. Similarly,
with respect to profit, the profit in case 5 was greater than that in case 6. This is because the
GHG emissions in case 5 were greater than those in case 6, and the two goals conflict with
each other.
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6.4. Compare Supplier Selection and Order Allocation in Product Family Design

No research has been reported in the literature dealing with the joint decision problem
of product family design and order allocation of suppliers considering profit and GHG
emissions. So it was not possible to compare our results with previous studies quantitatively.
If some conditions or assumptions are ignored or changed in the proposed model, then
this model and some previously models have the same base model. For example, if the
order allocation of suppliers and uncertain GHG emissions were not considered, then the
base of the proposed model reduces to Wang et al. [4]. If the issue of GHG emissions are
ignored, and regardless of order allocation, then the base of the proposed model reduces
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to Cao et al. [27] and Luo et al. [26]. If the single product design is considered instead of
product family design, and regardless of uncertain GHG emissions, then the proposed
model has the same base model as Kuo et al. [9].
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The purpose of this experiment was to compare the two optimization methods,
and two different cases were discussed:

Case 7, case 8: develop two product variants; objective weight: u1 = 0.7, u2 = 0.3; uncertain
weight: d1 = 0.65, d2 = 0.35;
Case 7: concurrent optimization of low-carbon product family design and supplier selection;
Case 8: concurrent optimization of low-carbon product family design and order allocation.

The supplier selection was considered in the low-carbon product family design in
case 7. In this case, regardless of the number of requirements, one module instance of one
product variant was provided by a single supplier. In other words, only one supplier needs
to be selected for each module of each product variant in the optimization process. Instead
of just choosing a supplier, the total order allocation was considered in case 8, for example,
assuming that M1,1 is selected to configure two product variants (product variant 1 and
product variant 2) in a product family. In case 7, it was possible that a supplier was selected
to provide M1,1 for configuring product variant 1, and another supplier was selected to
provide M1,1 for configuring product variant 2. Unlike case 7, the total demand of module
instance M1,1 was considered in case 8, and the total order was reasonably allocated to
multiple suppliers who can provide module instance M1,1 based on objective functions.

The optimal product family configuration and supplier selection is shown in Figure 9.
Figure 10 shows the product family configuration and the optimal order allocation schemes in
case 8. The product family configurations of case 7 and case 8 were different. The optimization
results are shown in Figure 11. In case 7, not only the profit was higher than that in case
8 but also the GHG emission was less than that in case 8. This is because the order
planning was not fully considered in case 7. If the order allocation is reasonable, more
discounts from suppliers can be enjoyed by the firm. The experimental results showed that
concurrent optimization of low-carbon product family design and order allocation could
bring the company greater profit and lower GHG emissions than just considering supplier
selection in product family design. Therefore, it is meaningful that the procurement plan
of components is taken into account simultaneously in low-carbon product family design.
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7. Conclusions

In recent years, many governments, non-profit organizations, and enterprises have
formulated relevant standards to help enterprises in promoting carbon management and
to encourage the design of low-carbon products. These standards include: ISO 14064, PAS
2050, and ISO/TS 14067. Many types of emission-regulation schemes have been suggested
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by UNCFC and the Kyoto Protocol to curb GHG emissions, such as carbon taxes and carbon
cap-and-trade policies. Under these initiatives and the mounting pressure stemming from
the implementation of the Kyoto Protocol and the Copenhagen protocol, enterprises have
to take actions to reduce GHG emissions from their products. In addition to the pressure
from government policy for environmental protection, another purpose for enterprises to
design low-carbon products is to attract more consumers due to the fact that more and
more consumers have begun to prefer low-carbon products. Low-carbon product design
has become a hot topic in both academia and industry, and a multitude of researchers have
focused on low-carbon product design.

The current research mainly focused on the low-carbon design method for a single
product. At present, to meet the various needs of customers and to keep large-scale
economic benefits, the production mode of enterprises has changed from mass production
to mass customization. As a result, the product design method has changed from single
product design to product family design. In recent years, some researchers have begun to
study low-carbon product family design. Previous studies on low-carbon product family
design have failed to consider the uncertainty of the related GHG emissions. In addition,
the procurement planning of components was not fully considered. This study proposed
a concurrence optimization model for low-carbon product family configuration and the
procurement plan of components under uncertainty. In the model, the uncertain GHG
emission data were considered as an interval number. In addition, the order allocation of
a multi-supplier was also concerned in low-carbon product family design. To effectively
solve the uncertain optimization model, the genetic algorithm was developed. A case
study was implemented to demonstrate the effectiveness of the proposed approach. Our
results provide several managerial insights: (1) companies/decision-makers can use the
proposed model to simultaneously determine the product family design, the procurement
strategy of components, and the price strategy of product variants based on the objectives
of maximizing profit and minimizing GHG emissions under uncertainty. (2) There was
a contradiction between GHG emissions and profit in low-carbon product family design
and order allocation, so the decision-makers need to set the weight of each objective
reasonably to reduce the environmental impacts of products. (3) In low-carbon product
family design, the decision-makers can reduce GHG emissions of the product family by
selecting appropriate suppliers and reasonably allocating orders, in addition to selecting
low-carbon components. (4) The concurrent optimization of low-carbon product family
design and order allocation can bring the company more profit and fewer GHG emissions
than just considering supplier selection in low-carbon product family design. Hence, it is a
great option to include the procurement plan of components in the product family design
for an optimized low-carbon design scheme.

In view of the present limitations of our model, such as deterministic market demand,
constant purchase price, and ignorance of the lead time and the supplier capacity, several
extensions of this work are possible. The model can be extended to include stochastic
market demands (see for reference Wang et al. [36]). In the model, we assumed that the
purchase price is stable. However, if the international supply chain is considered, the
purchase prices may fluctuate due to uncertain currency exchange rates (Gunay et al. [37]).
In the model, the production cost was considered as a crisp value, and it can be extended
to consider the fuzzy production cost (Kumar et al. [38]). The model can be further
extended by adding a lead time constraint and a supplier capacity constraint (Ray et al. [39];
Hu et al. [40]). The study can also be extended by considering the variant production rate
(Alkahtani et al. [41]), production quality improvement (see for reference Sarkar et al. [42]),
inventory management with backorders, and preservation technology (Mishra et al. [43];
Yadav et al. [44]).
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