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Abstract: From small toys to satellites, capacitors play a vital role as an energy storage element,
filtering or controlling other critical tasks. This research paper focuses on estimating the remaining
useful life of a nanocomposite-based fabricated capacitor using various experimental and artificial
intelligence techniques. Accelerated life testing is used to explore the sustainability and remaining
useful life of the fabricated capacitor. The acceleration factors affecting the health of capacitors
are investigated, and experiments are designed using Taguchi’s approach. The remaining useful
lifetime of the fabricated capacitor is calculated using a statistical technique, i.e., regression analysis
using Minitab 18.1 software. An expert model is designed using artificial neural networks (ANN),
which warns the user of any upcoming faults and failures. The average remaining useful life of
the fabricated capacitor, using accelerated life testing, regression, and artificial neural network, is
reported as 13,724.3 h, 14,515.9 h, and 14,247.1 h, respectively. A comparison analysis is conducted,
and performance metrics are analyzed to opt for the most efficient technique for the prediction of the
remaining useful life of the fabricated capacitor, which confirms 93.83% accuracy using the statistical
method and 95.82% accuracy using artificial neural networks. The root mean square error (RMSE) of
regression and artificial neural networks is found to be 0.102 and 0.167, respectively, which validates
the consistency of the reliability methods.

Keywords: artificial intelligence techniques; accelerated life testing; artificial neural network;
regression analysis; remaining useful life; sustainability; Taguchi’s approach

1. Introduction

Energy is the most concerning topic for the world now because the world is developing
at a very fast rate. In countries such as China, India, Russia, Indonesia, and Brazil, the rate
of industrialization is increasing at a very fast rate, and these countries are consuming lots
of conventional energy sources, which is causing problems such as global warming. In the
era of integration, thousands of electronic components are installed on smaller devices. Due
to the stressed environment, sometimes, the component and devices experience sudden
failure. The reliable method of device or component prognosis and diagnosis will diminish
the unnecessary maintenance charges and replacement cost [1]. Further, the failure of a
single component can destroy the whole device [2]. As the problem of electronic waste
is enhancing at an accelerating rate, using remaining useful life prediction, the e-waste
problem can be minimized due to the remaining useful life emphasis on the reuse potential
of the component. The user can reuse the component, rather than throwing it away as waste,
if its remaining useful life can be estimated [3]. Customer satisfaction is closely associated
with component reliability [4]. Moreover, if the product fails during the warranty period,
the unnecessary replacement cost and dubious market reputation of the manufacturer
are setbacks for the vendor or consumer. The untimely failure of a component or device

Sustainability 2021, 13, 10736. https://doi.org/10.3390/su131910736 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-0847-4780
https://orcid.org/0000-0003-2653-3780
https://doi.org/10.3390/su131910736
https://doi.org/10.3390/su131910736
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su131910736
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su131910736?type=check_update&version=1


Sustainability 2021, 13, 10736 2 of 16

can diminish the reputation of the seller, and the replacement or repair cost during the
warranty period burdens the manufacturer [2].

Nanomaterial also shows a very high aspect ratio, which enables the fabrication of
devices in a very compact size; they also show very high porosity due to the fact that they
can store more and more charges [5]. A capacitor is an example of a passive electronic
component and stores energy in the form of an electrostatic field. It consists of two
conducting plates, which are separated by a dielectric. Nanocomposite-based capacitors
are easy to fabricate and show an effective charging–discharging pattern. The synthesis and
characterization techniques such as Scanning Electron Microscope (SEM), Transmission
Electron Microscopy (TEM), Ultra-Violet microscopy, etc., confirm the capacitive behavior
of the component. Reliability is the major constraint for successful operation when the
fabricated capacitor is used in equipment in a real-time environment [6]. Thus, this research
article focuses on the remaining useful lifetime estimation of a fabricated capacitor using
various tools and techniques. Various empirical, experimental, or software-based reliability
assessment techniques are available for failure analysis. Intelligent techniques using
artificial intelligence or deep learning assist the user in assessing its health condition, and
necessary preventive actions can be taken [7].

This research paper is divided into three major sections. In the first section, the
synthesis and characterization of the fabricated capacitor are discussed, along with its
charging and discharging capacity. The second section of the paper discusses the remaining
useful life prediction of a fabricated capacitor using accelerated life testing and statistical
and intelligent techniques. The design of experiments (DOE) is designed and conducted
using Taguchi’s approach. The statistical analysis and intelligent prediction of remaining
useful life using artificial neural networks are explained. The last section is reserved for
the performance matrices, accuracy analysis, and experimental technique validation of the
fabricated capacitor.

2. Fabrication of the Capacitor

Nanomaterial Zinc-oxide, which has a 3.3 eV bandgap, can help to store charges due
to its high band gap nature. Zinc-oxide, which is chemically represented as ZnO, is a
semiconductor material, but this can be used to accumulate charges. If ZnO is mixed
with aqueous NaCl in a 1:1 concentration, then the dielectric constant can be enhanced
further [8]. Here, dielectric material shows a very high capacitance value, because when
we apply an electric field, the NaCl undergoes ionization due to the fact that Na+ migrates
to the positive terminal and Cl− migrates to the negative terminal. The nanoparticles of
ZnO were prepared by the sol-gel method [9] (Figure 1a), using Zinc Nitrate (Zn(NO3)2)
as a precursor solution, Sodium Hydroxide (NaOH) as a reducing agent, and thiogylcerol
(C3H8O2S) as a capping agent. An Eppendorf was used, in which NaCl (0.3 g) and then
1 mL of distilled water were added. Then, the solution was stirred, and ZnO (0.1 g) was
added. A gel forms, and in the gel form, NaCl was an insulating compound. ZnO and
distilled water were in a ratio of 1:1. The concentration of NaCl was varied in order to
study the highest capacitance value of the fabricated capacitor, i.e., 0.1 g, 0.2 g, 0.3 g, 0.4 g,
and 0.5 g, but the capacitance value for the ZnO mixed aq. NaCl water with NaCl 30% by
weight showed the highest mean NaCl (0.3 g) in 1 mL distilled water, and 0.1 g ZnO was
the highest. After that, the gel was coated on the 12 mm diameter copper (Cu) plates. The
thickness was 1 mm, and another Cu plate was placed on it with some mechanical force to
distribute the gel between the plates equally and smoothly. Since ZnO has a band gap of
3.3 eV and has high porosity, it stored these charges. Hence, NaCl behaving as an insulator
in gel form caused an increase in the positivity of ZnO [10]. Moreover, at 0.8 V, the water
also broke down into ions, as more charges were available to store.
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The nanocomposite-based fabricated capacitor is shown in Figure 1b. The capacitance
of the fabricated capacitor was confirmed using circuit and Arduino interfacing, which
showed 143.9 microfarad capacitance, and a charging–discharging pattern was recorded.
Various characterization techniques, such as scanning electron microscope SEM (Figure 1c),
transmission electron microscopy (TEM) (Figure 1d), and optical microscopy of a composite
gel (Figure 1e), confirm its capacitive behavior.

The various characterization results prove its capacitive functionality. This fabricated
capacitor is cost-effective and environmentally friendly. Before releasing it to the actual
market, it is necessary to evaluate its performance and reliability. Thus, various types
of reliability analysis methods were used to find the remaining useful lifetime, with an
extreme level of input parameters. The results were statistically verified and intelligently
modeled, which assists users in performing desired operations successfully.

3. Remaining Useful Life Prediction of the Fabricated Capacitor

The lifetime prediction of the fabricated capacitor is the critical parameter for its
reliable and successful operation [11]. Due to electrical parameters and environmental
condition variations, the faults and failures may disturb the component as well as the
whole system [12]. The sudden failure of the component not only degrades the overall
performance of the equipment but also deteriorates the market reputation of the compo-
nent manufacturer [13,14]. The design flow of the remaining useful life prediction of the
fabricated capacitor is as per Figure 2, starting from the selection of capacitors to exploring
the remaining useful lifetime of capacitors using various experimental, statistical, and
intelligent prediction techniques.

A hundred samples of fabricated capacitors were selected in equal proportion of NaCl
and ZnO. The critical parameters were explored, those which influence the condition of
capacitors under various electrical and environmental conditions. Figure 3 shows various
influential parameters for the health prognostics and condition monitoring of fabricated
capacitors. The five parameters are taken as acceleration factors, which play a vital role
in health prognostics, i.e., temperature, voltage, current, humidity, and vibration [11].
The design of experiments (DOE) was prepared using Taguchi’s approach. Minitab 18.0
software is used for designing the L16 matrix of the orthogonal array [15]. The five
parameters were assigned four levels. The process parameters are depicted in Table 1. The
level of input parameters was divided into four sub-levels, starting from low to extreme.
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Table 1. Process parameters and levels.

Parameters Units Notation
Level

Low (1) Medium (2) High (3) Extreme (4)

Temperature ◦C t 75 85 95 105
Voltage V v 4.2 4.8 5.4 6.0
Current Ma i 24 26 28 30

Humidity Rh r 77 80 83 86
Vibration Hz vb 23 26 29 32
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After deciding the process parameters and levels, an orthogonal array was prepared
using Taguchi’s approach, which is the L16 matrix. The values of process parameters
have been assigned to the respective column of Taguchi’s approach [16]. After assigning
the values to the L16 matrix, the experiment was conducted in a controlled manner. The
experimental technique for the reliability estimation of the fabricated capacitor is discussed
in the following section. For designing experiments (DOE), Taguchi’s approach was
used [17].

The various factors affecting the health of fabricated capacitors are explored and
shown in Figure 3.

The process parameters and level of optimization are discussed in Table 1, which
range from low to extreme.

3.1. Remaining Useful Life Estimation Using Accelerated Life Testing (ALT)

To identify the potential failures or its withstanding capability, the product or compo-
nent is tested in extreme conditions, a process which is known as accelerated life testing
(ALT). Accelerated life testing represents a technique for exploring product reliability in a
short span of time as compared to standard life testing. The selection of stresses, acceler-
ation factors, and Design of Experiments (DOE) should be performed with utmost care.
The characteristics of the product under test will be the basis for the actual acceleration
factors. Due to increased stress levels, the duration of accelerated life testing is reduced,
which is one of the prominent benefits. As the testing duration is decreased, more tests are
initiated, which run for a specific duration of time. In such a way, accelerated life testing is
a fast way to bring a product to market and cost-effective, which evolved it as one of the
extensive methods available for reliability testing.

The fabricated capacitor lifetime was assessed using accelerated life testing [18]. Stress
parameters were explored for the health prognostics and condition monitoring of the
component. The process for conducting the experimental technique, i.e., accelerated life
testing, has the following steps, as shown in Figure 4.

In Table 2, the L16 orthogonal array design is shown, in which the values of various
levels were inserted by considering Table 1. The trials were framed for conducting the
experiments for estimating the remaining useful life of the fabricated capacitor. The five
acceleration factors were identified, which were further bifurcated in four stress levels. The
100 samples of fabricated capacitors were taken and put on the digital hot plate, where the
temperature was a controlled parameter [19]. The capacitors were further covered with
sand so that uniform heating could be given to all the capacitors [5,20,21]. Similarly, the
acceleration parameters were monitored at various levels, as shown in Figure 4.

Initially, the capacitance of the capacitors was measured through an LCR meter, and
then the experiment was started [22]. The literature suggests that the capacitor is considered
to be faulty or fail if the capacitance decreases by 20% and its weight is reduced by 50% [19].
The acceleration factors were gradually increased from the range of low to extreme, as per
trials framed in Table 2. When the conditions of reduced capacitance and weight were
fulfilled, the capacitor was found to be failed or faulty [23]. From Table 1, the values of
levels are mapped to Table 2, and the experiment was initiated. The number of failed
capacitors is noted along with the time taken. Using the Arrhenius equation (Equation (1)),
the remaining useful lifetime of fabricated capacitors is calculated.

FIT(λ) =
Number o f f ail/ f aulty components

Total Number o f components × Testing hours × Acceleration f actors
(1)

where the acceleration factor (Af ) is calculated as:

Acceleration f actor (A f ) = e
Ea
K ( 1

Ambient temp.−
1

Test temp. ) (2)

where Ea is activation energy = 0.7 eV and K = Boltzmann’s constant.
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Table 2. Taguchi’s L16 matrix.

Trials

Process Parameters (Factors)

Temperature
(◦C)

Voltage
(V)

Current
(mA)

Humidity
(Rh)

Vibration
(Hz)

1 1 1 1 1 1
2 1 2 2 2 2
3 1 3 3 3 3
4 1 4 4 4 4
5 2 1 2 3 4
6 2 2 1 4 3
7 2 3 4 1 2
8 2 4 3 2 1
9 3 1 3 4 2

10 3 2 4 3 1
11 3 3 1 2 4
12 3 4 2 1 3
13 4 1 4 2 3
14 4 2 3 1 4
15 4 3 2 4 1
16 4 4 1 3 2

Using the accelerated life testing criterion, the failed/faulty components were ex-
plored, and failure in time (FIT) was calculated. The number of failed or faulty components
further depicts the remaining useful life [24]. The early prediction of remaining useful life
guides the user to replace the failure/faulty component.

3.2. Remaining Useful Life Estimation Using Statistical Analysis

The remaining useful life of the fabricated capacitor was also estimated using sta-
tistical techniques. Non-linear regression was used to explore the relationship between
process parameters and response, i.e., the lifetime of the capacitor. Minitab 18.1 software
was used for regression analysis [25]. The following mathematical model establishes a
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relation between predictors and response variables, i.e., lifetime and input factors such as
temperature, voltage, current, humidity, and vibration.

FC(Li f etime) = K(Ta × Vb × Ic × Hd × Vbe (3)

where K is the regression constant and T, V, I, H, Vb are the process parameters, and
FC(li f etime) is the remaining useful lifetime of the fabricated capacitor. a, b, c, d, e are the
model parameters. The values of these model parameters were calculated using Minitab
18.1 software. Equation (3) can be represented in linear form as:

ln FC = a lnT + b ln V + c ln I + d ln H + e ln Vb (4)

Equation (4) can be further modified as:

FC = α0 + µ1A1 + µ2A2 + µ3A3 + µ4A4 + µ5A5 (5)

Equation (5) shows capacitor lifetime FC in logarithmic scale; A1, A2, A3, A4, A5 are
logarithmic process parameters, and µ1, µ2, µ3, µ4, µ5 are logarithmic regression coeffi-
cients. The Minitab 18.1 software was used to develop regression equations as well as
estimate the regression coefficients.

3.3. Remaining Useful Life Estimation Using Artificial Neural Networks

The application of ANNs has extensively grown in popularity since the last decade
because novel and optimized approaches could be represented using neural networks
rather than conventional mathematical models and algorithms [26]. Inspired by the human
brain’s functionality, ANNs have various interconnected elements, such as neurons, that
can be utilized for prediction and problem-solving in a similar manner as the human brain.
ANNs have refined characteristics of learning adaption, robustness, massive parallelism,
spatial-temporal information, etc., which prepare ANNs as one of the finest components of
knowledge engineering [27,28].

Figure 5 shows the ANN operational structure, wherein one of more neurons are
activated upon applying inputs [11,29]. Implicit knowledge can be built by training
supervised or unsupervised neural networks using a back propagation algorithm. Further,
the weights are modified to improve the accuracy of the solution. Artificial neural networks
have a variety of industrial applications; a few are enlisted in Table 3.
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Table 3. ANN industrial applications.

Application Industry References Area of Application

Composite science [30,31] Selection of suitable composite as per
application.

Coal industry [32,33] Relate ultimate and proximate analysis data.
Problem-solving in industrial

applications [34–36] Solve complex and time-consuming
problems.

Medical field [37–40] Diagnostic tool for tuberculosis, tumors,
diabetes, etc.

Mechanical [41,42] Leak diagnosis in pipes, recognition of
medical tools, etc.

In this research article, ANN-based remaining useful life prediction of a fabricated
capacitor was performed before its release to market. Due to various acceleration factors,
the mathematical model uses a great number of assumptions, which further decreases the
accuracy of the prediction model.

After analyzing the remaining useful lifetime of a fabricated capacitor using the
experimental technique, i.e., accelerated life testing and statistical approach (i.e., regression
analysis), intelligent prediction models were explored to estimate the remaining useful
life [42–44]. An artificial neural network (ANN) was used for developing an expert model
for the users. The ANN is a similar system to the human brain. Using training and
testing processes, the accuracy of the expert system can be estimated [45]. The activation
parameters are used to initialize the process; afterward, the system trains itself, and chances
of error are reduced [46].

The number of neurons in the input layer is five, i.e., temperature, voltage, current,
humidity, and vibration. A total of 70% of data was used for training purposes, and 30%
of data was used for testing purposes [47,48]. As shown in Figure 6, the ANN model is a
5–10–1 model, which shows it has 5 input layers, 10 hidden layers, and 1 output layer. The
MATLAB R2017b tool was used for analyzing the output of the ANN (Artificial Neural
Network) [49]. After training and testing, the predicted response was analyzed, and a
comparison was performed with the response (lifetime) obtained through accelerated life
testing [50].
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4. Result and Discussion

The remaining useful lifetime of the fabricated capacitor was analyzed by the experi-
mental method (i.e., accelerated life testing (ALT)) and statistical method (i.e., regression
analysis), and an expert model was created using an artificial intelligence technique (i.e.,
Artificial Neural Networks (ANNs)). For the Design of Experiments (DOE), Taguchi’s L16
orthogonal array was designed, and trials were formulated [51]. The experiments were
conducted as per this set of trials, and faulty/fail components were detected using an LCR
meter, which further helps to assess the remaining useful lifetime using the Arrhenius
equation [52].
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4.1. Remaining Useful Life Assessment Using the Experimental Technique

The 16 various trials were formulated for the five process parameters with four levels,
as shown in Table 2. The values and levels of process parameters were assigned to Taguchi’s
L16 orthogonal array matrix [53]. The experiments were conducted for all 16 trials, and
the remaining useful life was calculated using Equations (1) and (2). Table 4 shows the
remaining useful lifetime of fabricated capacitors, as per accelerated life testing (ALT) and
Arrhenius’ law.

Table 4. Remaining useful life estimation using experimental method.

Trials

Process Parameters (Factors) Output

Temperature
(◦C) Voltage (V) Current (mA) Humidity (Rh) Vibration (Hz) ALT Remaining Useful

Life (Hours)

1 75 4.2 24 77 23 9875.4
2 75 4.8 26 80 26 13,012.4
3 75 5.4 28 83 29 17,811.8
4 75 6 30 86 32 21,887.6
5 85 4.2 26 83 32 14,818.1
6 85 4.8 24 86 29 15,161.5
7 85 5.4 30 77 26 13,714.5
8 85 6 28 80 23 14,317.9
9 95 4.2 28 86 26 14,513.2
10 95 4.8 30 83 23 13,887.3
11 95 5.4 24 80 32 13,450.5
12 95 6 26 77 29 11,966.3
13 105 4.2 30 80 29 11,600.4
14 105 4.8 28 77 32 10,190.3
15 105 5.4 26 86 23 12,047.9
16 105 6 24 83 26 11,335.2

4.2. Remaining Useful Life Assessment Using the Statistical Technique

Using Minitab 18.1 software, the statistical analysis of the remaining useful lifetime of
fabricated capacitors was performed [54]. The regression equation was formulated, and as
per this equation, the lifetime was estimated for all 16 trials. Conclusively, R-squared and
other regression parameters validate its statistical analysis well [55].

FC(Li f etime) = −41276 − 141.1(temperature) + 1286(voltage)
+484.9(current) + 492.2(humidity) + 288.5(vibration)

(6)

In regression analysis, R-squared is a measure that tells us what proportion of the
total variability is explained by the model. In analyzing the remaining useful lifetime data
using Minitab 18.0, 98.10% and 97.16% R-sq value and R-sq (adj) values were achieved. The
regression model parameters prove that the experimental model is statistically validated.

Table 5 summarizes the performance parameters of the reliability analysis methods,
which govern the accuracy of all the reliability models. The root mean squared error of
the regression and artificial neural networks is 0.102 and 0.167, respectively, whereas the
mean absolute error is 0.092 and 0.13, respectively, and correlation coefficients are 0.989
and 0.898 for regression and ANN, respectively.

Figure 7 presents the various residual plots for the lifetime of the fabricated capacitors,
such as the normal probability plot, fits curve, histogram, etc. Table 6 shows the remaining
useful lifetime values of fabricated capacitors using a statistical method, i.e., regression
analysis.
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Table 5. Performance metrics of reliability methods.

Methods
Performance Parameters

Root Mean Square Error
(RMSE)

Mean Absolute Error
(MAE)

Correlation
Coefficient (CC)

Regression Remaining Useful Life (Years) 0.102 0.092 0.989
ANN Remaining Useful Life (Years) 0.167 0.13 0.898
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Equation (6) is used to estimate the remaining useful lifetime of fabricated capacitors
using a statistical method, i.e., regression analysis.
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Table 6. Remaining useful life estimation using statistical method.

Trials

Process Parameters (Factors) Output

Temperature (◦C) Voltage (V) Current (mA) Humidity (Rh) Vibration (Hz)
Regression

Remaining Useful Life
(Hours)

1 75 4.2 24 77 23 10,375.2
2 75 4.8 26 80 26 14,458.7
3 75 5.4 28 83 29 18,542.2
4 75 6 30 86 32 22,625.7
5 85 4.2 26 83 32 15,571.7
6 85 4.8 24 86 29 15,984.6
7 85 5.4 30 77 26 14,370.3
8 85 6 28 80 23 14,783.2
9 95 4.2 28 86 26 14,964.1
10 95 4.8 30 83 23 14,363.4
11 95 5.4 24 80 32 13,345.5
12 95 6 26 77 29 12,744.8
13 105 4.2 30 80 29 12,523.2
14 105 4.8 28 77 32 11,713.9
15 105 5.4 26 86 23 13,349
16 105 6 24 83 26 125,39.7

4.3. Remaining Useful Life Prediction Using an Intelligent Technique

The remaining useful lifetime of fabricated capacitors was estimated using accelerated
life testing and analyzed using regression analysis. An intelligent expert model was
designed using artificial neural networks, which warn the user about the failure well before
it actually occurs. The MATLAB R2017b (Santa Clara, CA, USA) ool was used for this
purpose [2,56]. The ANN 5–10–1 model was used, with five input layers, 10 hidden layers,
and 1 output layer. This expert model was trained and tested for the 16 sets of trials, and
lifetime was estimated, as shown in Table 7. A total of 70% of data was used for training
and 30% was used for testing purposes. The comparative analysis of all the techniques is
discussed in the following section.

Table 7. Remaining useful life estimation using ANN.

Trials
Process Parameters (Factors) Output

Temperature
(◦C) Voltage (V) Current (mA) Humidity (Rh) Vibration (Hz) ANN Remaining

Useful Life (Hours)

1 75 4.2 24 77 23 11,188.1
2 75 4.8 26 80 26 14,799.1
3 75 5.4 28 83 29 21,150.2
4 75 6 30 86 32 22,181.1
5 85 4.2 26 83 32 13,454.5
6 85 4.8 24 86 29 14,130.7
7 85 5.4 30 77 26 12,557.8
8 85 6 28 80 23 13,932.8
9 95 4.2 28 86 26 14,007.6

10 95 4.8 30 83 23 13,919.9
11 95 5.4 24 80 32 16,121.8
12 95 6 26 77 29 11,507.9
13 105 4.2 30 80 29 13,787.5
14 105 4.8 28 77 32 11,216.7
15 105 5.4 26 86 23 12,432.9
16 105 6 24 83 26 11,565.2
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5. Comparative Analysis of Lifetime Calculated by Experimental, Statistical, and
Intelligent Techniques

The remaining useful lifetime of fabricated capacitors was calculated using three
techniques, i.e., experimental (accelerated life testing), statistical (regression analysis), and
intelligent (Artificial Neural Networks). A comparative analysis was carried out to estimate
the accuracy of all the techniques.

Error(%) =
(Experimental − Statistical)

Experimental
× 100 (7)

Error(%) =
(Experimental − Intelligent)

Experimental
× 100 (8)

Using Equations (7) and (8), the error analysis of all the techniques was processed
and accuracy was estimated, as shown in Table 8. The graphical analysis of the remaining
useful lifetime calculated using ALT, regression, and ANNs is shown in Figure 8. The
remaining useful lifetime estimated using ALT was validated, and the statistical technique
has an average of 6.17% error, whereas the ANN has a 4.18% average error.

Table 8. Error analysis of ALT, statistical, and ANN techniques.

Trials

Output Error Analysis

ALT
Remaining
Useful Life

(Hours)

Regression
Remaining
Useful Life

(Hours)

ANN
Remaining
Useful Life

(Hours)

Error
between
ALT and

Statistical

Error
between
ALT and

ANN

1 9875.4 10,375.2 11,188.1 −5.06106 −13.293
2 13,012.4 14,458.7 14,799.1 −11.1148 −13.731
3 17,811.8 18,542.2 21,150.2 −4.10065 −18.743
4 21,887.6 22,625.7 22,181.1 −3.37223 −1.3409
5 14,818.1 15,571.7 13,454.5 −5.08567 9.20226
6 15,161.5 15,984.6 14,130.7 −5.42888 6.7988
7 13,714.5 14,370.3 12,557.8 −4.7818 8.43414
8 14,317.9 14,783.2 13,932.8 −3.24978 2.68964
9 14,513.2 14,964.1 14,007.6 −3.10683 3.48373

10 13,887.3 14,363.4 13,919.9 −3.42831 −0.2347
11 13,450.5 13,345.5 16,121.8 0.78064 −19.86
12 11,966.3 12,744.8 11,507.9 −6.50577 3.83076
13 11,600.4 12,523.2 13,787.5 −7.9549 −18.854
14 10,190.3 11,713.9 11,216.7 −14.9515 −10.072
15 12,047.9 13,349 12,432.9 −10.7994 −3.1956
16 11,335.2 12,539.7 11,565.2 −10.6262 −2.0291

Average Error (%) 6.17 4.18

Average Accuracy (%) 93.83 95.82
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6. Results, Conclusions, and Scope of Further Research

A nanocomposite-based fabricated capacitor was explored to discover its remaining
useful lifetime in successful operation as well as its reusability potential. The timely
prediction of faulty and failed components can save the entire device as well as minimize
the problem of e-waste.

An experimental method, i.e., accelerated life testing, was conducted for five process
parameters at four different levels. The remaining useful lifetime was further analyzed
using the regression technique. An intelligent model was framed using artificial neural
networks for health prognostics and condition monitoring of the fabricated capacitor. The
error analysis confirms that the regression technique has a 6.17% average error, whereas the
intelligent technique, i.e., artificial neural network, has a 4.18% error. The RMSE, MAE, and
CC values of the regression model and ANN model are extracted as 0.102, 0.167; 0.092, 0.13;
0.989, 0.898, respectively. The average lifetimes of the fabricated capacitor as calculated by
experimental, statistical, and intelligent techniques are 13,724.3 h, 14,515.9 h, and 14,247.1 h
according to various sets of electrical parameters and environmental conditions. In the
future, artificial intelligence can be incorporated during the fabrication and development
phases of nanocomposite-based components so that optimized material can be chosen for
long-life performance. Convolutional Neural Networks (CNNs) can also be employed as
an enhanced intelligent diagnosis technique, and an inspection schedule can be planned. A
graphical user interface can also be incorporated using fuzzy logic to track the real-time
health status of the capacitor or another component.
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