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Abstract: Soil microorganisms provide valuable ecosystem services, such as nutrient cycling, soil remedia-
tion, and biotic and abiotic stress resistance. There is increasing interest in exploring total belowground
biodiversity across ecological scales to understand better how different ecological aspects, such as stand
density, soil properties, soil depth, and plant growth parameters, influence belowground communities. In
various environments, microbial components of belowground communities, such as soil fungi, respond
differently to soil features; however, little is known about their response to standing density and vertical
soil profiles in a Chinese fir monoculture plantation. This research examined the assemblage of soil fungal
communities in different density stands (high, intermediate, and low) and soil depth profiles (0–20 cm and
20–40 cm). This research also looked into the relationship between soil fungi and tree canopy characteristics
(mean tilt angle of the leaf (MTA), leaf area index (LAI), and canopy openness index (DIFN)), and general
growth parameters, such as diameter, height, and biomass. The results showed that low-density stand soil
had higher fungal alpha diversity than intermediate- and high-density stand soils. Ascomycota, Basidiomy-
cota, Mucromycota, and Mortierellomycota were the most common phyla of the soil fungal communities, in
that order. Saitozyma, Penicillium, Umbelopsis, and Talaromyces were the most abundant fungal genera. Stand
density composition was the dominant factor in changing fungal community structure compared to soil
properties and soil depth profiles. The most significant soil elements in soil fungal community alterations
were macronutrients. In addition, the canopy openness index and fungal community structure have a
positive association in the low-density stand. Soil biota is a nutrient cycling driver that can promote better
plant growth in forest ecosystems by supporting nutrient cycling. Hence, this research will be critical
in understanding soil fungal dynamics, improving stand growth and productivity, and improving soil
quality in intensively managed Chinese fir plantations.

Keywords: soil fungal composition; vertical soil profiles; stand density; soil health; sub-tropical
forest; Southern China
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1. Introduction

Soil microorganisms are an essential component of forest soils, as they help with
energy flow and nutrient conversion in forest ecosystems. In addition, by assisting in the
degradation of soil organic matter (SOM), they also serve as indicators of soil health, soil
toxicology, and tree planting conditions [1,2] because soil microbiota is most sensitive to
any changes in the soil microenvironment [3]. Despite extensive research on soil microor-
ganisms worldwide, the functions of the majority of microbes remain unknown, as only a
small percentage (1–2%) of microbes can be isolated, cultured, and identified [4]. Fungi
(eukaryotic microorganisms) play an important ecological fundamental role as mutualists,
decomposers, and pathogens of animals and plants [5]. They mediate plant mineral nutri-
tional status, promote carbon (C) cycling in soils, and alleviate C limitations in other soil
microbiota [6].

Plantation productivity, stand growth, canopy structure, and soil fertility all are influ-
enced by various forest management practices, such as stand density and spacing [7–9],
stand structure [10], species genotype [11], use of cutting [12], seed germination meth-
ods [13,14], use of inorganic and organic amendments [15], and planting pattern [16].
Among them, plantation stand density is a crucial subject in silvicultural techniques. By
altering root distribution and canopy density, stand density and pattern directly affect plant
survival and growth and indirectly influence the composition of understory vegetation and
soil ecosystem functioning. Variable stand density has been identified as a significant factor
in plant-soil feedback in various studies [17,18]. In terms of productivity, Farooq et al. [7]
mentioned that the general growth and survival rate of individual trees was usually better
in the low-density stand; still, overall stand yield and biomass production were higher in
intermediate and high-density stands.

Furthermore, the light intensity was abundant in the low-density stands, allowing for
rapid decomposition of litter and, ultimately, the accumulation of acid matter in the soil [19].
In terms of soil fertility, Lei et al. [20] demonstrated that soil nutrients in less dense stands
were more critical for improving soil health than soil nutrients in densely planted stands.
According to Farooq et al. [8], the low-density stand had more soil total nitrogen (TN), soil
available nitrogen (AN), and total phosphorus (TP), while the intermediate-density stand
had higher soil available phosphorus (AP) and soil organic matter (SOM). Although these
researchers made significant contributions to our knowledge of the impacts of planting
density on stand growth and soil properties in forest ecosystems, they paid less attention to
how planting density and spacing affect soil fungal communities. Soil fungal functioning
under different forest management practices can directly impact tree survival, tree growth,
and overall stand productivity, specifically because of root and mycorrhizal interaction.
Moreover, fungi contribute to the decomposition of SOM and provide essential nutrients
for plant growth. Thus, their role is vital in plant protection as biological agents, which
directly influences soil health.

Plantations play an important role in Chinese forest ecosystems; in these plantations,
the Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is a common species. It is a species
of evergreen coniferous tree known for its high yield, superior timber quality, and rapid
growth [21]. Chinese fir plantations play a vital role in climate regulation as well as for soil
and water conservation. It is widely distributed across 16 provinces of China, primarily in
central and southern China [22]. Since the 1980s, due to numerous afforestation projects,
the area under Chinese fir plantations has experienced significant growth [23]. It covers
more than 11 million hectares, accounting for 24% of China’s total forest plantations [8].
Plantations are usually fast-growing species with shorter rotation cycles compared to
broadleaved natural forests and mixed-species forests. These plantations are artificial and
managed differently than natural forest stands. Moreover, natural forests have typically
stable vegetation with natural rotation cycles and less human interference than plantations.
Soil fertility in forest ecosystems can be influenced by forest composition and structure,
and different silvicultural methods can directly influence the soil microbiota.
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Some studies about soil fungal diversity and composition in soils under Chinese fir
monoculture have been conducted; however, more emphasis has been placed on different
aged plantations, chronosequence, and provenance trails. There has been insufficient
research on fungal soil dynamics concerning stand growth and soil properties of conif-
erous plantations established at various stand density levels. Therefore, the objectives
of this are (i) to look at the impact of altering stand density on soil fungal diversity and
community composition and (ii) to analyze the association between soil fungal diversity,
tree canopy growth, component biomass production, and soil quality indicators in Chinese
fir monoculture. We hypothesized that (i) varying stand density and planting spacing
would significantly influence soil fungal diversity and composition, and (ii) the relationship
of soil fungal dynamics with canopy growth, tree component biomass, and soil quality
parameters would be strongly positive under varying stand densities.

2. Materials and Methods
2.1. Study Site and Plantation Establishment

The experiment was conducted in Chinese fir plantation stands at the Xinkou Research
Forest Farm in Sanming City, Fujian Province, Southern China (26◦10′ N and 117◦27 E).
Silty Oxisol was a type of soil that was acidic. The research area has a humid subtropical
monsoon climate with a mean annual temperature of 19 ◦C, average annual rainfall of
1612 mm, and average annual relative humidity of 80%. According to research objectives,
three Chinese fir monoculture stands established at different stand densities, i.e., low
density (1450 trees hm2 with 2.36 × 2.36 m spacing), intermediate density (2460 trees
hm2 with 1.83 × 1.83 m spacing), and high density (1450 trees hm2 with 1.44 × 1.44 m
spacing) were selected. These stands were named PD1, PD2, and PD3, respectively. The
selected stands were located at an elevation range of 205 to 500 (a.s.l). These experimental
stands were established in 2007–2008 from seedlings (1-year-old) after clear-cutting. For
the first three years, weeding was done twice a year, followed by once a year after that.
All the selected experimental stands are present in the same research station and share
the same agronomic practices and climatic conditions. The understory vegetation layer
was composed of Callicarpa kochiana Makino, Woodwardia japonica (L.f.) Sm., Ilex pubescens
Hook. & Arn., Selaginella moellendorffii Hieron., Alpinia japonica Miq. and Maesa japonica
Moritzi ex Zoll. Average DBH in PD1, PD2, and PD3 was 13.05 cm, 12.46 cm, and 11.04 cm,
respectively, whereas average height was 12.41 m, 12.01 m, and 11.63 m, respectively.
Moreover, the average mortality rate was 8.37%, 9.69%, and 11.99%, respectively. Details of
growth parameters and biomass production are reported in our published paper [7].

2.2. Soil Sampling and Physiochemical Analysis

Three 20 × 20 m plots were established for each density stand to explore the fungal
flora for nine plots. To avoid pseudoreplication, the minimum distance between the
established plots was kept at 400 m. A soil auger (3.5 cm diameter) was used for soil
sampling at two depths (i.e., 0–20 (U) and 20–40 cm (L)) within a 25-cm radius of the
tree root. A five-point sampling method with an S-shaped pattern was used to minimize
spatial heterogeneity-related inaccuracy to make one soil sample with three replicates.
After sampling, roots were softly shaken to eradicate tenuously connected soil, and firmly
connected soil was swept aside. Finally, three composite samples per density per soil
depth were obtained, separated into two portions and instantly stored in an icebox. In
the laboratory, one portion was kept at −80 ◦C to isolate DNA for fungal flora analysis,
and the other portion was air-dried for soil physicochemical analysis. Methods for soil
physiochemical analysis are mentioned in (Table 1).
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Table 1. Methods used for soil physicochemical properties analysis [8].

Analysis Method/Equipment

pH Potentiometric method (1:2.5 soil:water)
Electrical conductivity (EC) Conductivity meter

Bulk density (BD) The core method of the Nanjing Institute of Soil Science (1978)
Total nitrogen (TN) CN elemental analyzer

Total phosphorus (TP) Molybdenum-antimony colourimetric method
Total potassium (TK) Flame photometry
Total calcium (TCa) CN elemental analyzer

Total magnesium (TMg) CN elemental analyzer
C:N ratio CN elemental analyzer

Soil moisture content (SMC) Calculated based on a wet and dry weight

To minimize the direct influence of shrubs and herbs, we chose those trees for sampling
where the presence of shrubs and herbs around the canopy projection area of trees was
considerably less. Still, these are open (field) conditions; hence, the indirect influence might
be possible. Moreover, we tried to select the plots with uniform topography to minimize
the local terrain impact on trees/vegetation.

2.3. Soil Physiochemical Properties and Canopy Dynamics

Soil pH, SOM, and TMg were significantly lower in PD1, while between PD2 and PD3
there was no significant change observed. Soil BD, EC, SMC, TK, TCa and C:N showed no
significant change with the stand density of Chinese fir. However, TN and TP showed a
variable trend with the change in density stand of Chinese fir (Table 2). Moreover, LAI and
MTA grew as the stand density increased, whereas the DIFN followed an opposite pattern
(Table 3). This article briefly stated the soil properties and canopy dynamics; however, the
soil fertility indices are detailed in [8] and canopy dynamics in [9].

Table 2. The physicochemical features of soil in selected Chinese fir stands of various densities. Different small letters
indicate the significant difference among stand densities at p > 0.05 [8].

(A)

Stand Density pH aBD (g/m3) EC SOM (g/kg) SMC (%) Soil Type

Low (PD1) 4.21 b 1.22 ab 0.02 a 31.90 b 11.49 b SO

Intermediate (PD2) 4.31 a 1.28 a 0.02 a 36.56 a 9.53 b SO

High (PD3) 4.27 a 1.16 b 0.02 a 35.47 a 17.2 b SO

(B)

Stand Density TN (g/kg) TP (g/kg) TK (g/kg) TMg (g/kg) TCa (g/kg) C/N

Low (PD1) 0.99 a 0.59 a 22.5 a 7.02 b 2.23 a 15.21 a

Intermediate (PD2) 0.74 c 0.48 b 21.2 a 8.51 a 2.25 a 15.80 a

High (PD3) 0.92 b 0.59 a 21.8 a 7.79 ab 2.14 a 15.59 a

Note: Shown values of aBD, soil bulk density; EC, soil electrical conductivity; SOM, soil organic matter; SMC, soil moisture content; TN,
soil total nitrogen; TP, soil total phosphors; TK, soil total potassium; TMg, soil total magnesium; TCa, soil total calcium; C/N, carbon to
nitrogen ratio.
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Table 3. Canopy growth properties of selected Chinese fir different density stands. Different small letters indicate the
significant difference among stand densities at p > 0.05 [9].

Stand Density aLAI LAIe (m2 m−2) MTA (o) DIFN ACF FNC (g/kg)

Low (PD1) 3.97 c 2.48 c 34.8 b 0.15 a 0.990 b 16.92 a
Intermediate (PD2) 4.56 b 2.85 b 44.5 ab 0.11 b 0.993 ab 13.51 b

High (PD3) 5.07 a 3.17 a 48.7 a 0.09 b 0.995 a 15.93 a

Note: Shown values of aLAI, leaf area index; LAIe, leaf area index effective; MTA, mean tilt angle of leaf; DIFN, canopy openness index;
ACF, apparent clustering factor; FNC, foliar nitrogen concentration.

2.4. DNA Extraction, PCR Amplification, and Illumina Hiseq 2500 Sequencing

Extraction of DNA was done from soil samples according to the manufacturer’s
instructions using the EZNA stool D.N.A. Kit (Omega Bio-Tech, Norcross, GA, United
States). By using primers ITS3_KYO2F and ITS4R, PCR was used to amplify the ITS region
of the eukaryotic ribosomal RNA gene (95 ◦C for 2 min, then 98 ◦C for 10 s, 62 ◦C for 30 s,
and 68 ◦C for 27 cycles) 30 s, and then extended for 10 min at 68 ◦C). PCR reactions were
carried out in triplicate with a 50-µL mixture containing 5 µL of 10× KOD. Buffer, 5 µL of
2.5 mM dNTPs, 1.5 µL of each primer (5 µM), 1 µL of KOD. Polymerase, and 100 ng of
template DNA. The AxyPrep D.N.A. Gel Extraction Kit (Axygen Biosciences, Union City,
CA, US) was used to extract amplicons from 2% agarose gels, purify them, and quantify
them using QuantiFluor ST (Promega, Madison, WI, US). Purified amplicons were pooled
in equimolar quantities and sequenced using standard procedures on an Illumina platform.

2.5. Sequence Processing and Functional Assignment

The unprocessed ITS gene sequencing reads were demultiplexed, quality-filtered by
Trimmomatic, then combined by FLASH with a baseline overlap of 10 bp and a mismatch
error rate of 2%. (version 1.2.11). Using UPARSE (version 7.1), operational taxonomic
units (OTUs) with a 97 percent similarity criterion were grouped, and chimeric sequences
were discovered and deleted. The taxonomy of each OTU. representative sequence was
examined using the RDP Classifier, and its ITS units were compared to the UNITE database.
QIIME produced Chao1, Simpson, and all of the other alpha diversity indices using a
confidence level of 0.7 in all of the comparisons (version 1.9.1). QIIME also plotted the
OTU. rarefaction curve and rank abundance curves. The functional group (guild) of the
O.T.U.s was determined using FUNGuild (v1.0) [24,25].

2.6. Statistical Analysis

One-way analysis of variance (ANOVA) and LSD multiple comparisons were carried
out using SPSS 19.0 software to perform a significance test between groups and evaluate
the differences for total fungal abundance and diversity indices and taxa of different soils
and densities. ACE, Chao1, Simpson and Shannon indices calculated the alpha diversity
of fungal colonies in the soil. The beta-diversity for soil samples was estimated using
weighted (WT) and un-weighted (UWT.) UniFrac distance matrices based on sensitivity to
rare taxa. We used redundancy analysis (RDA) to correlate soil physiochemical properties
with soil biotic communities and created a heat map using Pearson correlation between
different fungal phyla and also between different alpha diversity indices to better know
the fundamental drivers of diversity in soil fungal communities [25].

3. Results
3.1. Distribution of Soil Fungal Communities

At all soil depths and stand densities, a total of 837,336 (average 139,556) reads were
obtained with a maximum length of 449 and a minimum length of 201 from all the soil
samples. Per sample, the number of ITS gene sequences ranged from 32,587 to 36,786.
(Figure 1). The fungal OUTs ranged from 753 to 977, depending on soil samples and
were categorized into OTUs (97 percent similarity according to rarefaction curve analysis,
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Figure 1). These findings proved that the soil sampling depth was adequate to attain the
richness and diversity of all soil samples. Subsequently, short, ambiguous, and low-quality
pyrotags, singletons and replicates reads were eliminated. The relative abundances of the
fungal taxa were examined at the phylum and genus levels to determine whether there
were any significant alterations in the composition of the fungal communities in different
density stands with two different vertical soil profiles.
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Figure 1. A rarefaction curve based on 97 percent similarity was created. PD1, PD2, and PD3 denote low-, intermediate-,
and high-density Chinese fir stands, respectively, and “U” and “L” denote the upper (10–20 cm) and lower (20–40 cm) soil
layers, respectively.

Many different phyla were detected in all soil samples in three different density stands.
However, Ascomycota, Basidiomycota, Mucromycota, and Mortierellomycota, respectively, were
most abundant in both vertical soil profiles and detected in all samples, representing 90–96%
of fungal sequences (Figure 2a). Out of all total soil samples, Ascomycota was the most
dominant phylum with 73.2%, followed by Basidiomycota and Mucromycota with 16.88% and
5.46%, respectively. Saitozyma was the most prevalent genus in the upper layer of all density
stands, followed by Penicillium, Umbelopsis, and Talaromyces (Figure 2b). Talaromyces was
the most prevalent genus in the lowest layer of low-density stands, followed by Penicillium.
Termitomyces was the most prevalent genus in the lowest layer of high-density stands,
followed by Penicillium (Figure 2b).

3.2. Soil Fungal Diversity and Communities Structure

ACE and Chao1 estimation demonstrated that the upper soil profile of each density
stand showed a higher fungal community richness than the lower vertical soil profile
(Figure 3a,b). However, In PD3-L soil samples, Simpson diversity and Shannon (SSD)
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indices, were highest compared to all other soil samples. In comparison to PD3-L, there
was also a significant decrease in PD1-L and PD2-L. SSD levels increased significantly in
PD2-U and PD3-U, but there were no substantial differences in PD1-U across all samples
(Figure 3c,d).
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Figure 2. (a) Distribution of the most abundant fungal phyla and (b) fungal genera in PD1-U, PD2-
U, PD3-U, PD1-L, PD2-L, and PD3-L soils under Chinese fir plantations. a U means upper layer
(10–20 cm), and L means lower layer (20–40 cm). b PD1, low-density stand; PD2, intermediate-density
stand; PD3, high-density stand.

According to the WT UniFrac non-metric multidimensional scaling (NMDS) analysis,
soil samples from various soil depths and stand ages created distinct and intersecting
clusters in ordination space (Figure 4a,b), indicating that fungal communities PD1-U and
PD3-L were distinguished from those in other soils. The clustering of PD2-U, PD3-U,
PD1-L and PD2-L was observed along axis-1, whereas PD1-U and PD3-L were clustered
along axis-2. Furthermore, U.W.T. UniFrac NMDS analysis demonstrated that all of the
soil samples’ fungal populations clustered along axis-1 (Figure 4a,b). The differences in the
organization of fungal communities among distinct samples were demonstrated using the
UWT pair group approach with arithmetic mean clustering analysis (UPGMA). Ascomycota
had the maximum relative abundance according to UPGMA analysis, and followed by
Basidiomycota, Mucromycota, and Mortierellomycota, respectively (Figure 5). Moreover, all
groups fungal taxonomy of different stand densities and soil depths is shown in (Figure 6).

FUNGuild provided more information on the trophic mechanisms of fungal colonies
seen in all soil samples (Figure 7). Animal pathogen fungi were the most prevalent in all of
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the soil samples, followed by fungal parasites and soil saprotrophs. Fungal functions were
split among the OTUs acquired from all soil samples, while “Unassigned” was applied to
all taxa that did not match any taxa in the database (Figure 7).
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3.3. Potential Drivers of Soil Fungal Diversity

The abundance of distinct kinds of soil fungal communities was variable and correlated
differentially with soil physicochemical parameters and alpha diversity indicators. RDA results
showed that soil physiochemical properties accounted for 35.27% of the total migration of the soil
fungal communities. RDA indicated that TK and TN were the most dominating physiochemical
properties for the soil fungal diversity, followed by TP, TCa, C:N, BD, and pH. Mucoromycota
showed a substantial positive connection with TK and TMg. Similarly, RDA also indicated a
positive correlation among Mortierellomycota with TP and TCa (Figure 8a). In the upper layer
of the soil profile, the correlation between different alpha diversity analyses revealed a negative
correlation between the DIFN with ACE and Chao1. Similarly, ACE and Chao1 had a substantial
positive link with diameter and leaves, bark, and stem biomass, while SSD had a significant
negative correlation with branch biomass. Aside from that, MTA was found to have a good
relationship with SSD. Branch biomass had a negative connection with ACE and Chao1 in the
lowest layer of the soil profile. While MTA showed a negative correlation with Chao1 (Figure 8b,c).
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Figure 8. (a) Distance-based redundancy analysis (RDA) of the correlation between the most abundant
phylum of fungi and soil physiochemical properties, such as total nitrogen (TN), total phosphorus (TP), total
potassium (TK), total calcium (TCa), total magnesium (TMg), C/N ratio, soil PH, and soil bulk density (BD)
in two soil layers of different density stands of Chinese fir plantations. (b) Correlation of the α-diversity
indices at 10–20 cm and (c) 20–40 cm soil layer with LAI, MTA, DIFN, stem biomass, bark biomass, branches
biomass, leaves biomass, roots biomass, average height, and mean diameter of different density stands of
Chinese fir plantations in Xinkou forest plantations, Sanming, Fujian, eastern China. a Soil layers, 10–20 (U)
and 20–40 cm (L). b PD1, low-density stands; PD2, intermediate-density stands; PD3, high-density stands.
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4. Discussion

Soil pH is commonly recognized as a critical factor for plant growth and development.
In study plots, the soil pH ranged from 4.2 to 4.3, indicating an acidic nature of the soil;
this is somewhat lower than the ideal soil pH range for regular growth, which is 4.5 to 6.5
and metabolism of the Chinese fir plant [20,26]. Previous research depicted that soil pH is
an important factor in determining the composition of fungal communities [27,28]. This is
an important factor because soil pH can affect fungal diversity and population dynamics
by affecting nutrient availability or imposing physiological constraints on fungal growth.
These phenomena are also supported by some previous research indicating that soil pH
significantly impacts fungal populations [29–32].

The fungal phylum of Ascomycota and Basidiomycota was significantly higher in terms
of relative abundance in all the soils. Ascomycota is the most numerous and diverse phylum
of eukaryotes in agricultural soils and the decomposers of organic substrates (e.g., leaf
litter, wood, and manure) [25,33]. Moreover, as a key decomposer, Basidiomycota produces
enzymes (peroxide) that degrade plant components such as cellulose and lignin, hence
increasing the soil’s overall carbon pool [34]. The fungal genus of Saitozyma was most
abundant in all densities; similar results were also seen in pine forest areas by [35]. The
species belonging to this genus are typically soil-borne yeasts and often also found in
environmental sequencing studies [36]. In the soil and litter of forests, species from this
genus are also most abundant and involved in the decomposition dead plant biomass [37].
Overall, this genus is involved in enhancing the total carbon pool of forest soils. The
abundance of Saitozyma in forest soils was in accordance with the [38]. The fungal genus
of Penicillium was second most abundant in all the soil samples, followed by Talaromyces.
These species are involved in nutrient cycling, especially P cycling and decomposition of
organic materials [39].

In both vertical soil profiles, fungal alpha diversity fell dramatically from low-density
to intermediate-density, followed by an increase in the high-density stand, which directly
links with the variations in soil pH. An important influence of soil pH on fungal alpha-
diversity has been reported in various soils [40–42], proving that soil pH is a determinant
of fungal diversity. A global meta-analysis has corroborated this finding that soil pH is one
of the most important indicator for any modification in soil fungal diversity [43]. NMDS
analysis revealed that there are considerable changes in the fungal community of the soil
among different stand density soils, which were possibly due to direct influence by plant
root exudates [44], suggested that the fungal community assembly is seriously affected
by plants because it has an essential role in structuring fungal communities. Combined
with RDA results, we can assume that the fungal community structure has undergone
significant changes under different stand density compositions, which can be attributed to
differences in soil chemical properties [45].

Changes in soil nutrient status significantly impact the organization and makeup
of the soil microbial population [25,46]. In our present study, soil TP, TN and TK were
the main driving force in changing fungal community compositions in both soil vertical
profiles [47]. Other than this, soil TCa and TMg were also associated with the abundance of
few fungal classes. In our study, P was positively correlated with phylum Mortierellomycota,
which is in accordance with Zhang et al. [48] and negatively associated with unclassified
communities of phylum Basidiomycota, this is in line with the findings of prior studies
by Lauber et al. [46] and Gao et al. [49], they stated that members of phylum Ascomycota
were abundant and Basidiomycota were fewer in the soils with a higher concentration of
P and lower concentration of P respectively. These results also suggest that the fungal
communities play an important role in the plants’ utilization and absorption of soil P.
Similarly, Ca is also an important element in regulating fungal cells, especially in the
phylum Basidiomycota [50]. Soil K had a positive correlation with members of phylum
Mucoromycota, which is in accordance with the findings of [51]. The findings of FUNGuild
revealed that soil samples from sites with higher levels of organic materials effectively
reduced the enormous number of endophytes and plant pathogens while increasing the
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abundance of animal pathogens [25,51–53]. The Pearson correlation analysis between
different alpha diversity indices and different plant morphological indices showed a
significant correlation. For example, the correlation of ACE and Chao1 indices with DIFN
was significantly negative in the upper layer of vertical soil profile. The possible reason
behind this was that an open canopy provides greater daytime heating of the soil to many
fungal communities [54,55]. These associations are likely to have substantial consequences
for fungal and other belowground communities [1]. Stand density solely does not influence
the microbial biota and soil health directly. But, with a combination and an interplay of
other biotic and abiotic factors such as species autecology [10], organic amendments [56,57],
plant growth regulator [58], nutrient distribution [59,60], different stress conditions [61–63],
greenhouse gas emissions [64–67], soil pollutants different [68], planting materials and
forest composition [69], and atmospheric deposition levels.

5. Conclusions

We find substantiation of the complexity of belowground ecology by displaying a
divergence of patterns of relative abundance and richness between soil fungi at different
stand density levels using various factors such as vertical soil profiles, stand density,
and soil physiochemical properties to study the composition and diversity of soil fungi
across Chinese fir plantation systems. The results showed that low stand density soil had
more alpha diversity of soil fungi than the high-density stand soils. The most abundant
soil fungal phylum were Ascomycota, Basidiomycota, Mucromycota and Mortierellomycota,
respectively. Although soil physicochemical properties and vertical soil profiles were
contributing factors for the fungal beta diversity, compared to different stand density
compositions, these were less influencing the structure of fungal communities. Out of all
stand densities, low-density stand and DIFN were the significant factors influencing the
fungal beta diversity. The major influencers for modifications in soil fungal communities
are TN, TP, and TK. This research will aid in a better understanding of the diversity and
organization of key soil fungal communities in response to varying stand density levels,
plant morphology, soil parameters. It will provide a conceptual framework for more
sustainable forest management in the Chinese fir ecosystem and other plantation crops.
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