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Abstract: This study aimed to investigate the applicability of deep learning algorithms to (monthly) 
surface water quality forecasting. A comparison was made between the performance of an auto-
regressive integrated moving average (ARIMA) model and four deep learning models. All predic-
tion algorithms, except for the ARIMA model working on a single variable, were tested with uni-
variate inputs consisting of one of two dependent variables as well as multivariate inputs containing 
both dependent and independent variables. We found that deep learning models (6.31–18.78%, in 
terms of the mean absolute percentage error) showed better performance than the ARIMA model 
(27.32–404.54%) in univariate data sets, regardless of dependent variables. However, the accuracy 
of prediction was not improved for all dependent variables in the presence of other associated water 
quality variables. In addition, changes in the number of input variables, sliding window size (i.e., 
input and output time steps), and relevant variables (e.g., meteorological and discharge parameters) 
resulted in wide variation of the predictive accuracy of deep learning models, reaching as high as 
377.97%. Therefore, a refined search identifying the optimal values on such influencing factors is 
recommended to achieve the best performance of any deep learning model in given multivariate 
data sets. 
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1. Introduction 
Interest in deep learning for predictive modeling is growing from scientific commu-

nity in the fields of hydrology and water resources [1–3]. This is particularly true for those 
who take advantage of better performance from deep learning than its traditional coun-
terparts such as machine learning and statistical models [1,4,5]. The research applied to 
hydrologic and water quality (time series) data ranged from flood and run-off forecasting 
through water quality and quantity modeling to modern chemical process, fisheries, and 
aquacultural engineering, just to name a few [6–10]. Despite its potential advantages, the 
performance of deep learning was found to be highly sensitive to the number, size, and 
type of layers, and to a less obvious extent, loss functions, optimization procedures, and 
so on [11,12]. Yet, there is less consensus about the design and configuration of more ef-
fective deep learning models for data compiled at different spatial and temporal resolu-
tions from various water monitoring programs. 

Recent evidence suggests that a hybrid deep learning model combining more than 
two algorithms (in series) outperforms any standalone model which is eligible to time 
series prediction [9,13,14]. Barzegar et al. [8] found that the model merging a convolu-
tional neural network (CNN) and a long short-term memory (LSTM) was superior to sin-
gle-task learning approaches in predicting short-term water quality variables at a partic-
ular lake, for example. The study of Yan et al. [15] showed that the predictive model based 
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on three algorithms accurately described the cross-sectional water quality profiles, com-
pared to single and multiple ones with two algorithms. Sha et al. [13] also reported sub-
stantial performance improvement of the proposed model integrating the hybrid CNN-
LSTM and decomposition methods over existing ones when forecasting periodic and non-
periodic water quality parameters observed in real time. It should be noted, however, that 
there are still many studies showing the effectiveness of a single deep learning model as 
well as the model implementing deep learning and other traditional approaches for spe-
cific prediction tasks of hydrologic and water quality variables [12,16–20]. 

In parallel, the usefulness of machine learning models in predicting hydrologic and 
water quality parameters, including other associated variables, was also studied widely 
in the latest research [21–26]. This is because the predictive methods such as gene expres-
sion programming, model tree, and evolutionary polynomial regression adopted in those 
studies are particularly useful for developing explicit formulas which provide physical 
insights into hydrologic and water quality processes unlike other typical black-box algo-
rithms (i.e., common machine learning and deep learning models) [21,23,24]. In those 
studies, the performance of the proposed approaches, including other advanced variants 
connecting one machine learning model to another, was evaluated with various statistical 
measures (e.g., the correlation coefficient, scatter index, and bias), in addition to uncer-
tainty, reliability, and resilience analyses [21–26]. There were also continuous attempts of 
reducing the number of input variables manually (by eliminating one variable at a time) 
or automatically (with the help of various statistical techniques such as the principal com-
ponent analysis and improved grey relational analysis), regardless of the types of data-
driven models [23,24,27]. Considerable efforts have been still devoted not only to compare 
the predictive accuracy between machine learning and deep learning algorithms, but also 
to improve their learning process [28]. However, there is an urgent need to establish uni-
versal scientific methods in terms of statistical measures, variable selection, and some ad-
ditional analyses which assess the robustness and reliability of sequential and non-se-
quential (data-driven) models. 

In the absence of strict guideline for selecting the best candidate (deep learning ap-
proach) among them, this study was motivated to address how input data (settings) af-
fected the accuracy of four deep learning models used for short-term surface water quality 
prediction. More specifically, this study adopted three standalone and one hybrid deep 
learning algorithms specialized for time series prediction: to investigate their performance 
against (1) univariate data sets consisting of single dependent variable (i.e., one of two 
target parameters), as well as (2) multivariate data sets constructed with both one depend-
ent and nine independent variables and (3) to identify other influencing factors (i.e., the 
number of (important) input variables, sliding window size, and relevant variables) lead-
ing to variation in their performance. We believe that the proposed methodology not only 
helps develop a strategic plan for short-term change in water quantity and quality in a 
timely manner, but also encourages the understanding of the complex dynamics of natu-
ral systems such as water resources and wetlands. 

2. Materials and Methods 
2.1. Monitoring Stations and Data Collection 

We selected four water quality monitoring sites, Paldang (PD), Mulgeum (MG) 
Daecheong (DC), and Juam (JA), to assess the performance of four different types of deep 
learning models (Figure 1). Note that those monitoring stations are known as representa-
tive and major stations which provide a broad overview of water quality status at four 
major rivers (i.e., the Han, Nakdong, Geum, and Yeongsan/Seomjin Rivers) in Korea. In 
addition, the stations PD, DC, and JA were located at dams which regulated the tail water 
flow and elevation along the river networks, whereas the other was selected from the 
downstream channel to examine the difference in their prediction performance between 
stagnant and running waters. 
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In these monitoring stations, water quality data were compiled on a monthly basis 
from January 2009 to December 2018 through the Water Environment Information System 
which was maintained by the National Institute of Environmental Research, Korea. Out 
of a total of 43 water quality parameters observed, we used only 10 water quality variables 
with relatively few missing values for the given period (Table 1). These included water 
temperature (°C), pH (-), dissolved oxygen (mg/L), biochemical oxygen demand (BOD, 
mg/L), chemical oxygen demand (mg/L), suspended solids (mg/L), electrical conductivity 
(µS/cm), total nitrogen (mg/L), total phosphorus (T-P, mg/L), and total coliforms (cfu/100 
mL). Discharge at the closest water quality monitoring stations was taken in the same 
period from the Water Management Information System operated in the Han River Flood 
Control Office, Korea. We also collected other relevant record, meteorological data, for the 
corresponding period, which were available publicly at Open MET Data Portal in the Ko-
rea Meteorological Administration. Note that meteorological data adjacent to each water 
quality monitoring station are aggregated by month using the average (operation) for air 
temperature, relative humidity, and wind speed as well as using the sum for precipitation 
and solar radiation. Similarly, the sum aggregate function was used to transform flow rate 
data from daily to monthly time resolution. Any missing value in discharge was also re-
placed by imputed values using a linear interpolation approach. 

 
Figure 1. Water quality monitoring locations at four major rivers in Korea applied to time series 
prediction models. 

Table 1. Descriptive statistics of water quality parameters monitored (monthly) at four different monitoring stations (PD, 
MG, DC, and JA) during the period of 2009 to 2018 (n = the number of data and CV = the coefficient of variation). 

Variables Units n 
PD MG DC JA 

Mean CV Mean CV Mean CV Mean CV 
Water temperature °C 120 13.08 0.60 16.64 0.51 15.09 0.51 11.81 0.40 

pH – 120 7.77 0.10 8.03 0.05 7.85 0.05 6.93 0.05 
Dissolved oxygen mg/L 120 10.41 0.24 10.63 0.23 9.75 0.27 7.57 0.37 

Biochemical oxygen demand mg/L 120 1.16 0.31 2.17 0.36 0.95 0.25 0.84 0.24 
Chemical oxygen demand mg/L 120 3.69 0.16 6.33 0.19 4.12 0.17 2.97 0.12 

Suspended solids mg/L 120 6.42 1.20 16.35 1.12 2.70 0.56 1.99 0.54 
Electrical conductivity µS/cm 120 168.93 0.23 314.37 0.33 146.05 0.13 74.81 0.12 

Total nitrogen mg/L 120 2.08 0.18 2.81 0.24 1.45 0.23 0.75 0.14 
Total phosphorus mg/L 120 0.03 0.59 0.07 0.60 0.02 0.56 0.01 0.40 

Total coliforms cfu/100 mL 120 706.90 2.85 17,694 9.25 28.56 2.03 76.18 3.30 
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2.2. Input Data Preparation 
Using all of the data (sources) listed above, various data sets were constructed to test 

the predictive accuracy of deep learning models. Firstly, we prepared two univariate data 
sets which included only one target variable. This was conducted because the baseline 
forecasting method, an autoregressive integrated moving average (ARIMA) model, to be 
compared to the adopted deep learning models, only accepted a single time series (see 
Section 2.3). For each performance test of these univariate data sets, either BOD or T-P was 
selected as the (target) dependent variable. Next, two multivariate data sets consisting of 
one of two target parameters (e.g., BOD or T-P) as well as the remaining 9 parameters out 
of 10 observed variables were built not only to examine the performance variation in deep 
learning models depending on dependent variables, but also to compare their accuracy to 
that of univariate data sets. Finally, several factors which were capable of affecting model 
performance were also evaluated by creating three different multivariate data sets. Those 
data sets were, in particular, developed by increasing the number of important independ-
ent variables (from 3 to 9), adjusting sliding window size in multiple input multi-step 
output (deep learning) models (from 9 through 12 to 15 months for multiple input and 
from 1 through 2 to 3 months for multi-step output), and incorporating additional varia-
bles such as discharge and meteorological data in the given multivariate data sets. Note 
that square root and log (with a base of 10) transformation are applied to BOD and T-P 
variables in univariate data sets, respectively, whereas the standardization method 
(namely, Z-score normalization) is used to make all independent variables, except for de-
pendent variable, on the same scale in multivariate data sets. However, the ARIMA model 
was fitted to the raw time series data. All decisions of adopting different data prepro-
cessing processes were made by trial and error to maximize the performance of all pre-
dictive models tested. 

2.3. Applied Prediction Algorithms 
We performed benchmark tests on different data sets using various (time series) pre-

diction algorithms (Figure 2). In a series of tests, while the ARIMA played a role as the 
baseline model, three standalone and one hybrid deep learning algorithms were adopted 
for performance comparison with the reference ARIMA model. The prediction accuracy 
for all prediction algorithms is assessed in terms of the mean absolute percentage error 
(MAPE, in unit of %), which is one of the most common performance measures in time 
series forecasting. The deep learning algorithms we used were recurrent neural network 
(RNN), gated recurrent unit (GRU), LSTM, and those combined with CNN and GRU, all 
of which were widely applied to modern time series data. The chosen architecture of all 
applied deep learning models, except for the LSTM algorithm which included 2 layers of 
LSTM cells (namely, a stacked LSTM) as well as the hybrid algorithm which consisted of 
(1D) convolutional layer, max pooling layer, and GRU layer in series, had a single hidden 
layer. Note that we only apply a dropout rate of 0.2 and a recurrent dropout rate of 0.2 to 
the hidden layer in a single GRU algorithm. Moreover, while RNN, GRU and the initial 
layer of LSTM cells adopted the hyperbolic tangent (namely, tanh) function as non-linear 
activation, the rectified linear unit (namely, ReLU) function was used in the second layer 
of LSTM cells as well as convolutional layer in the hybrid algorithm. The root mean 
squared propagation (namely, RMSprop) was used to improve training speed and perfor-
mance of all applied deep learning algorithms, where the learning rate and rho were set 
to 0.001 and 0.9, respectively. The total number of trainable model parameters were 708 
for RNN, 415 for GRU, 29,761 for stacked LSTM, and 8,705 for hybrid one. More detailed 
information on those implemented models such as textual summary and graph plot is 
documented in the final project report [29]. 

The use of a free statistical software R (Ver. 4.0.4, The R Foundation, Vienna, Austria) 
as well as RStudio (Ver. 1.3.1073, RStudio, PBC., Boston, USA) allowed us to evaluate the 
performance of all prediction algorithms, including the ARIMA model. More specifically, 
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we used the forecast package (Ver. 8.13) in R to automatically search the best ARIMA 
model for the given univariate time series (from the auto.arima function). Different types 
of deep learning algorithms were also developed and assessed in R using the keras pack-
age (Ver. 2.4.0), a high-level deep learning library developed originally for Python, re-
gardless of univariate and multivariate time series. Note that manipulation of time series 
data is conducted with the zoo package (Ver. 1.8-8). All developed deep learning algo-
rithms were applied on partitioned data sets consisting of 70% of the data for training (n 
= 84) and the remaining 30% for testing (n = 36). The partitioned data sets were divided 
again into several equal segments (i.e., multiple samples) using an overlapping sliding (or 
moving) window with 1 month sliding interval to maximize the amount of data provided 
to deep learning algorithms. In other words, the windows where 9 and 3 (monthly) time 
steps were adopted as input and output (in multiple input multi-step output models), 
respectively, slid by 1 month. In this case, the following window overlapped with the 
preceding window by 8 (for input) and 2 months (for output). Those deep learning algo-
rithms were trained for 100 epochs with a batch size of 12. 

 
Figure 2. Schematic diagram illustrating a series of steps used to evaluate all applied time series 
models, including (input and output) data preparation. 

2.4. Variable Selection 
Removing irrelevant variables from the data sets assists in not only reducing the ex-

ecution time of predictive models, but also enhancing their performance. For this study, 
the selection of important variables (namely, feature selection) was conducted easily with 
the help of the scikit-learn package, a popular library for machine learning in Python. The 
criterion for ranking all candidate independent variables we employed was the Pearson 
correlation coefficient (provided through the f_regression function). Note that the reticu-
late package (Ver. 1.20) in R enables us to use and run any Python code such as modules, 
classes, and functions immediately in a R environment. During the tests, the variables to 
be included in the model increased progressively from 3 to 9 (based on the variable im-
portance determined from the Pearson correlation coefficient). 
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3. Results and Discussion 
3.1. Performance Assessment on Univariate Data Sets 

Table 2 presents the performance of all prediction algorithms for two dependent var-
iables (i.e., BOD and TP) at four different monitoring locations (i.e., PD, MG, DC, and JA) 
using testing data in univariate data sets, in terms of MAPE (%). Note that the accuracy of 
prediction algorithms for testing data is almost equivalent to or lower than that of training 
data (not shown here for simplicity). Furthermore, the lower the MAPE is, the better the 
accuracy of prediction algorithm is. It was found from the table that the ARIMA model 
recorded higher error rates than four deep learning models (i.e., RNN, GRU, LSTM2, and 
HYBRID1), regardless of dependent variables as well as monitoring sites. In fact, the 
ARIMA model results achieved error rates as low as 27.32% for BOD and 27.61% for T-P. 
In contrast, deep learning models yielded MAPE values in the range of 6.51–18.78% for 
BOD and 7.98–18.66% for T-P. In addition, the predictive accuracy of the ARIMA model 
varied widely from station to station as well as from variable to variable. This inconsistent 
performance of the ARIMA model was similar to the results observed for deep learning 
models. In summary, even though we do not specify a universal model which works best 
in any situation, deep learning models lead to better performance the traditional method 
ARIMA. At this moment, we cannot clearly explain why both ARIMA and deep learning 
models show heterogeneous (prediction) performance according to stations and depend-
ent variables. 

Table 2. The predictive accuracy of five prediction algorithms (i.e., ARIMA plus four deep learning models) for two targe 
variables (i.e., BOD and T-P) at four different monitoring stations (PD, MG, DC, and JA) in univariate data sets in terms 
of MAPE (%). 

Prediction Algorithms 
BOD T-P 

PD MG DC JA PD MG DC JA 
ARIMA 109.64 404.54 27.32 43.97 27.61 69.14 40.70 36.16 

RNN 7.91 18.78 6.51 10.90 13.06 8.82 11.32 8.08 
GRU 9.50 18.54 8.84 10.37 17.47 9.63 18.26 7.98 

LSTM2 7.46 15.60 11.14 10.59 13.54 9.96 13.91 9.65 
HYBRID1 7.46 15.61 7.73 10.27 18.66 10.17 11.21 8.24 

3.2. Performance Assessment on Multivariate Data Sets 
The performance of all prediction algorithms was also assessed against testing data 

in multivariate data sets, with respect to MAPE (%) (Table 3). Please be aware that the 
predictive accuracy of four deep learning algorithms is compared to that of the ARIMA 
model obtained from single dependent variable. From the table, it was observed that deep 
learning models did not always show superior performance than the ARIMA model. 
More specifically, although deep learning models provided relatively accurate forecasting 
of BOD (time series) compared to that of the ARIMA model, their predictive accuracy for 
T-P significantly decreased depending on algorithms and stations. In fact, MAPE values 
were highest for HYBRID1 in PD (108.30%), RNN in MG (368.80%), and GRU in DC 
(121.80%) and JA (243.60%). Taken together, adding more independent (water quality) 
variables to deep learning models neither necessarily improves the accuracy of prediction 
nor maintains the performance steadily across stations. 
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Table 3. The predictive accuracy of five prediction algorithms (i.e., ARIMA plus four deep learning models) for two target 
variables (i.e., BOD and T-P) at four different monitoring stations (PD, MG, DC, and JA) in multivariate data sets in terms 
of MAPE (%). 

Prediction Algorithms 
BOD T-P 

PD MG DC JA PD MG DC JA 
ARIMA 109.64 404.54 27.32 43.97 27.61 69.14 40.70 36.16 

RNN 40.40 48.91 27.10 27.69 57.68 368.80 40.76 22.22 
GRU 36.06 29.03 25.20 26.16 96.20 183.00 121.80 243.60 

LSTM2 39.08 32.91 24.54 25.02 54.84 71.91 54.33 42.26 
HYBRID1 64.75 39.99 21.98 17.61 108.30 81.54 31.32 37.06 

3.3. Influence of Other Factors on Performance 
3.3.1. The Number of Input Variables 

Figure 3a,b displays the variation in the performance of a particular deep learning 
model LSTM2 for BOD and T-P at four monitoring sties in response to the number of 
(input) variables, respectively. Note that independent variables are added sequentially to 
the model according to their importance provided by the proposed variable selection ap-
proach (see Section 2.4). As can be seen in the figures, MAPE values of the LSTM2 model 
changed significantly based on the number of input variables, regardless of target varia-
bles BOD and T-P. The accuracy of prediction was often improved by incorporating a few 
variables in the model at some stations (e.g., one more variable for BOD at PD and two 
more variables for T-P at PD), but its performance fluctuated remarkably among four sta-
tions. In some cases, the error rates were further reduced by incorporating the maximum 
number of variables (i.e., eight parameters), as compared to the minimum number of var-
iables (i.e., three parameters). All these results reveal that determining the optimal num-
ber of input variables is a very complex task that inevitably requires an iterative process 
of searching for the minimal error for a given multivariate data set. 

 
Figure 3. Changes in MAPE values of the LSTM2 model for (a) BOD and (b) T-P at four monitoring 
locations according to the number of input variables. 
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3.3.2. Sliding Window Size 
The influence of sliding window size on the accuracy of prediction was also studied 

in the LSTM2 model at three stations (Table 4). In the table, MAPE values of the LSTM2 
model at PD was specifically excluded due to extremely low performance ranging from 
105 (ten to the power of five) to 107% (ten to the power of seven). It was determined from 
the table that either increasing (multiple) input steps from 9 through 12 to 15 months or 
decreasing multi-step output from 1 through 2 to 3 months did not simply result in the 
performance improvement of a particular deep learning model. In addition, the predictive 
accuracy did not increase gradually in accordance with dependent variables as well as 
stations. Consequently, altering time steps involved in input and output definitely causes 
the variation in the accuracy of prediction. However, the best performance of a given deep 
learning algorithm can be achieved through an iterative search for the optimal sliding 
window size at each station, as discussed in Section 3.3.1. 

3.3.3. Relevant Variables 
Figure 4a,b illustrates changes in the predictive accuracy of four deep learning mod-

els for BOD and T-P at one particular monitoring site DC when more independent varia-
bles associated with water quality are added. The relevant variables included additionally 
in the model were discharge and five different meteorological variables (see Section 2.1). 
In the figures, individual parameters belonged to the upper category are labeled as W for 
water quality variables, M for meteorological variables, and D for discharge variable only. 
The error bars indicate the standard deviation of MAPE values obtained from four deep 
learning models. It was confirmed from the figure that incorporating both discharge and 
meteorological variables into deep learning models helped elevate the predictive accuracy 
of BOD, whereas the reverse is true for T-P. Out of all possible combinations of variables 
examined, the contribution of discharge variable to reduction in error rates was relatively 
larger than those of meteorological variables only as well as meteorological plus discharge 
variables, regardless of the dependent variables. 

Table 4. The predictive accuracy of the LSTM2 algorithm for BOD and T-P based on different input 
(ranging from 9 through 12 to 15 months) and output steps (ranging from 1 through 2 to 3 months) 
in terms of MAPE (%). 

Input and Output 
Steps 

BOD T-P 
MG DC JA MG DC JA 

9 + 1 24.69 22.9 22.90 15.17 24.58 21.63 
9 + 2 33.70 22.55 22.55 18.36 24.11 39.17 
9 + 3 27.56 26.16 26.16 19.34 24.71 22.12 

12 + 1 29.55 23.90 23.90 15.48 39.64 20.70 
12 + 2 37.43 27.16 27.16 18.70 26.53 22.69 
12 + 3 33.12 26.69 26.69 19.91 25.00 23.33 
15 + 1 26.21 24.50 24.50 14.99 24.41 24.29 
15 + 2 32.91 24.33 24.33 21.18 25.50 24.58 
15 + 3 34.81 25.14 25.14 19.27 26.85 24.57 
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Figure 4. Changes in MAPE values of four deep learning models for (a) BOD and (b) T-P at one 
monitoring location DC in response to different multivariate data sets containing water quality var-
iables only (indicated as W), water quality, meteorological, and discharge variables (indicated as W 
+ M + D), water quality and meteorological variables (indicated as W + M), and water quality and 
discharge variables (indicated as W + D). 

4. Conclusions 
The intention of this study was to assess the predictive ability of deep learning algo-

rithms for surface water quality in the short term. We constructed and employed three 
individual and one hybrid algorithms, which were widely adopted for time series predic-
tion, to compare their performance to that of the traditional approach, ARIMA. By provid-
ing the modified data sets to all prediction models, the following conclusions were made. 
• All deep learning algorithms applied to univariate data sets achieved more reliable 

forecasts than the ARIMA model whatever the dependent variables BOD and T-P. 
However, the performance of all prediction models, including ARIMA, was heavily 
dependent on monitoring stations. 

• Using multivariate data sets, we observed noticeable improvement in the predictive 
accuracy of deep learning models for BOD rather than for T-P (in contrast to that of 
the ARIMA model derived from each dependent variable). This implied that addi-
tional water quality variables did not always enhance the accuracy of prediction for 
all target variables. 

• The number of input variables and sliding window size (input and output steps in 
the models) were responsible for changes in the performance of deep learning mod-
els. The highest prediction accuracy of deep learning models was achieved with the 
addition of discharge variable (to existing multivariate data sets), instead of using 
other data sets merging water quality and relevant parameters such as meteorologi-
cal variables or both meteorological and discharge variables. In our case, this as-
sumption is, however, only valid for prediction of BOD (time series). 

• As a preliminary study, this study did not examine the effectiveness of other ad-
vanced variants such as encoder-decoder model and attention mechanism, which 
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evolved from traditional deep learning approaches proposed for time series forecast-
ing. More research is, therefore, needed to verify the superiority of those single algo-
rithms, in addition to ensemble learning which combine predictions from multiple 
(deep learning) models to improve its prediction accuracy over a standalone model. 
Moreover, as the performance of deep learning algorithms was noticeably affected 
by the amount of data, model architectures, and dependent variables, these issues 
should be carefully addressed when developing short-term surface water quality 
prediction models, specifically using data sets updated monthly or weekly. 
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