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Abstract: In this work, the melting process of phase change material (PCM) in double tube heat
exchangers was investigated and evaluated through the use of different combinations (1, 2, 3% Nano-
Enhanced PCM and 1, 3, 5% Nano-HTF) of GQD, as well as SWCNT nanoparticles and PCM (RT82).
In this study, the effect of three different methods, namely the dispersion of nanoparticles in PCM
(nano-enhanced PCM), the dispersion of nanoparticles in HTF (nano-HTF), and the simultaneous
dispersion of nanoparticles in PCM and HTF (nano-enhanced PCM, nano-HTF) concerning the
nanoparticles participation in the thermal energy storage system in a double tube heat exchanger was
evaluated. Other effective factors, such as the inlet fluid temperature, different Reynolds numbers,
fin as well as new parameter of pipe, and fin thickness were also evaluated. The results showed
that the highest effect of different parameters on the PCM melting process was related to the 1%
nano-HTF and 3% nano-enhanced PCM nanoparticles of SWCNT, which decreased the PCM melting
rate by about 39%. The evaluation of the effect of pipe and fan thickness also showed that the melting
rate improved by 31% through reducing the thickness of the HTF fin and pipe. In general, the current
study followed two purposes first, to examine three methods of the dispersion of nanoparticles in the
thermal energy storage system; second, to reduce the thickness of the tube and fin. Findings of the
study yielded positive results.

Keywords: melting; phase change material; double tube heat exchanger; nanoparticles; enhanced
thermal energy

1. Introduction

Today, due to the increase in energy consumption and reduction of non-renewable
energy sources, the use of modern methods to increase efficiency and prevent energy
waste is of great importance. Thermal energy storage systems (TES) are among the leading
methods to improve the thermal efficiency and store thermal energy. Nowadays, the phase
change materials (PCMs) have high efficiency in thermal systems, as they are categorized
by high latent heat, which can be effective in storing thermal energy. One of the important
advantages of PCM is its high heat storage density at a constant temperature and volume.
The absorption of heat by the afore-mentioned material is called the melting state, and the
process of giving heat by this material to the environment is called the solidification state.
As a result of this heat exchange over time, the phase changes from solid to liquid, and vice
versa. Much research on PCMs has been done by researchers in different conditions, which
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shows that the use of PCMs has been widely addressed in various industries and scientific
research when it comes to thermal storage systems.

Rostami et al. [1] conducted a review of melting and freezing processes of PCM/nano-
PCM and their application in energy storage system. They indicated that the PCMs can
improve the thermal performance and reduce energy consumption. The preparation
methods and the thermal properties of the microencapsulated phase change materials
(MEPCMs) were reviewed in detail by Huang et al. [2]. Besides, Huang et al. indicated
that the MEPCMs can provide enormous potentials for applications of cooling and heating
in buildings, textiles, and MEPCM slurry fields. Kalapala and Devanuri [3] provided a
detailed review on the thermal storage of PCM in different heat exchangers. In addition,
the key parameters on the thermal efficiency of PCM-based heat exchanger were examined.
Medrano et al. [4] analyzed the thermal properties of a number of heat exchangers under
different conditions in thermal energy storage unit during the melting and solidification
periods. The melting and solidification characteristics for erythritol in a shell and multi-
finned tube thermal storage system have been experimentally conducted by Anish et al. [5].
Trp [6] examined the melting and solidification of a PCM in a thermal energy storage
system. The results showed that the velocity of the working fluid quickly reached a steady
state, but the temperature element did not reach a steady state after a while, because due
to the large Prandtl number, the amount of heat transfer from the working fluid to the
PCM decreases and is transferred to the lower part of the working fluid. The solidification
process of PCM and NEPCM in the triplex-tube latent heat thermal system was investigated
by Alizadeh et al. [7]. They found that the V-shaped fin causes a faster solidification process
than the nanoparticle dispersion. Ettouney et al. [8] performed an experimental study
on the melting and solidification of PCM in the shell and tube heat exchanger, in which
the working fluid moves in tubes and the PCM is placed inside the shell. This research
indicated that natural convection in shell side has a more important role in the process
of melting and solidification of PCM when compared to the conduction of heat transfer.
Rahimi et al. [9] conducted an experimental study on the effect of fin and mass flow rate
on melting and solidification of the PCM in a thermal energy storage system. The results of
their research showed that the use of fin increases the average temperature of the PCM and
reduces the melting time of this material, which is more noticeable in the melting process
compared to the flat tubular heat exchanger. Thermal efficiency of a novel thermal energy
storage unit with PCM was experimentally and numerically examined by Lin et al. [10].
Results disclosed that the novel energy storage unit has good thermal performance with
PCM.

Regin et al. [11] investigated the process of melting the PCM in a heat storage system
using the encapsulated tanks. The results of their research showed that the range of
temperature changes of the melting phase of the PCM, the radius of the encapsulated tanks,
and the inlet temperature of the working fluid has a different effect on the melting rate
process. Kibria et al. [12] performed an experimental and numerical study on the factors
affecting the melting and solidification of the PCM in a shell and tube heat exchanger,
in which the working fluid was in the pipes and the PCM was in the shell part. In this
study, they investigated the flow characteristics, such as the inlet fluid temperature and
mass flow rate, together with the geometric characteristics of the system, such as the pipe
thickness and radius. The results of their research showed that the temperature of the
inlet fluid and the radius of the pipes have a more significant effect than the other two
parameters. A numerical study on the process of melting and solidification of the PCM in a
double tube heat exchanger was conducted by Ismail et al. [13]. Their results showed that
with further reduction of the inlet temperature of the working fluid, a greater amount of
PCM is frozen. Moreover, increasing the mass flow rate of the working fluid accelerates
the melting and solidification process of the PCM, but it has a much smaller effect when
reducing the inlet temperature of the working fluid. Basal and Unal [14] evaluated the
melting and solidification process of PCM in the triplex tube heat exchanger. They assessed
the effect of inlet temperature, inlet flow rate, and some geometric properties such as the
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pipe radius. Their results revealed that by using a triplex tube heat exchanger, compared
to the double tube heat exchangers, the melting time of PCM is reduced by 6. A case
study on the melting and solidification of RT82 as a PCM was performed by Hosseini
et al. [15]. The predicted liquid fraction and temperature contours show that at points
close to the working fluid, the liquid fraction contours expand outwards. Furthermore, the
experimental results of this research represent that a 10 ◦C increase in the inlet temperature
improves the theoretical efficiency of the melting process by 7%. Accordingly, Hosseini
et al. [16] carried out experimental research on the thermal properties of heat transfer fluid
and PCM. The obtained conclusions of their study indicated that, by increasing the inlet
temperature of the working fluid from 70 ◦C to 80 ◦C, the time required to melt the PCM is
reduced by 37%.

The characteristics of the melting and solidification of PCM in a triplex tube heat
exchanger with surfaces expanded internally and externally were investigated by Al-
Abidi et al. [17]. Two parameters of mass flow rate and fluid temperature entering the
system were evaluated in this work. The results manifested that the changes in fluid
inlet temperature had a greater effect on the charge and discharge process than the other
parameters. Esapour et al. [18,19] carried out a numerical investigation on the melting
and solidification of PCM through increasing the internal tubes in a shell and tube heat
exchanger. The predictions showed that by increasing the number of tubes to 4, the melting
time is reduced, because the residence time of the fluid inside the shell containing the PCM
and the contact surfaces is increased. The results also showed that the effect of increasing
the inlet temperature of the fluid has a greater effect on the melting process than the mass
flow parameter. The effects of the position of the shell and tube heat exchanger in relation
to the horizon in the process of melting and solidification of the PCM were investigated by
Kousha et al. [20]. The results presented that the horizontal position of the heat exchanger
in the melting process is more effective in heat transfer rate, while in the solidification
process, the vertical position of the heat exchanger has a significant effect on transferring
to the PCM. Mat et al. [21] numerically investigated the effects of three different methods
on the melting of PCM. The predicted results indicated that in the case of no blade, the
melting time is reduced by 43%. Adine and Qarnia [22] evaluated and tested the effect of
multiple phase change materials with different phase change temperatures in a shell and
tube heat exchanger. The double, multiple, and single combinations of PCM in the heat
exchanger were examined. The results showed that the binary system of the PCM has a
better performance when increasing the mass flow rate of the fluid at a lower fluid inlet
temperature. Furthermore, the combination of several PCMs at lower mass flow rate and
inlet fluid temperature is more effective in the melting process. Due to the importance
of thermal energy storage and its use at the right time, other studies were conducted in
this field [23,24]. Kok [25] conducted a study on PCM melting using two types of fins in
combination with nanoparticles. The results showed that the use of Fin 1 in combination
with PCM and nano PCM for 120 min reduces the melting rate of PCM by 98% and 36%,
respectively. Sun et al. [26] investigated the effects of graphite nanoparticles in combination
with PCM (nano-enhanced PCM) on the PCM melting process. Their results showed
that the combination of nano-PCM reduces the melting rate of PCM by 21% compared
to pure PCM, which resulted in 0.06 wt % graphite with 2% oleic acid. Ebadi et al. [27]
conducted a research on the PCM melting process with a focus on bio-based PCM and
nano-PCM using copper nanoparticles. In this study, they found that the use of 1 wt.% of
copper nanoparticles increases the thermal conductivity of PCM by 7.5%, and the melting
of PCM improves by 15% using the nano-PCM. Lee et al. [28] evaluated the effect of a
porous medium and nanoparticles in combination with the PCM melting and solidification
process in a triplex tube heat exchanger. The results showed that the addition of 5% copper
nanoparticles (nano-enhanced PCM) in combination with the porous medium reduces the
melting time of PCM by 25.9%. Kristiawan et al. [29] conducted a study concerning the
effect of nanoparticles on both laminar and turbulent regimes, which clearly showed that
in laminar and turbulent currents, the available nanoparticles cause a significant increase
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in heat transfer. For laminar flow, the numerical results showed that the increase in the
heat transfer coefficient of nanofluid is 4.63, 11.47, and 20.20% for nanoparticle loading of
0.24, 0.60 and 1.18 vol.%, respectively.

Other research has also shown that the overall composition of nanoparticles in the
base fluid improves the overall heat transfer coefficient [30–33].

In the present study, the melting process of RT82 as a phase change material in
double tube heat exchangers was numerically investigated. In previous research, the
combination of nanoparticles with PCM (nano-enhanced PCM (NePCM)) in the chamber
around HTF (nano-water or pure water) was widely used to improve the melting and
solidification process of PCM, and its effect on the melting process was evaluated. In the
present study, three methods of nanoparticles participation in the heat storage system
have been used, which means that the combination of nanoparticles with PCM (Nano-
Enhanced PCM (NePCM)), participating nanoparticles with HTF (nano-HTF), and the effect
of simultaneous participation of nanoparticles in PCM chamber and HTF chamber (nano-
enhanced PCM, nano-HTF) in the PCM melting process was evaluated and compared at
different percentages and compositions that have not been recently evaluated and studied.
In addition to other auxiliary and improving factors in the melting process such as the
fin and hybrid nanoparticles, the effect of another factor (pipe and fin thickness) was also
examined as a new parameter that has been found to have positive results.

2. Numerical Approach
2.1. Governing Equations

This research was performed using two heat exchangers in series, in which one heat
exchanger performs the task of heat conversion and the another heat exchanger conducts
thermal storage using a phase change material (PCM). This is done in order to use the
primary heat exchanger to perform the cooling cycle of the secondary heat exchanger faster,
thus preventing the loss of heat energy in the secondary heat exchanger. The flow of fluid
returns from the secondary heat exchanger to the primary heat exchanger and this flow
continues until the temperature in the secondary heat exchanger reaches the desired value.
The fluid inlet temperature is 375 K, but the average operating temperature during the
process is 353 K, which is in the range of PCM melting and freezing temperatures. For this
reason, RT82 has been used for this study. This periodic process is repeated regularly until a
significant portion of the PCM is melted and pasted. Moreover, the duration of this process
is in the range of 30 to 60 min. The two heat exchangers of stainless steel and the fins of
copper were selected. External diameter, internal diameter, length and thickness of double
tube heat exchanger were 50, 27, 500 and 1 mm, respectively. Moreover, the length and
thickness of the blade in the outer part of the inner tube using the response surface method
in the best case was obtained equal to 10 and 1 mm, respectively. The working fluid passes
through the pipe and the space between the two pipes is filled with RT82 phase change
material. The inlet fluid temperature was 353 K and the initial state of the phase change
material was solid. Two nanoparticles of graphene quantum dot (GQD) and single-walled
carbon nanotubes (SWCNT) with mass fractions of 1, 2, 3 and 5% have been adopted in
combination with phase change material and working fluid. Various mass fractions of
nanoparticles have also been used to evaluate and compare changes in the PCM melting
process over a wider range of results. Figure 1 presents the geometric characteristics of
the schematic diagram of the relevant system. Moreover, the thermophysical properties of
RT82 phase are shown in Table 1.
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Figure 1. Schematic representation of double tube heat exchanger and its configuration.

Table 1. Thermophysical properties of RT82 as PCM, Copper fin, GQD and SWCNT nanoparticles.

Properties RT82 Copper Fin GQD SWCNT

ρ (kg/m3) 770 8920 400 2600
CP (J/kgK) 2000 380 643 425
k (W/mK) 0.2 400 3000 6600
µ (Ns/m2) 0.03499 - - -
Γ (kJ/kg) 176 - - -

Ts (K) 350 - - -
Tl (K) 358 - - -

β (1/K) 0.001 - - -

It is clearly noted in Figure 1 that the blade angles are set to 30, 45 and 90 degrees,
which are obtained by optimizing the response surface methodology. The following
governing equations have been used to simulate the process of melting the PCM in a
double tube heat exchanger while considering thermal buoyancy effects.

Continuity equation:
∇·V = 0 (1)

Momentum equations:

∂u
∂t + V·∇u = 1

ρ (−∇P + µ∇2u) + su
∂v
∂t + V·∇v = 1

ρ (−∇P + µ∇2v + ρβg(T − Tre f )) + sv
(2)

Energy equation:

∂h
∂t

+
∂(∆H)

∂t
+∇·(Vh) = ∇·( k

ρCp
∇H) (3)



Sustainability 2021, 13, 10675 6 of 19

The u and v are velocity component terms in the x and y directions, respectively.
Enthalpy and pressure are determined using h, P respectively. Momentum sink term is
expressed using Su and Sv [34,35] as follows:

su = C(1− λ)2 u
λ3+ε

sv = C(1− λ)2 v
λ3+ε

(4)

In above equations, C represents the mushy zone constant in the PCM, which is located
between the 105–106 range, and in this study, the number 105 has been selected due to its
good compatibility with Mahdi et al. [36]. ε is a small amount to avoid dividing by zero h
and ∆H are sensible enthalpy and latent heat, respectively. Sensible enthalpy is expressed
using Equation (5):

h = hre f +
∫ T

Tre f

CpdT. (5)

In the above equation, href is reference enthalpy. Moreover, the melting heat based on
the latent heat (Γ) is obtained from Equation (6).

∆H = λΓ (6)

In the above equation, λ is liquid fraction of PCM that can be defined as follows:

λ =

〈 0⇒ T ≤ Ts
(T − Ts)/(Tl − Ts)⇒ Ts < T < Tl
l⇒ T ≥ Tl

〉
(7)

where Tl and Ts are melting temperature and solid temperature of PCM, respectively. To
calculate the natural convective heat transfer that is important in the process of melting the
PCM, the Bussinesq approximation is adopted, which considers the density of the PCM as
constant. To calculate the temperature difference in different areas of the fin, solving the
energy equation in the areas related to the blade has been used.

∂(ρ f inCp f inTf in)

∂t
= ∇(k f in∇Tf in) (8)

The following equation has also been used to calculate the blade fraction [37].

φ f =
v f

vt
=

∑n
i=1 (Li·Wi)b

π(ro2 − ri
2)b

(9)

where L, b, W, ro, ri, i and n are length of fin, length of heat exchanger, thickness of fin,
outer radius of fin, inner radius of fin, an index for number of fin and total number of fin,
respectively.

In this work, the effect of nanoparticles in combination with the PCM and the common
state has been compared. The following equations are used to calculate the thermophysical
properties of the nanoparticles with the PCM.

ρNEPCM = (1− φn)ρPCM + φnρn (10)

CpNEPCM =
(1− φn)(ρCp)PCM + φn(ρCp)n

ρNEPCM
(11)

ΓNEPCM =
(1− φn)(ρΓ)PCM

ρNEPCM
(12)

βNEPCM =
(1− φn)(ρβ)PCM + φn(ρβ)n

ρNEPCM
(13)
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In above equations, ϕn is mass fraction of nanoparticles and the NEPCM index is nano-
enhanced PCM. The following expressions of dynamic viscosity (µNEPCM) and thermal
conductivity of the nano-enhanced PCM (kNEPCM), respectively, have been used [38,39].

µNEPCM = 0.983e(12.959φ)µPCM (14)

kNEPCM = kn+2kPCM−2φn(kPCM−kn)
kn+2kPCM+φn(kPCM−kn)

+ 5× 104βkζφnρPCMCpPCM

√
BT

ρndn
f (T, φn) (15)

In this work, the effects of Brownian motion and nanoparticle size have been studied
so that factor f (T,φn) in the thermal conductivity coefficient shows the amount of Brownian
motion. In the solid state of the PCM, there is no Brownian motion, but from the mushy
zone to the melting zone of the PCM, the Brownian factor plays an effective role. In the
process of melting the PCM, the natural convection, along with thermal conductivity, is
considered as an effective phenomenon. Moreover, the flow in this process is considered as
laminar, transient and incompressible. Some of the problem assumptions are as follows.

(1) Friction between the nanoparticles and the base fluid is negligible.
(2) Viscosity dissipation is not considered.
(3) Volumetric tolerance for melting PCM is assumed to be neglected.
(4) The temperature difference in the base fluid can be ignored.
(5) The thermal properties of PCM are assumed to be constant, except for density in the

momentum term.

2.2. Initial and Boundary Conditions

In the process of PCM melting, the average of inlet fluid temperature was 353 K and
the initial ambient temperature and the temperature of the solid PCM were both set to
be 293 K. The inlet flow rate was adjusted so that the Reynolds numbers of 1700, 2500
and 3200 were evaluated, respectively. The external surface of the outer tube of the heat
exchanger was considered to be thermally insulated. In this work, two graphene quantum
dot nanoparticles and single-walled carbon nanotubes with mass fractions of 1, 3 and 5%
in combination with working fluid and mass fractions of 1, 2 and 3% in combination with
PCM have been adopted. Furthermore, the effects of finned heat exchanger, finless heat
exchanger and the effects of nanoparticles with different mass fractions on PCM melting
were investigated. The initial and boundary conditions of this work are schematically
shown in Figure 2.
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2.3. Numerical Procedure and Validation

In this research, the commercialized software, ANSYS Fluent, which is based on the
finite volume method, has been employed to simulate PCM melting in a double pipe heat
exchanger. This software uses the enthalpy-porosity technique to solve the governing
equations in the melting process. The SIMPLE and PRESTO schemes have also been
used for the pressure [40] and QUICK scheme is employed to discretize the governing
equations [41]. The grid sizes including N = 500,000, 565,000, 620,000 and 698,000 of cells
were examined for numerical solution validation of the independency of grid sizes, for
which the system of N = 565,000 was sufficient to obtain accurate and acceptable answers
in this study. Time step 0.1s and the number of repetitions are set to 500 for each time step
in this study. The convergence index is chosen for the momentum equation and continuity
and for the energy equation. Validation of numerical simulation of melting of the PCM
was performed in the study. First, an initial run was performed and the predictions were
compared with the experimental data of Hosseini et al. [16] and Rostami et al. [42], as
shown in Figure 3. It is clearly noted in Figure 3 that a good agreement between the
predictions and measured data was found.
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3. Result and Discussion
3.1. Effect of Nanoparticles (Nano-Enhanced PCM) on PCM Melting Process

As can be seen from Figure 4, the melting process of the phase change material in
a double tube heat exchanger without fin blade was evaluated using mass fractions of 1,
2 and 3% in combination with the PCM (nano-enhanced PCM) over a period of 60 min.
The reason for the low time of the process of melting the PCM is that in this system,
another heat exchanger was used at the same time to cool the desired fluid according
to its function in industry. It is also noted in Figure 4 that the conduction heat transfer
creates a mushy area around adjacent points of the heat transfer fluid (HTF). However, with
increasing melting process and creating a mushy area around the central tube, convective
heat transfer and natural convection phenomenon dominate the conduction heat transfer
(due to buoyancy force and density gradient) and heat ascends to the upper hemisphere of
the heat exchanger [43].
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Furthermore, with the increase of this process and heat circulation, it moves to the
lower points. In addition, by increasing the mass fraction of nanoparticles from 1% to 3%,
the conduction heat transfer due to the high thermal conductivity of the nanoparticles
increases and causes the phase change material (PCM) to melt faster [44]. Approaching
60 min and decreasing the temperature of the heat transfer fluid (due to heat exchange in
the secondary shell and tube heat exchanger), the melting process of the PCM takes place
slowly, and a spherical line is created under the tube carrying the working fluid, which
does not have a significant effect on the melting process.

3.2. Effect of Fin Tubes and Nanoparticles (Nano-HTF) on the PCM Melting Process

The effects of different mass fractions of nanoparticles on the PCM melting process
are shown in Figure 5. As can be seen from the figures, the best melting performance is
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obtained at a mass fraction of 1% SWCNT (nano-HTF). This is because it has increased
the conduction heat transfer coefficient, but at higher mass fractions, PCM melting has
not changed significantly, because increasing the mass fraction of nanoparticles increases
the density of HTF and decreases the buoyancy force, thus reducing natural convection.
Furthermore, the left and right points of the HTF demonstrate less melting. This is because
the presence of side fins has prevented the natural convection due to PCM melting at the
lower points of the heat transfer, while the highest amount of melting has occurred in the
upper hemisphere of the heat transfer and between the two fins, which was due to the heat
transfer from HTF Center [42–45].
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3.3. Effect of Fin Tubes and Nanoparticles (Nano-HTF and Nano-Enhanced PCM) on the PCM
Melting Process

A comparison between the two types of using nanoparticles on the PCM melting
process under different conditions is presented In Figure 6. It is indicated in Figure 6
that with increasing the percentage of nanoparticles in the nano-enhanced PCM type, the
melting of the PCM increased. Because the use of higher percentages of nanoparticles in
the nano-Enhanced PCM state increases the total thermal conductivity of PCM, which
ultimately accelerates the melting process of PCM at the beginning of the melting process,
which is effectively dependent on thermal conductivity. Increasing the mass fraction of
nanoparticles in nano-HTF model has a far milder impact on the melting process than
in another structural type, and the best possible case is to use a mass fraction of 1%
of SWCNT in nano-HTF type, so that in this, the conditions create a balance between
the effects of natural convection and thermal conductivity in HTF. While the increase
of nanoparticles increases the density and gravity gradient and decreases the buoyancy
force and natural convection [42,43]. The fin structure generally accelerates the melting
of the PCM because the heat transfer surfaces increased, but with more time from the
process and the appearance of a mushy state in the PCM, this fining compound prevents
the ascent of thermal vortices due to natural convection. It has been so that the melting
process of PCM was slowed down. It should also be noted that with this structure, the
PCM melting time is reduced by 20 min compared to the normal state. The best case for
PCM melting was to use 3% (1.5% SWCNT-1.5% GQD). Because in addition to increasing
the total thermal conductivity of the PCM, due to the lower density of GQD than SWCNT,
the desired density value was reduced and the buoyancy force and natural convection
increased, which shortened the melting time.
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Figure 6. Comparison between the simultaneous effect of Nano-Enhanced PCM and Nano-HTF on
the melting process at 80 ◦C.

Figure 7 shows the average PCM temperature in different states of the nanoparticle
composition. As can be seen from Figure 7, the lower half of the heat exchanger conducts
temperature changes, mostly by conduction heat transfer and the upper half by natural
convection. In general, the use of nanoparticles and fin has played a complementary and
very good role on the process of HTF temperature progress in PCM, so that nanoparticles
and fin have a positive effect on the heat transfer rate of the heat exchanger. However,
natural convection after the formation of a mushy state in PCM and a decrease in density
and an increase in buoyancy force has played a complementary role in the process of
melting the phase changing materials [16,42].
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3.4. Influence of Inlet Temperature and Reynolds Numbers on the PCM Melting Process

The effects of three Reynolds numbers 1700, 2500 and 3200, as well as three inlet
temperatures of HTF 75, 80 and 85 on the PCM melting process, are disclosed in Figure 8.
It is clearly observed that, in Figure 8, the PCM melting has not changed significantly
and even decreased with increasing Reynolds number, because with increasing Reynolds
number in the range of laminar and transient flow, the residence time of the fluid in the
pipe has decreased, and as a result, the duration HTF and PCM heat exchange decreased.
Moreover, with increasing Reynolds number from 1700 to 2500, and from 2500 to 3200,
entering the transient zone, the thickness of the HTF boundary layer decreased and more
heat transfer was transferred from HTF to PCM, but with decreasing fluid retention time.
The overall PCM melting rate decreased by 2% and 4%, respectively [44,45]. Furthermore,
the results of this study are consistent with the results of Pahamli et al. [24], so that
increasing the Reynolds number and inlet velocity increases the rate of heat transfer within
the pipe, but does not have a significant effect on the overall heat transfer coefficient. In
fact, increasing the Reynolds number increases the velocity of the fluid in the tube, which
reduces the heat exchange time of the fluid inside the tube and the PCM material. On
the other hand, increasing the Reynolds number reduces the thickness of the boundary
layer on the pipe side and thus accelerates the convection heat transfer process. These
two phenomena have neutralized each other, so there is not much impact on the melting
process of PCM in this regime.
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Figure 8. The effect of Reynolds numbers on PCM melting at 80 ◦C.

Figure 9 also shows the effect of three different HTF inlet temperatures on the PCM
liquid fraction. The results show that by increasing the inlet temperature of HTF, PCM
melts in less time, because more heat flux is transferred from the heat source (HTF) to
PCM and more vortices due to natural convection are formed. They climb up. It should
also be noted that the slope of the graph curve is high at 50% of the start of the process
and decreases as the graph slope continues. Because initially due to the high temperature
gradient of PCM and HTF and the presence of more natural convection vortices, the
melting rate of PCM is higher, while reaching the end points of the melting process and
reducing the temperature gradient and reducing the density, the effect of natural convection
decreased. With increasing temperature from 75 to 80 and from 80 to 85, the melting rate
of PCM increased by 21% and 23%, respectively. The results of this study are compared
with the results of research by Pahamli et al. The results show that increasing the fluid
inlet temperature from 75 ◦C to 80 ◦C has increased the melting rate of PCM by 21%,
while in Pahamli et al.’s research, increasing the inlet fluid temperature by about 5 ◦C has
improved the PCM melting rate by 16%.In fact, the graph below shows that increasing the
temperature of the inlet fluid brings it closer to the full melting temperature of PCM, which
also reduces the melting time of PCM. It should also be noted that at temperatures between
the melting and freezing temperatures of PCM, the PCM material becomes a paste, which
with increasing temperature of the inlet fluid, the time it takes for the paste to become an
absolute liquid decreases.
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Figure 9. The effects of different inlet temperatures on PCM melting at Reynolds number of 1700.

3.5. Effect of HTF Pipe and Fin Thickness on PCM Melting

Figure 10 discloses the effects of the thickness of the tube and the fin on the outside
of the HTF in three states of 1, 1.25 and 1.5 mm at the inlet fluid temperature of 80 ◦C.
As can be seen from the figure, a thickness of 1 mm shows the best performance of the
PCM melting rate. Because less thickness of HTF pipe decreases the resistance of passing
heat flux from the central part around the pipe. Furthermore, reducing the thickness of
the pipe and fin causes faster heat transfer to the upper layers and vortices due to natural
convection to occur more quickly, which reduces the melting process time. Furthermore,
the thickness of 1 mm, compared to the thicknesses of 1.25 and 1.5 mm, improved the
melting rate of PCM by 18% and 31%, respectively. On the other hand, the lower thickness
of the fin prevents the high temperature gradient between the root points of the fin and
the head of the fin, which causes faster heat flux transfer around the fin. The results of
this factor show that the effect of reducing the thickness of the fin and pipe can reduce the
cost of design and construction in addition to improving heat transfer, which has not been
mentioned in other research.
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3.6. Influence of Fin Tube, Nanoparticle Parameters on Melting Process of PCM

The effects of the best combination of nanoparticles with fin and non-fin heat exchanger
on melting process of PCM are shown in Figure 11. As can be seen from Figure 11, the best
combination is selected to be nano-enhanced PCM (3% (1.5% SWCNT-1.5% GQD)) and 1%
SWCNT (Nano-HTF), because the use of this combination, in addition to increasing the
conduction heat transfer by the nanoparticles in the HTF, increased the thermal conductivity
of PCM and improved the PCM melting rate by about 40%, while the combination of nano-
PCM alone has improved this process by a maximum of 25% [26–28]. Furthermore, the
presence of nanoparticles and fines slightly reduces natural convection, but its positive
effects on the PCM melting process are greater. The nano-HTF (1% SWCNT) state has less
effect than the nano-enhanced PCM state, because the presence of nanoparticles in HTF is
not able to increase the low thermal conductivity in PCM and only improves the thermal
conductivity of HTF. It should be noted that increasing the mass fraction of nanoparticles
in HTF increases the density and decreases the buoyancy force, thereby reducing the
vortices caused by thermal convection within the HTF, which increases the melting time
of PCM. The simultaneous use of nano-enhanced PCM and nano-HTF state compared to
the other three states has improved the melting rate of PCM by 39%. In fact, the graph
below shows that the combination of nanoparticles with PCM is more effective than the
combination of nanoparticles with energy-carrying fluid, because this combination, in
addition to improving the conduction heat transfer coefficient of PCM material, accelerates
the convection heat transfer process, because with improved conduction heat transfer, the
heat flux inside the tube rises faster to the higher layers. The effect of the fin blade is also
evident, because it increases the surface of heat transfer, but the number and thickness of
the fin blade must be selected so that the rise in heat flux due to convection is not reduced.
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Figure 11. Comparison of parameters of nanoparticles, fin tubes and finless tubes on PCM melting.

Figure 12 shows a comparison between different parameters that improve the PCM
melting rate. As can be seen, the simultaneous use of dispersed nanoparticles in both
HTF and PCM shows the best PCM melting state and the shortest melting time. Another
parameter that can have a significant effect on reducing or increasing this process is changes
in the thickness of the fin and the HTF tube. However, the two factors of Reynolds number
change in the desired range, as well as changes in inlet flow temperature, are of less
importance and impact.
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4. Conclusions

In this work, the melting process of PCM (RT82) using three methods of combination
of two nanoparticles SWCNT and GQD in mass fractions of 1, 2, 3 and 5% in HTF (nano-
HTF) and PCM (nano-enhanced PCM) and fin and tube thickness as two new factors of
melting process of PCM in series double tube heat exchanger with shell and tube heat
exchanger was evaluated numerically. The following results are obtained:

- At first, the melting process of PCM heat conduction mechanism was recognized
as the dominant phenomenon, but in the continuation of the melting process and
with the appearance of a mushy state in PCM, the heat convection mechanism was
identified as the superior mechanism.

- With the increase of HTF inlet temperature, the melting rate of PCM increased, so that
with increasing temperature from 75 to 80 and from 80 to 85, the melting rate of PCM
increased by 21% and 23%, respectively.

- Increasing the Reynolds number in the laminar and transient flow range has not had
a significant effect on the melting rate of PCM, because with increasing the Reynolds
number from 1700 to 2500 and from 2500 to 3200 due to reducing the fluid retention
time, PCM melting rate decreased by 2 and 4%, respectively.

- The PCM melting process was improved by reducing the thickness of the HTF tube
and the thickness of the fin, because the thermal resistance caused by the wall of the
HTF tube was reduced, so that by increasing the thickness of the tube and the fan
from 1 mm to 1.25 and 1.5 mm, the rate PCM melting decreased by 18% and 31%,
respectively.

- The best melting rate of PCM has been obtained by using finned tubes and a simulta-
neous combination of nano-enhanced PCM (3% (1.5% SWCNT-1.5% GQD)) and 1%
SWCNT (nano-HTF). This is because both the heat transfer surfaces and the thermal
conductivity of the PCM and HTF were increased, so that it improved the melting
rate of the PCM by 39% compared to the conventional model in double tube heat
exchangers.
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Nomenclatures

CP Specific heat capacity (J/kg K)
g gravity (m/s2)
h sensible enthalpy (J/kg)
L latent heat (J/kg)
K thermal conductivity (W/m K)
H total enthalpy (J)
T temperature (K)
S source term
.

m mass flow rate (kg/s)
V velocity (m/s)
ri inner radius (m)
ro outer radius (m)
Ts solidus temperature (K)
Tl liquidus temperature (K)
HTF heat transfer fluid
PCM phase change material
Greek symbols
µ dynamic viscosity (Pa s)
ρ density (kg/m3)
ϕ mass fraction
ε small parameter for avoiding division by zero
β thermal expansion coefficient (1/K)
λ liquid fraction
Γ latent heat of fusion (kJ/kg K)
Subscripts
ref reference
w wall
bf base fluid
nf nanofluid
np nanoparticle
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