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Abstract: The water level in a river defines the nature of flow and is fundamental to flood analysis.
Extreme fluctuation in water levels in rivers, such as floods and droughts, are catastrophic in every
manner; therefore, forecasting at an early stage would prevent possible disasters and relief efforts
could be set up on time. This study aims to digitally model the water level in the Kabul River to
prevent and alleviate the effects of any change in water level in this river downstream. This study
used a machine learning tool known as the automatic autoregressive integrated moving average
for statistical methodological analysis for forecasting the river flow. Based on the hydrological
data collected from the water level of Kabul River in Swat, the water levels from 2011–2030 were
forecasted, which were based on the lowest value of Akaike Information Criterion as 9.216. It was
concluded that the water flow started to increase from the year 2011 till it reached its peak value
in the year 2019–2020, and then the water level will maintain its maximum level to 250 cumecs
and minimum level to 10 cumecs till 2030. The need for this research is justified as it could prove
helpful in establishing guidelines for hydrological designers, the planning and management of water,
hydropower engineering projects, as an indicator for weather prediction, and for the people who are
greatly dependent on the Kabul River for their survival.

Keywords: ARIMA; Kabul River; machine learning; floods; droughts; forecasting

1. Introduction

In ancient times, cities were established on the banks of rivers so that their inhabitants
could take advantage of the opportunities offered by the river in terms of food, trade,
and defence, and the same is applicable in this era of advancement as well [1,2]. Water is
necessary for human existence. River water is a source of life for the domestic, industrial,
irrigational, and energy sectors [3]. River basin management is a scientific and technical
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area of study and involves several intricacies because of the various features of particular
rivers and their offshoot branches, and land drained by the application of this study [4].
Therefore, it becomes fundamental for engineers to understand the likely behavior of rivers.

The behavior of river water is often unexplainable and unexpected. However, water
behavior can be studied and controlled by structural (dams, reservoirs, and barrages) and
non-structural (disaster prevention, response mechanisms, and floodproofing) measures.
Based on past values, hidden information like the flow of water at a specific time can be
revealed using forecasting techniques, which can help early response actions and prevent
disasters [5]. Water level and runoff forecasting is a measure of the non-structural type
that is essential for modelling natural hazards [6]. Forecasting the water flow of a river
is directly related to the developmental activities in nearby regions of the country as it is
used in the planning of the cities, the management of river basins, the making of dams, the
calculating and controlling of risks related to floods and droughts, and for supplying water
for household usage and generating power [7].

The Kabul River originates from the mountains of Hindu Kush and covers about
700km distance before joining the Pakistan water system [8]. The catchment area of the
Kabul River in Pakistan is 14,000 km2, while 62,908 km2 lies in Afghanistan, which makes
the overall catchment area 76,908 km2 [9]. The Kabul River has an overall basin area of
87,499 km2 [10]. Although the Kabul River originates from Afghanistan, yet it faces water
shortage due to the lack of adequate infrastructure of water storage due to the perpetual
war [11].

Apart from the Kabul River, other major rivers of Pakistan enter the country from
India. As the upper riparian discharge comes under the jurisdiction of India, Pakistan
cannot control the water level to fulfill its water requirement [12,13]. This scenario makes
it even more important for an agricultural country like Pakistan to plan for increasing
its efficiency in the present and future water flow. If Pakistan fails to acknowledge the
behavior and importance of the Kabul River, it will face a similar situation of water scarcity
like Afghanistan. Hence, both countries (Pakistan and Afghanistan) are largely dependent
on agriculture using the Kabul River water. Figure 1 illustrates the river’s origin and its
basin location. It is clear that the river originates in Kabul and extends into Pakistan.
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The existential threat to the Kabul River is the change imposed by climatic conditions,
which have also made the forecasting of river water flow essential because disturbed
rainfall patterns have already started to seriously affect the availability of water [14].
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Climatic conditions are getting worse day by day, and weather anomalies have direct
effects on rivers like the Kabul River. It is estimated that precipitation will decrease by
50% in the Kabul River basin towards the end of this century, which will produce floods
of unforeseeable flow and will negatively impact streamflow dynamics [15]. It is also
expected that the Khyber Pakhtunkhwa province of Pakistan will be severely affected in
terms of the economy and water crisis by 2080 and that the water crisis will result in a
considerable decrease in wheat and maize production due to climate change [16]. The
people dependent on the Kabul River Basin have been greatly affected by the temperature
rise and the shifting of precipitation patterns; moreover, the melting of a glacier in the
Hindu-Kush region created havoc in the 2010 floods, which caused considerable damage to
the Pakistan economy (855 billion Rupees) and dispersed 20 million people residing near
the banks of the river [17,18]. It is estimated that 20% of the precipitation will decrease due
to the shift in monsoon season, which, combined with the effect of melting glaciers, will
affect millions of people’s existence, as has already been seen in the 2010 floods, in which a
significant fertile area was lost due [19].

As the operation of dams is based on the river flow, the Warsak Dam is one of the most
important dams of Pakistan in terms of irrigation and energy generation; it is necessary to
study the past inflow and outflow to enable forecast the future values, which could help in
meeting the water demands of the country [20,21]. Concerning Pakistan, the Kabul River
serves as a lifeline for providing safe and drinkable water for 2 million people of Peshawar
city and its subregions. Pakistan built the Warsak dam in 1960 on the Kabul River, which
generates 243 MW hydropower [22]. Any increase or decrease in the water level of the
Kabul River will threaten the balance of life in Pakistan and will result in catastrophic
consequences. For example, the floods in the Kabul River happen two times a year, once
due to the snowmelt from April to September and secondly as a result of monsoon torrential
rainfall in August [23]. With the increase in global warming, the snow melts quicker, and
the discharge in the river results in floods. It is estimated that every 1.5 ◦C or 2 ◦C rise in
temperature results in a 34% or 43% increase, respectively, in runoff from the upstream
Indus basin [24]. In the 2010 floods in the Indus river basin, 5.4-million-acre land was lost,
2200 people lost their lives, and 14 million people were left homeless, which resulted in
the loss of 43 billion USD [25]. Similarly, any decrease in the water level of the river can
adversely affect the system of the agricultural activities in Pakistan as the agriculture sector
was the fifth-highest contributor to Pakistan’s overall Gross Domestic Product (GDP) in
2020, and 35.89% of its people are employed in this sector [26].

Human activities like hydropower structures, an explosion in population, a heavy
amount of silt, inadequate rainfall annually, unregulated urbanization, illegal settlements,
and unapproved water channels from this river have caused a reduction in its water level.
Therefore, in terms of its importance for human existence and increased water demand, it
is necessary for Pakistan to limit its future water demand and flow [27,28].

Keeping in mind the importance of the above discussion, this study aims to forecast
the flow of the Kabul River till the year 2030. To better prepare for recurring natural flood
vulnerabilities and avert monetary losses and casualties, possible future changes in flow
rate intensity in the Kabul River basin should be analyzed. The objective of this study is to
use an effective learning algorithm that could accurately predict and evaluate the different
patterns of water levels based on various periods. Another objective of this analysis is to
help the upstream technicians of the reservoir by providing a better forecasting tool for the
prediction of the expected water levels using the Automatic ARIMA model. The achieved
objective will be significant to the relevant authorities because it will help them to plan
socio-economic developmental activities efficiently to enable them to cater for future needs,
provide water-restraining structures in case of floods, and prepare strategies for water
disasters, and it will help relief workers to reduce irreversible human and economic losses.
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2. Literature Review

Numerous studies have been conducted to forecast river flow around the globe.
Previously, hydrological events were forecasted using conventional methods to predict
runoff discharge, capacity, and streamflow of water-level; however, machine learning
(ML) is now increasingly being used in hydrological forecasting [29,30]. The term ML
implies that machines analyze, cluster, extract complex linkages, and make decisions
without programming [31]. The added advantage of using ML is its ability to determine the
patterns of the input data and produce output results by analysing the complex structures
hidden in the data [32]. The data-driven forecasting models as used in this study are based
on the historical data of the water levels, including runoff volumes, storage capacity, and
river discharge. This approach includes the use of statistical data as input variables to
measure the extent of water flow using output variables [33]. Various algorithms like
artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) were
used to forecast the water level using hydrological variables like temperature, wind, and
evaporation. The water level data from 2007 to 2011 of Chahnimeh Reservoirs in Zabol,
Iran was used for analysis. It was found that the ANFIS model was better at predicting the
future values of water levels compared to ANN due to it more closely fitting the original
values [34].

Various ML models like support vector machine (SVM) ANN, ANFIS, and generalized
regression neural networks (GRNN) were used for estimation of the water reservoir level
in Millers Ferry Dam on the Alabama River in the USA. When the results were compared
to moving average (MA) and autoregressive moving average (ARMA), it was found that
ANFIS model 5 output results were more promising due to the lowest value of mean
absolute error (MAE), R2, and mean squared error (MSE) [35]. Some researchers used
semi-hybrid models like Wavelet-based Artificial Neural Network (WANN) and Wavelet-
based Adaptive Neuro-Fuzzy Inference System (WANFIS). The daily water level of the
Andong dam in South Korea was forecasted using these two semi-hybrid techniques. The
results were expressed as the comparison of the accuracy of these two methods. It was
concluded that both methods tend to accurately forecast the conventional models and can
yield better efficiency results in the daily water level analysis [36,37]. A least-squares SVM
(LSSVM) is another type of intelligent algorithm that was used for the prediction of daily
water level Yangtze River in China based on the water level of data from 2010–2016. Based
on the lowest value of root mean squared error (RMSE), index of agreement, and mean
absolute percent error (MAPE), the improved LSSVM method tends to provide useful
figures for hydrological levels [38]. As Pakistan has constructed the Warsak dam over the
Kabul River, electricity generation greatly depends on the water level in this river. Hence,
hydroelectric consumption was forecasted based on 53-years-worth of data in Pakistan.
Methodologically, the autoregressive integrated moving average (ARIMA) model with
(p,d,q) values of (9,1,7) was selected for forecasting. The results revealed that hydroelectric
consumption will increase 1.65% annually, with a cumulative increase of 23.4% till 2030 all
over Pakistan [39].

3. Methods

This study used an ML approach to perform the forecasting. In this study, the method-
ology was followed by the collection of the hydrological data from 1961–2005. For this
purpose, the time series was checked for stationarity using Augmented Dickey Fuller
(ADF) test. The ADF test was first invented by David Dickey and Wayne Fuller in 1979
and tests the time series for the null hypothesis of the presence of unit root test [40]. The
mathematical expression for ADF is given by:

∆y= α + βt + γyt−1 + δ1∆yt−1 + . . . + δp−1∆yt−p+1 + εt (1)

where α is constant, β is coefficient of time trend, p is the lag order, and εt is the error term.
After selecting the appropriate lags of order p, the test is executed for the null hypothesis
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γ = 0 [41]. If the time series has non-stationarity, then the stationarity can be achieved
using regression or differencing until the time series become stationary.

The concept of ARIMA was first developed by an electrical engineer named Norbert
Wiener et al. in 1930–1940. It consists of three parts called autoregressive (AR), integrated
(I), and moving average (MA) [42], whereas ARIMA was first put into use in time series
for modelling forecasts by Box Jenkins in 1970 [43]. Since then, the use of ARIMA has
found wider application in the fields of engineering, economics, hydrology, and social
analysis [44]. The first general form of ARMA was given by Peter Whittle in 1951 [45],
which can be shown as:

Xt= c + εt+
p

∑
i=1

ϕtXt−1 +
q

∑
i=1

θiεt−i (2)

where εt is regarded as a white noise term and φ and θ are regarded as the coefficients of
the time series.

The mathematical form of AR (p) and MA (q) is given below in Equations (3) and (4),
which were given by [46]:

AR (p), p (number of autoregressive terms)

yt = c + β1 yt−1 + β2 yt−2 + β3 yt−3 + . . . + βp yt−p + εt (3)

It is a case of multiple regressions, including lagged values of yt as predictors. It is
referred to as AR(p), and p indicates AR model of order (p)

MA (q)
yt = c + εt + α1 εt−1 + α2 εt−2 + α3 εt−3 + . . . + αp εt−p (4)

MA (q), q (number of moving average terms), where d is the times of differentiation.
An automated ARIMA tool was used, which allows the users to identify a suitable

ARIMA specification and to perform the forecast for the time series. Automated ARIMA
tool is not only limited to ARIMA modelling but also considers a variety of modelling
procedures, and the selection of ML models along with its orders were identified. Based
on the selected models, the model with the lowest Akaike Information Criteria (AIC) or
Bayesian Information Criteria (BIC) was selected.

AIC was first used by Hirotugu Akaike in 1971 [47,48]. AIC calculates the prediction
error, which measures the quality of a statistical model with other relative models [49]. It
can be expressed mathematically as [50]:

AIC = 2 k− 2 ln ˆ(L) (5)

where k stands for estimated parameters in the model and L̂ is the maximum value of the
likelihood function. For a given set of models, the model with the lowest AIC is selected
based on the goodness-of-fit measure. AIC also has a penalty system that discourages
overfitting and hence improves the goodness-of-fit. Similarly, BIC (also known as Schwarz
information criterion, SIC) appeared in the 1978 paper, which was developed by Gideon
E. Schwarz [51]. In the case of BIC, the formula is similar to AIC but the difference is in
a penalty for a different number of parameters. AIC has a penalty system of “k”, while
penalty in BIC is ln k [52]. The BIC can be expressed as [53]:

BIC = k ln (n)− 2 ln(L̂) (6)

where k is the number of parameters estimated by the model, n is the number of data
points, and L̂ is the maximized value of the likelihood function of the model.

AIC checks the quality of each model relative to other models and thus becomes a
means for model selection. Mathematically, AIC and BIC (Bayesian information criterion)
differ slightly only in terms of penalty for the number of parameters. For AIC the penalty
is 2k, whereas for BIC it is ln(n)k. BIC is also a model selection criterion in which the model
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with the least BIC value is selected. In comparing AIC and BIC, the performance of AIC
was found more satisfactory than BIC [52]. It is argued that BIC is the best fit for true
model selection for which AIC is not appropriate. This is because when selection is done
by considering BIC as the base, the probability of the true model comes to be 1 as n→ ∞,
which is less than 1 in the case of AIC. Yet, the advisors of AIC claim that it is a negligible
issue, as there is no “true model” available in the overall set [54–56]. If the models do
not consist of the best fit, the analysis part would be repeated by selecting different lags
for the automated ARIMA tool. After the model was proposed by the tool, the residual
error analysis was performed to check the accuracy of the output of the mathematical
model. Among many validation procedures, this study used an out-of-sample validation
test to check for the identification and estimation of the model suggested by the automated
ARIMA tool. The concept of an out-of-sample validation test is to compare the fitting of the
portion of the original data set with the forecasted data set model. Finally, forecasting was
performed for the year 2011–2030. The accuracy of the forecasting and error analysis was
performed using R2, and error analysis was done using root mean squared error (RMSE),
mean absolute error (MAE), and mean absolute percentage error (MAPE).

RMSE is the square root of the sum of all squared differences between the predicted
and actual errors [57]. RMSE shows the range of residual spread. It can be expressed
mathematically as [58]:

RMSE =

√
∑N

i=1 (Predicted− Acutal)2

N
(7)

where N = number of observations and i = variables along with predicted values and
actual values.

MAE is regarded as one of many measures that are used in a forecast analysis. It is the
measure of error between paired observations showing identical occurrence [59] or it is the
average of all absolute error terms [60]. It is mathematically expressed as [61]:

MAE =
1
N

N

∑
i=1
|y− ŷ| (8)

where N = total number of data points and ∑ sum of the absolute value of the residual
y− ŷ.

MAPE is the measure of correctness of the forecast [62]. It is expressed in percentage.
Mathematically, it can be shown as [63]:

MAPE =
1
n

n

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (9)

where n is the number of observations, t is the number of variable terms, At is the actual
value, and Ft is the forecasted value.

3.1. Data Collection

The water flow data were collected of the Kabul River in Swat, a city of Khyber
Pakhtunkhwa (KP) Province, Pakistan. The historical data were gathered by the Water and
Power Development Authority (WAPDA), a Government Department from the year 1961
to 2005. Afterward, they discontinued collecting the data, where a private consultant with
the name AGES collected the data from 2006 to 2010. The seasonal decomposition was
performed to analyze the data set that could reveal useful information about the time series.
It was found that the highest recorded value was 110 cumecs in 1991, and the second-
highest value of 107.78 was measured in 2005. The lowest reading was 59.97 cumecs in
1982, as shown in Figure 2a. Figure 2b shows the trend in the data set. Figure 2c illustrates
the seasonal factor present in the time series, and Figure 2d signifies residuals present in
the data.



Sustainability 2021, 13, 10720 7 of 26
Sustainability 2021, 13, x FOR PEER REVIEW 7 of 27 
 

 
(a) Data set of yearly flow. 

 
(b) Trend of the data set. 

 
(c) Seasonality in the dataset. 

 
(d) Residuals in the dataset. 

Figure 2. Seasonal decomposition of the data set. 

3.2. Forecasting Using Automated ARIMA Tool 
In this study, the data of the water flow of the Kabul River was collected and fore-

casted through the time series method by using software named EViews. EViews is an 
outstanding interactive program that is the best fit for detailed data analyses [64]. EViews 
allow forecasting using the Automated ARIMA forecasting feature, which is timesaving 
in comparison to the traditional programming languages. The term “automated ARIMA” 
feature selects the model among the AR, MA, ARMA, ARIMA, and seasonal ARIMA mod-
els, and it does not mean that this feature will only consider the ARIMA model. For this 
time series forecasting, the ARIMA model has been used. There are several tools available 
for linear time series forecasting, but the body of knowledge credits ARIMA as the most 

Figure 2. Seasonal decomposition of the data set.

3.2. Forecasting Using Automated ARIMA Tool

In this study, the data of the water flow of the Kabul River was collected and forecasted
through the time series method by using software named EViews. EViews is an outstanding
interactive program that is the best fit for detailed data analyses [64]. EViews allow
forecasting using the Automated ARIMA forecasting feature, which is timesaving in
comparison to the traditional programming languages. The term “automated ARIMA”
feature selects the model among the AR, MA, ARMA, ARIMA, and seasonal ARIMA
models, and it does not mean that this feature will only consider the ARIMA model. For
this time series forecasting, the ARIMA model has been used. There are several tools
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available for linear time series forecasting, but the body of knowledge credits ARIMA as
the most suitable one [5]. The ARIMA model contains autoregressive (AR), integrated (I),
and moving average (MA). The AR part describes the relationship between present and
past observations, the MA part represents the autocorrelation structure of error, and the I
part represents the differencing level of the series [65]. ARIMA is one of the most powerful
and successful linear statistical models for time series forecasting [66]. Research made
by Valipour and Banihabib [67] showed that in comparison with ARMA (autoregressive
moving average), the ARIMA model is better than ARMA because it can make time-series
stationery in the training and forecasting phase [68]. It can transform the non-stationary
data into stationary data. Nevertheless, Yu and Lei [69] believe that to decrease the element
of uncertainty and increase the predictive performance, the combination of different types
of models is recommended, i.e., the hybrid approach.

The reason for using the Automated ARIMA tool is, firstly, the selection of appro-
priate values for p (number of autoregressive terms), d (differences required to achieve
stationarity), and q (moving average terms). As the ARIMA algorithm consists of (p,d,q)
the determination of (p,d,q) is a laborious and time-consuming task, but the Automatic
ARIMA function will select the best fit model automatically based on the lowest values of
the selected parameters like AIC or BIC. Secondly, the ARIMA modelling accounts for the
missing data in the time series. As there is missing data from 2010–2020 in the time series,
this modelling technique could compensate for the missing data based on the previous
readings. Although many factors come into play that could affect the water flow in the
river, the basic reason for using the ARIMA tool is to predict the missing data without
considering those factors that could lead to uncertainty in the results. The estimation
of missing data help the engineers, designers, and flood controlling department as they
seek to include the missing data from this study in their implementation. It has been
proven that the missing hydrological data can be computed from the estimation of the
fitted models using ARIMA [70,71]. Finally, the use of ARIMA has been well document in
hydrological analysis. ARIMA has been used with full confidence in the analysis of water
quality [65], rainfall [69,72], runoff [73,74], river discharge [65,75], drought [76,77], monthly
streamflow [78,79], and groundwater anomaly [80].

Figure 3 shows the flowchart of the methodology followed. Firstly, the hydrological
time series is obtained. Then, the stationary is checked using the ADF test. The stationarity
can be achieved using differencing. The Automated ARIMA tool is incorporated to identify
the models for analysis. A model is selected based on the lowest AIC and BIC value. The
error/residual analysis is performed to check the accuracy of the selected mathematical
model. If the validation fails to satisfy the parameters of the best-fitted model, the analysis is
repeated for a different model selection using appropriate lags. The study further proceeds
with the forecast.

3.2.1. Automated ARIMA Forecasting

The automatic model selection specification for the ARIMA model can be divided into
four steps:

i Using raw or transformed data, such as logs of the dependent variable.
ii Selection of appropriate level of integration of the dependent variable.
iii Evaluation of the exogenous regressors.
iv Selection of the order of the ARMA model using the evaluating technique.

Automatic forecasting automatically takes steps i, ii, and iv. In each step, the user se-
lects the exogenous regressors, hence the name is Automatic ARIMA instead of Automatic
ARIMA. Any time series, yt uses ARIMA (p,d,q) if [81],

D (yt , d) = β Xt+υt (10)

υt = ρ1 υt−1 + . . . + ρpυt−p + θ1εt−1 + . . . + θqεt−q (11)
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where the exogenous variable Xt is a constant term and υt is the seasonal ARMA term. In
this case, forecasting can be made using the dependent variables AR, integration, and MA,
which can be selected using evaluation techniques. The estimation methods in EViews make
use of three information criteria types: Schwarz Criterion (SIC or BIC), Akaike Information
Criterion (AIC), and the Hannan-Quinn Criterion (HQ). Based on these criteria, the number
of terms of ARMA is selected [81].
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Figure 3. Methodology flowchart.

Before performing the analysis, the data need to be split into train and test data. For
this purpose, the month-wise data from the year 1961 to 2000 was selected as train data
and data from 2001 to 2010 was selected as the test data. Automated ARIMA forecasting is
a feature offered within the EViews where a user needs to provide the maximum autore-
gressive, differencing, and moving average value. The automated ARIMA parameters are
shown in Appendix B.
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It can be observed that in this analysis the maximum AR value was taken as 4,
maximum differing was taken as 2, and maximum MA was taken as 4. As the data show
seasonality (S), maximum SAR and SMA were taken as 2.

3.2.2. Model Validation

With the automated ARIMA forecasting feature, various ARIMA models are run
where the best model needs to be separated. In this regard, the model selection was based
on Akaike Information Criterion (AIC) where the lowest value shows the best-fitted model.
The model validation features are shown in Appendix C.

4. Results
4.1. Summary of ARIMA Forecasting

Out of 600, 480 observations were taken as train data. Overall, 225 models were run
where the best ARMA model came as (2,4)(2,2) based on AIC value, which was equal to
9.216. A summary of the ARIMA forecasting is provided in Figure 4.
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4.2. Comparison of Forecasted and Actual Data

Forecasted and actual data have been compared in Figure 5. The actual data is given
for a period of ten years, i.e., from 2000 to 2010. Out of these ten years, the data for the
first five years was provided by WAPDA and the data for the remaining five years was
provided by AGES. This set of data was selected for the category of test data too. Taking
this test data as a reference set, the future forecast for the remaining 20 years was made
possible. It can be seen in Figure 5 that actual and forecasted values lie close to each other
with a few deviated values. Once it was made sure that actual and forecasted values lay in
the proximity of each other, the water flow for the remaining years was forecasted. The
reason for ARIMA predictive method, firstly, is that it could cover the missing values,
which are essential for future analysis. Secondly, in case of a significant weather shift, this
analysis could prove useful to the engineers and designers to improve the capacity of the
flood control devices in case of a significant anomaly in the Kabul River. The forecasted
values indicate the flow of the river provided the water level due to melting of the glacier
and weather shift, and the basin condition of the river remained the same throughout the
analysis period. This forecast was produced irrespective of the weather anomalies that are
subject to persistent change in the future.

There are many validation methods, and out-of-sample is one of them. The concept of
this validation is to withhold a portion of sample data for identification and estimation and
then conduct the forecasting for the remaining hold-out data to determine the presence of
the errors within the sample fitted data and the forecasted data. In this case, the validation
period was selected from 2000–2010 and the forecasting was performed from 2011–2030.
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In the light of Figure 5, a peak of the actual water level at 370 cumec can be seen, while
the forecasted plot indicates a marginal increase over 250 cumec. The difference between
the actual and forecasted value is due to the reason that the ML algorithm estimates the
time series value of 12 months and produces output in the form of the average of the
past data.

Figure 6 illustrates the comparison of all-inclusive model sets. The transparent graph
lines in the background represent the graph lines for 225 simulated models, whereas the
graph line highlighted in the red graph line denotes the selected model (2,4)(2,2). It is
evident that out of all the ARMA models, model (2,4)(2,2) has the least values, which is
why it was selected as the best option.
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4.3. Best Fitted Model (AIC)

Appendix A gives the details of the overall 225 ARIMA models. AIC value range
is from 9.215538 to 10.26662, whereas BIC value range is from 9.319883 to 10.31879. The
model selection is based on the AIC value, and as mentioned above, model (2,4)(2,2) is
the selected ARIMA model that has the least AIC value of 9.215538. Different values for
models (2,4)(2,2) have been highlighted in Appendix A. The BIC value of this selected
model is 9.319883, and the HQ value is 9.256554.

The residual autocorrelation function (residual ACF) and residual partial autocorrela-
tion function (residual PACF) plots were used to determine the residuals in the selected
model. As evident from Figure 7a,b, the residuals are randomly scattered, showing the
best fit for the selected model of forecast along with the absence of autocorrelation in
the residuals. The vertical lines represent the 95% confidence interval (CI), whereas the
blue blocks show the number of lags selected to determine the behavior of residuals. The
residual ACF and residual PACF plots show that no lags deviate from the CI and are near
to zero, which indicates that the residuals are independent and the model has accurately
forecasted the time series.
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Figure 8 shows the top 20 models with the least values of Akaike information criteria
(AIC). Y-axis represents the AIC values from 9.214 to 9.230, and X-axis shows the top
20 models. Overall, the values of these models increase in ascending order. Among these
20 models, the lowest value belongs to the selected ARMA model and the highest value
is of model (2,2)(2,2). Models # 3 and 4; models # 10, 11, 12, and 13; and models # 17 and
18 have diminutive difference in values.
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4.4. Water Flow Forecasting

Figure 9 gives the forecasted water flow values from the year 2011 to the year 2030.
Y-axis shows the water flow in cumec, and X-axis shows two readings for odd years and a
single reading for even years. The forecasted values have been derived from the train data
and the test data sets. The predicted water flow is either 250 cumecs or slightly above it.
The water flow starts to increase from the year 2011 till it reaches the peak value in the year
2019–2020 and then decreases gradually to about 250 cumecs till 2030.

1 
 

 

Figure 9. Water flow forecasting from 2011 to 2030.
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It should be noted that the automated ARIMA tool considers all linear models, and
the selection of ARMA over other models is performed based on the lowest AIC value.
Moreover, this analysis used linear models for analysis; therefore, the trend of the dataset
is different from the trend of the generated linear results. Additionally, the automated
ARIMA tool accounts for the missing data with less error due to its linear behavior. These
results predict that the water flow will remain the same if the current condition of the water
flow, basin, and drainage remains the same through the forecast period from 2011–2030.

The standard deviation of the actual error and predicted error is calculated to know
the error difference between the actual data set and the model selected for the forecast. It is
evident in Figure 10 that the predicted error of the selected model is less than the actual
data set; hence, the selected model is the best fit for the forecast.
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The explanatory power R2 of the selected model shows that the model is capable of
explaining 92.2% of the dataset for forecasting. Similarly, the value of RMSE as 25.2 and
MAPE as 20.1 shows the prediction accuracy, and it also indicates the forecast error is less.
Based on the data set scale, the value of MAPE and MAE as 20.1 and 14.1 indicates good
tolerance. Table 1 illustrates the value of these parameters.

Table 1. Error analysis using selected parameters.

Model
Model Fit Statistics

R-Squared RMSE MAPE MAE

Water_level_1 0.922 25.253 20.110 14.188

These results extrapolated the missing value, which can be used as a reference for
further studies of the Kabul River. The linearity in the missing data makes sense as there
were unknown factors involved that produced unknown water levels for the missing period.
The forecast shows that provided the temperature and precipitation remain constant from
the coming years, there will be no significant change in the water levels in the Kabul River.
However, in case of weather shifts or anomalies, this forecast could still be useful as it could
be used by the locals to earn a living above this water level to ensure safety in the future.
It could also prove useful for the hydrologists, structural engineers, and flood disaster
management officials to construct the water withholding structure with a capacity of these
water levels.
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To elaborate on the results further, this study predicts the data from 2011–2030. It can
be seen that the trend of the past (1961–2010) is considerably different than the forecasted
(2011–2030) trend. The reason is, firstly, the choice of considering the constant conditions
in the future. The missing data could be linear or non-linear; however, for the analysis
purposes, the analysis was performed using linear models as non-linearity could have
greatly affected the results and might have deviated from the actual scenario of the river.
Secondly, as the data were not collected by the concerned agencies till 2010 and there are no
further official data available that could accurately forecast the water levels for the coming
years, the data of the missing years have not been taken into account while conducting the
analysis. To unravel the anomalies in the hydrologic behavior of the river, linear behavior
was adopted to forecast the missing data closer to the previously recorded data.

5. Discussion

The analysis of missing years (2000–2020) was carried out as a forecast to help the
hydrologists account for the missing data. To give an idea of the situation of the missing
data of the year 2000–2020, it was estimated that water availability in 2015 was reduced
to 1032 m3 from 5000 m3 in 1947 [82]. As Pakistan constructed the Warsak dam on the
Kabul River, the decreased flow resulted in reduced water flow for the canal system, and
the area irrigated by the Kabul canal system was reduced to 25,967 acres in 2015–2016 from
26,200 in 2015–2016 [83]. The glacier dynamics have had a significant impact on the water
flow of the Kabul River. The 84% less snow that occurred from the year 2001–2016 shows
that the solid precipitation will decrease with time, which will result in lower water flow in
the Kabul River, which might lead the area to drought in the basin [84]. Two small dams
were constructed in Afghanistan, namely, the Qargha and Band-i-Amir, with the help of US
aid in 2008; if these dams become fully operational, it will have disastrous effects in terms
of hydrogeneration and irrigation [85]. In 2003 and 2005, the Kabul Basin treaty between
Pakistan and Afghanistan was drafted, but it failed miserably due to the unavailability
of the water flow data [28]. Pakistan’s water supply from the Kabul River is hostage to
the construction development and political stability in the Afghanistan region, and to the
climatic conditions as any construction of the dam in Afghanistan region will result in a
decrease of 25% less mean annual flow of Kabul River by the end of 2018 [86]. A study
revealed that the increase of water demand and construction of more dams in Afghanistan
will decrease its flow to 17% below the current flow of 8 million-acre-feet (MAF). This
condition, along with climate variation, will give rise to a shortage of water in the Pakistan
region [87,88].

To maximize the gross advantages of river management, a high-quality water inflow
forecast is mandatory. This surface water is extremely important for the socio-economic
development and growth of the region. Water infrastructure developments, floods, and
droughts controlling industrial operations are all dependent upon this resource, thereby
making efficient management of this resource necessary. Precise water flow prediction
not only reduces the risks of mal-operation and probability of damages but also causes an
increase in profits [89].

The stochastic nature of river flow makes its forecasting imperative for early hazard
management. This forecasting of river water flow becomes even more vital in mountainous
regions because a hefty-sized population living downstream is highly dependent upon
this water resource for their agriculture and other economic activities [64]. There are early
warning systems available, which, to manage water, produce an early measurement of
water flow, but these warning systems are too expensive for poor communities to gain an
advantage from them [90]; hence, the use of previous flood repetition data can be used
to predict the future flood frequency, which could function as an early warning system
regarding flood prediction. For this purpose, various contributing factors of the flood
could be taken into account during analysis to help model water behavior. The findings
of this study help to account for the missing data and forecast the data based on the
weather of the data used for analysis. As the weather is unpredictable and is subject to
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change with the increase in global warming in the coming years, this study could prove
to be a breakthrough in assessing the river behavior so that flood controlling devices are
constructed with the required water-holding capacity. In recent times, artificial intelligence
algorithms have been used by researchers to predict stream and river flow. As machine
learning algorithms are based on statistical data, they generate highly accurate results and
predictions. In this regard, Pianosi and Thi [91] estimated river water flow, and Wu and
Han [92] estimated daily run-off in rivers using artificial intelligence algorithms. However,
Agung [64] argues that care must be taken as the exact value of any parameter is never
known; therefore, one should not rely on these models solely. He further maintains that
a professional’s knowledge and experience should also be taken into account in defining
several alternate models because in statistical analysis the best out of all options can never
be achieved.

Based on the obtained results, the predictive performance of the selected model
(2,4)(2,2) is evaluated statistically by the test data set of the decade 2000–2010 as done
by Yu and Lei [69] in his research. The predicted results were up to par, with a few
ambiguities where sharp fluctuations of water flow occurred. The model was selected
based on AIC [65].

The subject river of the current study, the Kabul River, is the major tributary of the
Indus River. Flooding in Kabul results in flooding in Indus as well. In 2010, the disastrous
flood in Kabul and Sawat Rivers killed as many as 1156 people and affected 3.8 million
people only in KP province [93]. Using past data to predict future water flow, hidden
information can be disclosed that is of pronounced importance for alleviating the effects of
floods and thwarting disasters. The generated best-fit model (2,4)(2,2) indicates the water
flow to be 250 cumecs or a little above it in the next ten years. The result forecasted in the
selected model is, therefore, highly beneficial for the river basin management where river
flow, particularly in the rainy season, becomes a major challenge to handle. It provides
compelling results to river management on how they can make maximum use of the study
and fulfils the needs of the relevant stakeholders, although it should be kept in mind that
even highly accurate water flow prediction does not always proliferate the benefits because
ultimately it depends upon the operational strategies of the river administration [89].

This study can be generalized to other areas as the method employed in this study is
automatic forecasting, which performs forecasting by identifying the best-suited model
based on the lowest values of AIC. This tool selected ARMA (2,4)(2,2) based on the linear
measurement of the past hydrological data. The significance of this work is that forecasted
results can be a clarion call for the policymakers to allocate funding to the reservoir to
work at its full capacity without damaging its structure, which will be beneficial for the
agriculture sector, hydroelectric generation, and industrial processes and help designers
and water management engineers to make sustainable decisions. From the civil engineer-
ing perspective, this study could help designers to complete sustainable basin designs,
construct dams for electric generation, design canals for maximum agriculture productivity,
and reconstruct and rehabilitate damaged water tributaries to meet flood and stormwater
discharge, all of which could help save fertile land from being lost due to natural disas-
ters like 2010 floods. If Pakistan completes hydroelectric projects in time, it can meet its
electricity demands in the future. The outflow of this river depends on its basin condition,
and the poor condition of this basin could lead to continuous silting in Warsak dam, the
underperformance of hydropower generation, more frequent floods, less available water
for agricultural needs, and inability of the river to meet the needs of the people relying on
it. The construction of water storage structures and rehabilitation of the waterbed of the
basin will ensure the likelihood of the people who are dependent for their survival on the
Kabul River.

Despite using modern techniques for forecasting, there is always an uncertainty factor
in the results; therefore, the quantification of climate is essential for the development
of hydrologic impact. The uncertainty of results in this study is directly dependent on
the precipitation and the temperature variation with each passing year. For improved
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modelling reliability, these two factors must be adequately addressed. As for this study,
the forecasting accuracy will deviate from the actual water flow and its variation in precipi-
tation and temperature change. For example, the temperature in 2010 was not the highest
recorded temperature yet there were floods recorded in 2010 in Khyber Pakhtunkhwa
province of Pakistan. Secondly, the precipitation was unexpectedly highest and there were
no official early alarm systems. Provided the change in these two factors, the forecasted
values of this study might prove inconsistent as this study did not account for the change
in the precipitation and temperature change. Similarly, the absence of accurate data could
seriously affect the observation uncertainty for floods and droughts as it could reveal the
mean and variance of the streamflow in the Kabul Basin.

In recent years, the forecasting capability has increased significantly and has found its
applications in all fields [86–88]. On the flip side, certain factors contribute towards many
surprises in the analysis. Unfortunately, these factors can neither be modelled nor predicted;
hence, the analysis is always accepted with a certain degree of uncertainty. Temperature,
precipitation, and earthquakes are a few examples that could result in catastrophic loss
of human life. Climate change is on the rise and is continuously wreaking havoc in the
shape of tsunamis and hurricanes, which cannot be modelled. There might be damaging
consequences if the forecast fails to accurately predict the water levels in the Kabul Basin.
The inaccuracy could lead to extreme disasters like floods and droughts in the basin, which
could threaten human existence. As Pakistan has constructed the Warsak dam on the Kabul
River, which is regarded as one of the major dams of Pakistan, any fluctuation in the water
level could create a power shortfall and the country would be plunged into the darkness.

6. Conclusions

Keeping in view the importance of the country’s major river in terms of the economy,
hydroelectricity, and human existence, an analysis was undertaken to study and predict the
water level from the year 2011 till the year 2030 based on historical trends. The Kabul River
poses a threat to Pakistani soil in extreme conditions either by being flooded excessively
due to the melting of glaciers and incessant precipitation or due to severe spells of droughts.
Therefore, the need for forecasting is essential for the planning and management of future
development. This development is based on forecasted values, and this study will not only
serve the inhabitants of the country in extreme conditions but also will prove beneficial in
energy generation. To prevent the devastation due to extreme water levels of the Kabul
River, this study made necessary the use of the ML approach to forecast the water level so
that engineers and decision-makers could apply preventive techniques to tackle extreme
conditions. This research bridges the gap of missing data and connects it to the forecasted
data. Based on the analysis of the hydrological data, the forecasting was evaluated by
comparing it to the actual values, and it was found that ARMA (2,4)(2,2) accuracy was
better than other modes based on the lowest values of AIC. The forecast revealed that the
water level will not fluctuate much, the water level in Kabul River will be marginally more
than 250 cumecs from 2011 till 2030, and there will be a diminutive difference in its quantity
as compared to its value of 249 cumecs in 2000. It was also concluded that water level will
gradually increase from January to August till it reaches its maximum level of 250 cumecs
in September. As soon as the monsoon season diminishes, the water level will return to its
minimum value of 10 cumecs in the months from October to December till the year 2030.
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GDP Gross Domestic Product
ML Machine Learning
ANN Artificial Neural Network
AN-FIS Adaptive Neuro-Fuzzy Inference Systems
AR Autoregressive
MA Moving Average
ARMA Autoregressive Moving Average
MAE Mean Absolute Error
MSE Mean Squared Error
SVM Support Vector Machine
LSSVM Least-Squares SVM
GRNN Generalized Regression Neural Networks
WANN Wavelet-Based Artificial Neural Network
WANFIS Wavelet-Based Adaptive Neuro-Fuzzy Inference System
RMSE Root Mean Squared Error
MAPE Mean Absolute Percent Error
ARIMA Autoregressive Integrated Moving Average
ADF Augmented Dickey Fuller
AIC Akaike Information Criteria
BIC Bayesian Information Criteria
KP Khyber Pakhtunkhwa
WAPDA Water and Power Development Authority
HQ Hannan-Quinn Criterion
Residual ACF Residual Autocorrelation Function
Residual PACF Residual Partial Autocorrelation Function
CI Confidence Interval
MAF Million Acre-Feet

Appendix A

Table A1. Model Selection Criteria.

S.No Model LogL AIC * BIC HQ

1 (2,4)(2,2) −2199.73 9.215538 9.319883 9.256554
2 (1,0)(2,2) −2205.25 9.217729 9.278597 9.241655
3 (2,0)(2,2) −2205.08 9.221157 9.29072 9.248501
4 (1,1)(2,2) −2205.09 9.221205 9.290768 9.248549
5 (4,3)(2,2) −2200.17 9.221557 9.334597 9.265991
6 (2,4)(1,2) −2202.26 9.221905 9.317555 9.259503
7 (1,0)(2,1) −2207.46 9.222763 9.274935 9.243271
8 (1,0)(1,2) −2207.52 9.222984 9.275156 9.243492
9 (2,1)(2,2) −2204.93 9.224706 9.302964 9.255468
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Table A1. Cont.

S.No Model LogL AIC * BIC HQ

10 (0,2)(2,2) −2206 9.224991 9.294554 9.252335
11 (3,0)(2,2) −2205.02 9.225084 9.303343 9.255846
12 (1,2)(2,2) −2205.04 9.225162 9.30342 9.255924
13 (0,3)(2,2) −2205.07 9.225291 9.30355 9.256053
14 (3,4)(2,1) −2202.28 9.226149 9.330494 9.267165
15 (2,0)(2,1) −2207.37 9.226559 9.287426 9.250484
16 (1,1)(2,1) −2207.38 9.226584 9.287452 9.25051
17 (2,0)(1,2) −2207.43 9.226771 9.287639 9.250697
18 (1,1)(1,2) −2207.43 9.226798 9.287665 9.250723
19 (1,0)(1,1) −2209.79 9.228303 9.27178 9.245392
20 (2,2)(2,2) −2204.93 9.228872 9.315826 9.263052
21 (3,1)(2,2) −2204.93 9.228872 9.315826 9.263052
22 (4,0)(2,2) −2204.98 9.229092 9.316046 9.263271
23 (0,4)(2,2) −2205 9.22917 9.316123 9.263349
24 (1,3)(2,2) −2205.01 9.22921 9.316164 9.26339
25 (0,2)(2,1) −2208.17 9.229882 9.29075 9.253808
26 (0,2)(1,2) −2208.23 9.230111 9.290978 9.254036
27 (2,1)(2,1) −2207.25 9.230212 9.299775 9.257556
28 (2,1)(1,2) −2207.29 9.230363 9.299927 9.257707
29 (3,0)(2,1) −2207.31 9.230466 9.300029 9.25781
30 (1,2)(2,1) −2207.33 9.230528 9.300091 9.257872
31 (3,0)(1,2) −2207.36 9.230678 9.300241 9.258022
32 (0,3)(2,1) −2207.37 9.230693 9.300256 9.258037
33 (1,2)(1,2) −2207.38 9.23074 9.300303 9.258084
34 (0,3)(1,2) −2207.42 9.230903 9.300466 9.258246
35 (2,0)(1,1) −2209.57 9.231557 9.28373 9.252065
36 (1,1)(1,1) −2209.59 9.231607 9.283779 9.252114
37 (3,2)(2,2) −2204.84 9.23265 9.3283 9.270248
38 (2,3)(2,2) −2204.92 9.232995 9.328644 9.270593
39 (4,1)(2,2) −2204.92 9.233005 9.328655 9.270603
40 (1,4)(2,2) −2205 9.233335 9.328984 9.270933
41 (4,4)(1,1) −2204.05 9.233535 9.33788 9.274551
42 (3,1)(2,1) −2207.23 9.234276 9.312535 9.265038
43 (2,2)(2,1) −2207.24 9.234333 9.312592 9.265095
44 (2,2)(1,2) −2207.28 9.2345 9.312758 9.265262
45 (3,1)(1,2) −2207.28 9.234501 9.31276 9.265263
46 (4,0)(2,1) −2207.28 9.234515 9.312773 9.265277
47 (0,4)(2,1) −2207.3 9.234568 9.312826 9.26533
48 (1,3)(2,1) −2207.33 9.234691 9.312949 9.265452
49 (4,0)(1,2) −2207.33 9.234726 9.312984 9.265488
50 (0,4)(1,2) −2207.35 9.23478 9.313038 9.265542
51 (1,3)(1,2) −2207.36 9.234826 9.313085 9.265588
52 (0,2)(1,1) −2210.4 9.235009 9.287181 9.255517
53 (2,1)(1,1) −2209.47 9.235304 9.296172 9.25923
54 (3,0)(1,1) −2209.54 9.235566 9.296434 9.259492
55 (1,2)(1,1) −2209.55 9.235629 9.296497 9.259555
56 (0,3)(1,1) −2209.58 9.235745 9.296613 9.259671
57 (4,2)(2,2) −2204.82 9.236763 9.341108 9.277779
58 (3,3)(2,2) −2204.82 9.236764 9.341108 9.277779
59 (4,1)(1,2) −2207.14 9.238098 9.325052 9.272277
60 (3,2)(1,2) −2207.15 9.238129 9.325083 9.272309
61 (2,3)(2,1) −2207.22 9.238411 9.325365 9.272591
62 (3,2)(2,1) −2207.23 9.238471 9.325425 9.272651
63 (4,1)(2,1) −2207.3 9.23873 9.325684 9.272909
64 (1,4)(2,1) −2207.3 9.238733 9.325687 9.272913
65 (1,4)(1,2) −2207.35 9.238945 9.325898 9.273124
66 (2,3)(1,2) −2207.37 9.239031 9.325985 9.273211
67 (2,2)(1,1) −2209.47 9.239471 9.309034 9.266814
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Table A1. Cont.

S.No Model LogL AIC * BIC HQ

68 (3,1)(1,1) −2209.47 9.239471 9.309034 9.266815
69 (4,0)(1,1) −2209.5 9.239583 9.309146 9.266927
70 (0,4)(1,1) −2209.52 9.239652 9.309215 9.266996
71 (1,3)(1,1) −2209.53 9.239693 9.309256 9.267037
72 (3,4)(2,2) −2204.82 9.240929 9.353969 9.285363
73 (4,3)(1,1) −2206.93 9.24139 9.33704 9.278988
74 (4,2)(2,1) −2207.05 9.241856 9.337505 9.279454
75 (3,3)(2,1) −2207.05 9.241864 9.337513 9.279462
76 (4,2)(1,2) −2207.1 9.242097 9.337746 9.279694
77 (3,3)(1,2) −2207.19 9.242471 9.33812 9.280069
78 (2,4)(2,1) −2207.28 9.242849 9.338498 9.280447
79 (3,2)(1,1) −2209.4 9.243328 9.321586 9.274089
80 (2,3)(1,1) −2209.45 9.24354 9.321799 9.274302
81 (1,4)(1,1) −2209.52 9.243818 9.322077 9.274580
82 (4,1)(1,1) −2209.52 9.243832 9.32209 9.274593
83 (4,4)(2,2) −2204.82 9.245103 9.366839 9.292955
84 (3,4)(1,2) −2207.1 9.24625 9.350594 9.287265
85 (4,3)(2,1) −2207.23 9.246789 9.351134 9.287805
86 (4,3)(1,2) −2207.29 9.247021 9.351366 9.288037
87 (3,3)(1,1) −2209.46 9.247755 9.334708 9.281934
88 (4,2)(1,1) −2209.46 9.247764 9.334718 9.281943
89 (2,4)(1,1) −2209.51 9.247973 9.334927 9.282152
90 (0,1)(2,2) −2212.54 9.248082 9.30895 9.272008
91 (4,4)(2,1) −2207.21 9.250896 9.363936 9.295329
92 (4,4)(1,2) −2207.27 9.251136 9.364176 9.295569
93 (0,1)(2,1) −2214.37 9.251535 9.303708 9.272043
94 (0,1)(1,2) −2214.44 9.251827 9.303999 9.272335
95 (3,4)(1,1) −2209.45 9.251872 9.347522 9.28947
96 (0,1)(1,1) −2216.44 9.256011 9.299488 9.273101
97 (4,4)(2,0) −2243.03 9.395971 9.500315 9.436986
98 (3,2)(2,0) −2248.99 9.408305 9.486564 9.439067
99 (4,2)(2,0) −2248.49 9.410392 9.497346 9.444572

100 (3,3)(2,0) −2248.51 9.410441 9.497395 9.444621
101 (3,4)(2,0) −2248.85 9.41603 9.511679 9.453628
102 (0,0)(2,1) −2256.92 9.424682 9.468159 9.441771
103 (2,1)(2,0) −2254.98 9.424915 9.485783 9.448841
104 (0,0)(1,2) −2257.02 9.425075 9.468552 9.442165
105 (0,0)(2,2) −2256.49 9.427051 9.479223 9.447558
106 (2,2)(2,0) −2254.91 9.428785 9.498348 9.456128
107 (3,1)(2,0) −2254.91 9.428811 9.498374 9.456154
108 (2,3)(2,0) −2254.82 9.432585 9.510844 9.463347
109 (4,1)(2,0) −2254.82 9.432598 9.510856 9.46336
110 (0,0)(1,1) −2261.7 9.440425 9.475206 9.454097
111 (1,0)(2,0) −2261.24 9.442683 9.48616 9.459773
112 (4,3)(2,0) −2256.17 9.446532 9.542181 9.484129
113 (2,0)(2,0) −2261.21 9.446727 9.498899 9.467235
114 (1,1)(2,0) −2261.22 9.446731 9.498904 9.467239
115 (3,0)(2,0) −2261.2 9.450828 9.511696 9.474754
116 (1,2)(2,0) −2261.21 9.45086 9.511728 9.474786
117 (0,3)(2,0) −2261.24 9.45098 9.511848 9.474906
118 (0,2)(2,0) −2262.25 9.451027 9.503199 9.471535
119 (4,0)(2,0) −2261.05 9.45436 9.523923 9.481704
120 (0,4)(2,0) −2261.09 9.454562 9.524126 9.481906
121 (1,3)(2,0) −2261.14 9.454743 9.524306 9.482087
122 (2,4)(2,0) −2259.23 9.455125 9.542079 9.489304
123 (1,4)(2,0) −2261.09 9.45871 9.536968 9.489471
124 (0,1)(2,0) −2267.53 9.468866 9.512343 9.485956
125 (4,4)(0,0) −2276.03 9.525138 9.612092 9.559318
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Table A1. Cont.

S.No Model LogL AIC * BIC HQ

126 (4,2)(1,0) −2285.3 9.559601 9.63786 9.590363
127 (3,3)(1,0) −2285.54 9.560599 9.638858 9.591361
128 (3,4)(1,0) −2285.41 9.564198 9.651152 9.598378
129 (4,3)(1,0) −2287.73 9.573857 9.660811 9.608036
130 (4,4)(1,0) −2287.69 9.577882 9.673532 9.61548
131 (2,2)(1,0) −2294.68 9.590337 9.651205 9.614263
132 (3,1)(1,0) −2294.71 9.590475 9.651343 9.614401
133 (3,2)(1,0) −2294.62 9.594245 9.663808 9.621589
134 (2,3)(1,0) −2294.65 9.594373 9.663936 9.621716
135 (4,1)(1,0) −2294.67 9.594457 9.66402 9.621801
136 (2,4)(1,0) −2299.79 9.619978 9.698237 9.65074
137 (1,0)(1,0) −2305.14 9.62142 9.656201 9.635091
138 (2,0)(1,0) −2305.13 9.625554 9.669031 9.642644
139 (1,1)(1,0) −2305.13 9.625558 9.669035 9.642648
140 (3,0)(1,0) −2304.87 9.628614 9.680786 9.649122
141 (0,3)(1,0) −2304.91 9.628806 9.680978 9.649314
142 (1,2)(1,0) −2304.94 9.628923 9.681095 9.649431
143 (0,0)(2,0) −2307.02 9.629248 9.664029 9.64292
144 (0,2)(1,0) −2306.02 9.629264 9.672741 9.646354
145 (2,1)(1,0) −2305.09 9.629553 9.681725 9.65006
146 (4,0)(1,0) −2304.54 9.631426 9.692293 9.655352
147 (0,4)(1,0) −2304.8 9.632508 9.693376 9.656434
148 (1,3)(1,0) −2304.85 9.632696 9.693564 9.656622
149 (1,4)(1,0) −2304.78 9.636563 9.706126 9.663907
150 (0,1)(1,0) −2312.91 9.653795 9.688577 9.667467
151 (4,3)(0,2) −2308.27 9.663626 9.759275 9.701224
152 (4,2)(0,1) −2316.49 9.68954 9.767798 9.720301
153 (3,4)(0,2) −2316.03 9.695969 9.791619 9.733567
154 (4,3)(0,1) −2317.81 9.699193 9.786147 9.733372
155 (2,4)(0,2) −2319.55 9.706452 9.793406 9.740632
156 (4,2)(0,0) −2338.73 9.778056 9.847619 9.8054
157 (4,3)(0,0) −2342.36 9.797323 9.875581 9.828085
158 (0,0)(1,0) −2350 9.804161 9.830247 9.814415
159 (2,3)(0,1) −2354.75 9.844809 9.914372 9.872153
160 (3,4)(0,1) −2355.36 9.855664 9.942618 9.889844
161 (4,4)(0,2) −2362.94 9.895584 9.999929 9.9366
162 (3,2)(0,2) −2366.88 9.899502 9.977761 9.930264
163 (2,1)(0,2) −2369.39 9.901628 9.962496 9.925554
164 (2,2)(0,2) −2368.57 9.902362 9.971925 9.929706
165 (3,1)(0,2) −2368.66 9.902732 9.972295 9.930076
166 (3,3)(0,2) −2366.74 9.903084 9.990038 9.937264
167 (4,2)(0,2) −2366.75 9.903114 9.990067 9.937293
168 (4,1)(0,2) −2368.04 9.904345 9.982603 9.935106
169 (4,0)(0,2) −2386.58 9.977414 10.04698 10.00476
170 (1,4)(0,2) −2385.58 9.977419 10.05568 10.00818
171 (3,0)(0,2) −2389.53 9.985548 10.04642 10.00947
172 (4,4)(0,1) −2386.6 9.990001 10.08565 10.0276
173 (4,1)(0,1) −2396.39 10.0183 10.08787 10.04565
174 (2,4)(0,0) −2396.72 10.01965 10.08922 10.047
175 (2,2)(0,1) −2397.93 10.02054 10.0814 10.04446
176 (3,1)(0,1) −2398.29 10.02206 10.08293 10.04599
177 (2,0)(0,2) −2399.66 10.02356 10.07574 10.04407
178 (3,3)(0,1) −2396.86 10.02442 10.10268 10.05518
179 (2,1)(0,1) −2400.39 10.02661 10.07878 10.04712
180 (1,3)(0,2) −2401.78 10.04077 10.11033 10.06811
181 (0,3)(0,2) −2404.07 10.04613 10.10699 10.07005
182 (0,4)(0,2) −2403.71 10.0488 10.11836 10.07614
183 (1,2)(0,2) −2405.98 10.0541 10.11497 10.07803
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Table A1. Cont.

S.No Model LogL AIC * BIC HQ

184 (3,3)(0,0) −2410.12 10.0755 10.14507 10.10285
185 (0,2)(0,2) −2413.09 10.07956 10.13173 10.10007
186 (1,1)(0,2) −2415.13 10.08806 10.14023 10.10857
187 (3,4)(0,0) −2414.33 10.0972 10.17546 10.12797
188 (2,4)(0,1) −2420.86 10.12441 10.20266 10.15517
189 (4,0)(0,1) −2425.7 10.13625 10.19712 10.16018
190 (1,4)(0,1) −2425.03 10.13763 10.20719 10.16497
191 (3,0)(0,1) −2428.28 10.14283 10.19501 10.16334
192 (1,0)(0,2) −2432.85 10.1577 10.20118 10.17479
193 (2,0)(0,1) −2438.02 10.17927 10.22275 10.19636
194 (2,3)(0,2) −2443.55 10.21894 10.2972 10.24970
195 (4,1)(0,0) −2446.57 10.2232 10.28407 10.24713
196 (0,3)(0,1) −2448 10.22502 10.27719 10.24553
197 (0,4)(0,1) −2447.53 10.22723 10.2881 10.25115
198 (0,1)(0,2) −2451.81 10.23672 10.28019 10.25381
199 (1,3)(0,1) −2450.47 10.23947 10.30034 10.26340
200 (2,2)(0,0) −2457.99 10.26662 10.31879 10.28713

* Indicates the preferred parameter for the selection of ARIMA model in this study.

Appendix B
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