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Abstract: Solar power for clean energy is an important asset that will drive the future of sustainable
energy generation. As interest in sustainable energy increases with Korea’s renewable energy
expansion plan, a strategy for photovoltaic investment (PV) is important from an investor’s point of
view. Previous research primarily focused on assessing and analyzing the impact of the volatility
but paid little attention to the modeling decision-making project to obtain the optimal investment
timing. This paper utilizes a Least Squares Monte Carlo-based method for determining the timing of
PV plant investment. The proposed PV decision-making method is designed to simulate the total PV
generation revenue period with all uncertain PV price factors handled before determining the optimal
investment time. The numerical studies with nine different scenarios considering system marginal
price (SMP) and renewable energy certificate (REC) spot market price in Korea demonstrated how to
determine the optimal investment time for different PV capacities. Therefore, the proposed method
can be used as a decision-making tool to provide PV investors with information on the best time to
invest in the renewable energy market.

Keywords: investment planning; photovoltaic power; renewable energy certificate (REC); Least
Squares Monte Carlo (LSMC); optimal investment timing

1. Introduction

Over the past decades, energy transition has been growing following the diffusion
of renewable energy resources worldwide [1]. Korea started actively participating in
climate-related activities aiming for a higher penetration level of renewable sources. Such
activities include operating a renewable energy supply policy referred to as the Renewable
Portfolio Standard (RPS), obligating electricity suppliers to source a specified proportion of
the electricity they provide to customers from entitled renewable sources [2]. This can be
conducted and fulfilled using a renewable energy certificate (REC). The REC is issued to
energy generators according to the amount of eligible renewable electricity they generate.
Moreover, the REC is weighted based on the source they use to generate electricity [3].
Regarding electricity suppliers, demonstrating compliance with renewable obligations at a
minimum REC allows them to improve portfolio profitability. However, oftentimes newly
installed renewable energy generators hold little data, making modeling the RPS market
investment portfolio strenuous. The driving force for investors to invest in the renewable
energy market is the guaranteed yield.

Various methods, such as net present value, internal rate of return, and discounted
cash flow methods, have been developed to calculate the profit of newly installed solar
power plants. After deciding whether to invest in PV, the next step is to decide when
to invest in PV. Although these methods can be used to evaluate the economics of a PV
investment, they can only be evaluated based on a predefined investment year for the
PV investment. In the REC market, the timing of investment is important because the
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economic feasibility of PV investment depends on SMP and REC price. Since SMP and
REC prices fluctuate frequently over time, investors should consider when to invest in
order to achieve high returns. Investors can effectively manage their risk by considering
when to invest in PV.

The proposed LSMC-based method can be used as a decision-making tool to provide
PV investors with information on the best time to invest. By considering when to invest,
investors can manage their risk more easily. The study examines all the most essential
uncertain features such as PV generation, SMP, and REC prices in Korea. The probability
density function based on historical data derived the expected values of long-term, annual,
and monthly PV generation. SMP was computed by solving the Lagrangian relaxation
and dynamic programming. REC price was estimated following the current renewable
expansion policy to ensure feasibility and accuracy, as renewable energy is heavily depen-
dent on the renewable policy. The model then employed the LSMC method to simulate the
total period of PV earnings in stocks and determine Korea’s optimal investment time. The
dynamic investment approach solves the value of options through a backward induction
process, evaluating each trading point of the optimal decision between selling REC or
holding REC. The proposed method was designed to determine the investment timing
using Real Option. Moreover, the model used several scenarios to determine the optimal
condition for profitable solar energy investment.

The rest of this paper proceeds as follows. Section 2 discusses the existing literature
on investment assessment, while Section 3 presents the formulations of the generation
profit of PV and LSMC. Section 4 models an investment assessment procedure based on
the LSMC method. Section 5 demonstrates the effectiveness of the proposed LSMC method
from various case studies. Section 6 further concludes the results.

2. Literature Review

Sustainable development is a key goal of human development [4]. Research on
sustainability has traditionally focused on changing the way societies produce and consume
to achieve global sustainable development [5]. In recent years, sustainability has been
addressed in social [6–8], economic [9–11], and environmental issues [12–14] to achieve
the Sustainable Development Goals (SDGs). Various studies have been conducted on
the analysis and impact of renewable energy on the short-term operation and long-term
planning of the power grid. Sun and Nie [15] analyzed the impact of government energy
policies on increasing renewable energy installations. Zhang Y. et al. [16] found that subsidy
policies effectively promote innovation in new energy companies. Chen et al. [17] analyzed
the development and policy of renewable energy utilization. Hong et al. [18] used an
integrated analysis of Korea’s energy system at the national level.

In the past few years, numerous studies have been conducted on photovoltaic (PV)
energy as a representative of clean and renewable resources [19]. Several studies have
been conducted on PV project assessment using traditional investment techniques such as
net-present value and the discounted cash flow method [20–23]. However, these methods
disregard two factors: (1) handling the uncertain factors and (2) presenting the optimal
time to invest.

Several studies aim to overcome uncertainty issues by utilizing various methods. The
factors relevant to the RPS market investment portfolio are categorized as (1) generated PV
electricity, (2) electricity price, and (3) REC price. First, support vector machine, intelligence
models such as fuzzy logic, adaptive neural-fuzzy-inference system or artificial neural
network, and Markov Chain are used to forecast the short-term PV generation under grid
stability [24–27]. Second, locational marginal price is predicted using the artificial neural
network [28–30] with various data such as factors of generators and pumped storage power
plants. Finally, REC pricing schemes are applied by determining the REC price [31–33].
However, all the above-mentioned models have limitations in predicting long-term results.

Optimal investment timing is crucial for making profitable investment decisions. The
real options (RO) theory presents the optimal investment timing as it is can adapt the
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substantiated financial options theory to the investment decision. Various fields in the
power industry are using the RO approaches in renewable energy [34], P2G (Power-to-
Gas), or transmission lines [35–39]. In reference [40,41], nuclear power plant investment is
evaluated by real option analysis. These studies practically exercise the binomial tree model
and the simulation method. The binomial tree model was first employed by Hoff et al. [42].
Martinez-Cesena et al. [43] employ the simulation method, which focuses on the effect of
technological impacts on the project value. For reference, [44] used the decision-making
tree model to assess the wind power productivity at different sites. The same technique is
further employed in [45], where it focuses on the demand uncertainties. Previous research
focuses on the solar PV project investment decision, which is only a now-or-never option.
However, the REC spot market’s unique characteristics work like the typical stock market.
Consequently, decisions on whether to hold or buy options can be exercised.

Therefore, the main contribution of this paper is demonstrating decision making of
the timing of PV generation plant investment, taking into consideration all uncertain PV
price factors. The proposed LSMC-based method can be used as a decision-making tool to
provide PV investors with information on the best time to invest.

3. Problem Formulation

In this section, a mathematical model is proposed to derive the optimal PV investment
plan for PV generators participating in REC markets. Note that three core elements that
determine the investors’ profit should be designed, namely, solar power generation patterns
(generation patterns for 24 h), SMP (system marginal price paid for energy production)
and REC (certification for 1 MW of generated renewable energy). Figure 1 demonstrates
the schematic diagram of the proposed PV investment plan method.
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Figure 1. Schematic diagram of the proposed PV investment plan method.

PV power generation is derived stochastically based on probabilities of an hourly nor-
malized generation profile generated using the kernel function. The kernel curve presents
the relative likelihood of output produced from each sample of data. Moreover, kernel
density estimation (KDE) is constructed by stacking those kernel functions. The Epanech-
nikov function is selected from the KDE as it is the best in estimating distribution [46]. The
probability density function ( fn) using the Epanechnikov function is defined by:

f̂b(x) =
1
n

n

∑
i=1

Kb(P− Pi) =
1

nb

n

∑
i=1

K
(

P− Pi
b

)
=

3
4nb
√

5

n

∑
i=1

(
1− (P− Pi)

2

5b2

)
(1)

where Pi, h, K(·), and n are the statistical PV generation samples, bandwidth, kernel den-
sity function, and the number of solar hourly historical generation data, respectively. The
Epanechnikov function is K(y) = 3/4

√
5
(
1− y2/5

)
. In this case, the probability density
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function is a nonparametric estimate of f of sample Pi (one-dimensional random variable,
i = 1, . . . , n) with n data. Based on the density function estimation result, the Mersenne
twister random number generator ensures that randomness is well-equidistributed [47].
Following a long period of quicker computation, the Mersenne twister generates expecta-
tion values of PV generation.

In this paper, the SMPs of the Korean wholesale electricity market are simulated until
year 2040 using the single unit dynamic programming (SUDP) algorithm. The SUDP
algorithm is one of methods for solving the unit commitment problem using dynamic
programming in combination with Lagrangian relaxation by optimizing the subproblems
of the individual generators separately [48–50]. Various factors such as generating capacity,
cost function, physical constraint of generator, fuel cost, transmission constraint, and load
pattern are used by the SUDP algorithm to obtain the long-term SMPs. Korea’s Long-term
Basic Plan for Electricity Supply and Demand was established based on the estimation of
these factors. There is a causal relationship between the wholesale price of electricity in
Korea and the price of liquefied natural gas (LNG). According to research conducted by
the Korea Power Exchange, domestic LNG prices are mainly affected by Dubai oil price,
Japan Crude Cocktail (JCC), and Indonesia Crude Price (ICP). In this study, several fuel
cost scenarios were created to determine SMPs.

The REC predictive model derives the monthly REC price based on Korea’s renewable
energy policy and the RPS distinctive characteristic. However, the demand of the REC spot
market is inflexible, as the electricity suppliers are obligated to source a growing proportion
of the electricity supply with renewable energy, unless buyers postpone their obligated
REC or pay a penalty. Accordingly, the quantity of supply and demand of the REC spot
market led to price change. In this study, the model computed the prices by comparing the
supply and demand of the REC spot market. When the supply is higher than the demand,
the REC spot market price decreases by an explicit rate and vice versa.

REC supply is quantified using the generation blueprint of renewable energy and REC
weight, which are planned out by the government and the Korea Energy Agency. REC
demand is computed as a specific ratio of whole generation. The equation for REC demand
is as follows:

Qi,spot_d = SG ∗
(

SOR−
GL−Hydro + GTidal

SG

)
(2)

where Qi,spot_d is the REC demand of year i in the REC spot market, SG denotes the
total generation of electricity suppliers from last year, SOR denotes the ratio intended
to determine the amount of obligatory purchasing REC, and GL−Hydro and GTidal are the
generation of large-scale hydropower and tidal power, respectively.

The annual expected trading volume of the total RPS market is calculated by com-
paring the demand and supply of the RPS market of the applicable year. Based on each
percentage of the market’s share, the model computes the concluded amount of REC of
each RPS market. The self-construction market and in-house contract market’s percentage
of each year is fixed to the average of the last five-year ratio as the market’s proportion
remains steady since the launch of the RPS policy launch. As the fixed-price contract
market ratio increases steadily by approximately 1% each year, the tendency is applied to
the variable. The remaining volume determines the supply and demand of the REC spot
market under the assumption that the transaction of REC is fully achieved at the smaller
quantity from the monthly supply and demand. The supply and demand of the REC spot
market obtained from the previous steps is randomly spread monthly and yearly. As the
monthly trading volume of the coming years are imperceptible, the SoftMax function [51]
is used to normalize the input of the trading possibilities of 12 months into the standard
exponential function of each element. The monthly negotiable quantity of supply and
demand is reckoned as follows:

Crec
i,m,spot_market = Crec

i, spot_market ×
erandj

∑12
j erandj

(3)
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where Ci,m,spot_market is the REC spot market quantity of individual supply and demand for

year i of month m, Ci,spot_market is the REC spot market quantity for i year, erandj

∑12
j erandj

is the

expected ratio of REC to be traded on year i of month m.
The model passes on the quantity difference to the next month. Untraded supply and

demand are updated to the following year. Therefore, the expected trading volume for the
following year is also freshly updated as untraded REC. By following the steps, the model
predicts the REC price for each year until 2040.

The LSMC simulation is processed at the final stage of the algorithm to obtain the
optimal transition investment strategy for PV generators. It is used in previous studies such
as those of Zhu and Fan [52], Rigter and Vidican [53], Ryan et al. [54], Lee and Shih [55],
Zhang et al. [56]. When processing the investment strategy for PV generators, Monte Carlo
simulates Ω sample paths for performance warranty time PWpv in N discrete time intervals.
Along the path, SPMC

l is generated as a PV net-investment profit for the time evolution of
the underlying assets. The net profit of PV generation will drift up by the risk-free rate of
the PV investment and will be randomly shocked by the standard deviation of returns at
time period dt. The expected PV investment profit in time dt at l − th path simulation is as
follows:

SPMC
l (dt) =

t0+PWpv

∑
t=t0

[
e−r·t0 ·

m12

∑
m=m1

Gpv
m ·
(

SMPt0, m + Crec
t0,m, spotmarket

)]
×
[(

µpv −
σ2

pv

2

)
·dt +

(
σpv
√

dt
)
·ε
]

(4)

where SPMC
t (t) is the expected PV investment profit for t timeline, PWpv is the performance

warranty period of PV, Gpv
m is the generated PV power in month m, SMPt, m is the system

marginal price in month m of year t as monetary unit in KRW/MWh, µpv is the standard
deviation of PV plant profit, σpv is the risk-free rate of the PV investment, ε is the standard
normal distribution, r is the discount rate, dt is the time step when an investor can exercise
the option and is derived from dividing PWpv by N, and l is one of the pathways among
sigma sample paths.

For each time step dt, the exercise value of the PV investment at time step dt is to find
whether the investor can exercise an investment option or should hold an investment plan.
The immediate exercise value is calculated by comparing SPMC

t (dt) with the investment
cost. When the PV investment profit exceeds the investment cost at time t, the continuation
value equals zero; otherwise, the value is still positive. The equation is as follows:

IEpv(dt) = max
[(

SPMC
l (dt)− Cappv·ICpv

)
, 0
]

(5)

where IEpv(dt) is the immediate exercise value at time step dt, Cappv is the PV unit
investment cost, and ICpv is the installed capacity of PV. The PV unit investment cost tends
to decrease with falling price of PV panels.

Equation (6) derives the total payoffs at time step dt by averaging the obtained net
profit and discounting the payoffs back to the present value. When IEpv(dt) has a positive
value, the continuous value is estimated from the immediate exercise value, using least
squares regression [57]. This starts from terminal time (POpv) and works backwards.
Then, the option holder compares the obtained continuous value with the used immediate
exercise value and updates the payoff. In conclusion, the value of the PV investment
profit is obtained by calculating the average value of all the paths. This statement can be
expressed mathematically as follows:

VMC =
1
Ω

[
Ω

∑
l=1

POpv(l)·e−γ·t
]

(6)

where VMC is the expected PV investment value and POpv(l) is the payoff at the l − th
sample pathway.
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4. Investment Assessment of a Volatile PV Generator Based on LSMC with Stopping Rule

The RO model, especially American options, estimates the value of renewable electric-
ity investment as investors exercise the option at any time point. Particularly, Monte Carlo
simulations have commonly been used to evaluate electricity investment projects, as the
method computes the uncertainty and benefits of PV generators [58]. However, the LSMC
assumes the lifetime revenue of the PV generators and values the PV generator investment
simultaneously.

In the investment assessment process, the expected net profit of the PV generator is
regarded as the initial stock value. Further, whole paths are produced in each trial. The
option value for investors to exercise their investment is computed by comparing the net
profit and investment cost. Optimizing the stopping time is difficult, as the option can
be exercised only once. Our proposed model optimizes the stopping time by comparing
the options of the investors considering whether to postpone their investment or start
investing. The decision-making process starts from the last step and ends in the first step
using backward dynamic programming to consider the discount rate. In each calculation,
the continuous value is estimated using least squares regression as it signals the decision of
the time, which maximizes payoff. Therefore, the LSMC approach estimates the optimal
stopping time and maximizes the payoff in the whole observed time step. Figure 2 displays
the entire framework of our proposed investment assessment method, which is as follows:
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Step (1). The separate PV profit component model simulates the entire life span
of the PV generator and sums up to the annual net profit with the corporate tax rate,
operational and maintenance cost, and annual solar panel degeneration rate, all of which
are considered.

NPij = ICsol ·CSij ×
(
SMPij + RECij

)
−OMi − CTi (7)

where NPij is the net profit in year i in month j, CSij is the generated PV power in year i in
month j, ICsol,ij is the installed capacity of PV, SMPij is the SMP price in year i in month j,
RECij is the REC price in year i in month j, OMi is the Operation and Maintenance cost,
and CTi is the corporate tax cost.
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Step (2). The algorithm then computes the total revenue to the planned retirement
of the PV generator. As an input to the LSMC, the investor’s gross profit for year w is
calculated as follows:

TP =
w

∑
i=0

∫ m
0 NPijdj

(1 + r)i − Cappv·ICsol (8)

where TP is the investor’s gross profit, r is the annual discount rate, and Cappv is the PV
unit investment cost.

Step (3). n random stock paths are generated using the Monte Carlo method. The
LSMC method simulates stochastic chronological paths of options that investors can
exercise.

Step (4). Backward dynamic programming takes the higher value from the exercise
value applied with the discount rate and continuous value calculated with least squares
regression. The regression functions using Laguerre Polynomials are as follows:

V̂ = aL0 + bL1 + cL2 + dL3 (9)

L0 = 1 (10)

L1 = −St + 1 (11)

L2 =
1
2

(
S2

t − 4St + 2
)

(12)

L3 =
1
6

(
−S3

t + 9S2
t − 18St + 6

)
(13)

where V̂, L0, and St denote the estimated price of continuous value, Laguerre Polynomials,
and stock price at time t, respectively. a, b, c, d are the coefficients of the regression
function. The expression above ignores the exponential term for ease of calculation. If the
exercise value is larger than the continuous value, the option can be exercised.

Step (5). The optimal option stopping time can be calculated in Step (4). The stopping
time can be determined by continuously comparing the updated exercise value with the
continuous value. The last stopping time in the backward process is the most profitable
solution of stopping time, as there are many stopping times at one stock process.

Step (6). The averaged value of the first-step data indicates the expected profit of PV
generator investors.

The proposed model can be used to analyze the profit of the PV generator in a certain
scale of capacity and further calculate the optimal stopping time using the LSMC method.

5. Numerical Results

The case study is presented to denote the RO valuation of PV investment using the
LMSC simulation. The model used input data from 2016 to 2020, obtained through the
KEPCO and relevant studies. The data for the PV investment plan algorithm, which
includes financial variables and maintenance durations, are fixed values.

This study modeled PV generators located in Jeollanam-do, the southwestern part of
Korea, as it shows the highest PV insolation rate, above all other regions. Table 1 details the
value of the corresponding parameters. The initial cost of PV panel in Table 1 is assumed
to be installed in 2020. In addition, it is assumed that each year, the cost decreases by 3.9%
for PV installations of 100 kW or less, 4.3% for PV installations between 100 kW and 3 MW,
and 4.5% for PV installations above 3 MW, respectively. The MATLAB software was used
to implement the model.
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Table 1. Parameters used for PV investment method.

PV Investment Data Value

Initial cost of PV panel (KRW/MW) 1.35 billion

Annual Solar panel degeneration rate 0.5%

Operation and Maintenance cost 2.5%

Discount rate 4.5%

Corporate tax rate
Profit higher than KRW 200 million 22%

Profit lower than KRW 200 million 11%

PV performance warranty period (years) 20

Average CAPEX decrease rate 3.9–4.5%

5.1. Modeling of PV Revenue

PV generation data constructs a probability density function using historical data.
Regarding the estimation, the algorithm selected hourly data with an average utilization
factor of over 1%.

Figure 3 illustrates the January case result of the estimated probability density function
in a domain as zero to one at 0.01 intervals. In cases without negative historical data, the
outcome showed negative values, as density is estimated using relative likelihood. In this
case, negative values mean no power generation and were replaced by zero. As the PV
generation model is normalized by the capacity of the PV generator, the PV capacity must
be multiplied by the simulation results to obtain PV generation.
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The generator portfolio and power load data used for SMP forecasting were included
in the ninth long-term basic plan for power supply and demand. The SUDP cost functions
used historical data. Moreover, those constructing generators were assumed to have the
same parameters as brand-new generators using the same fuel. Fuel costs and transmission
constraints were assumed to be similar to those in 2019. Renewable energy capacity data
predicted for 2040 were used as input data. Its utilization factors were as follows: PV was
14.6%, onshore wind power was 23%, offshore wind power was 30%, and other renewable
energies used historical data as the utilization factor. The load pattern was assumed to
grow gradually, yearly, in a certain ratio following the total load increase rate.

The RPS market supply and demand quantity were estimated on the assumption that
the REC weights maintained values of the REC weights in 2018. The volume of the REC
spot market was determined by deducting the transactions volume in other REC markets
from the annual RPS market volume and updating the previous year’s surplus.
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Figure 4a shows the tendency shift of the REC spot market volume compared with the
whole transaction of the RPS markets operating in Korea. The RPS market shows that both
demand and supply increased while there was an inflection point when demand got higher
than supply. However, in the REC spot market, as shown in Figure 4b, the inflection point
was reached quite fast. Further, the gap between the two was considerably high. Note
that the REC spot market graph ignored the effect of electricity suppliers paying penalty
surcharge and waived their obligated REC.
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5.2. Investment Assessment Based on the LSMC

This section presents the optimal investment plan using the LSMC. It outlines three
scenarios for each price element, SMP and REC, to consider the volatility. The LSMC model
proposes the optimal PV capacity and investment timing based on nine scenarios. To show
the tendency of investment value, a representative of four different PV capacity is shown
as a result of our investment model.

The SMP price scenarios project the impact of Dubai oil price cases, presuming that
Dubai oil price has a linear correlation with the LNG‘s fuel costs. The recent 13 years of
Dubai Crude oil price show the lowest level at 26.86 and the highest level at 131.31 dollars
per barrel, with an average of 64.55 USD/barrel in 2019. The SMP scenarios are as follows:

1. SMP-1: Lower fuel case; a case in which fuel costs are considered half of the values in 2019.
2. SMP-2: Base fuel case; a case in which fuel costs are similar to those in 2019.
3. SMP-3: Higher fuel case; a case in which fuel costs are twice as high as those in 2019.

The REC price scenarios consider the impact of penalty cost. The scenario schemes
cases of the buyers’ action when the penalty costs are higher than fulfilling their mandate.
Figure 5 shows the REC price scenarios to demonstrate the PV investment simulation.
Although the overall trend of the increase in price was similar for all scenarios, they
differed in the final price reached in 2040. The REC scenarios were as follows:

1. REC-1: Obligate REC duty case. The frequent event of the REC spot market price is
higher than the penalty that leads to more REC price volatility.

2. REC-2: Base case reflecting the current price fluctuation.
3. REC-3: Pay penalty case. The REC price increases are mitigated as REC buyers pay

fines instead of buying their obligated duty REC.
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Table 2 presents the optimal value of the total net profit and optimal investment period
from all nine cases. The larger the PV plant’s capacity that investors are willing to invest,
the faster the investment must start, as the optimal time predicted from the LSMC was
2024 for 3 MW and 2035 for 99 kW. Regarding the base case scenario, the average net
profit increased as the capacity grew. The return on investment (ROI) of PV investment
decreased as the solar capacity expanded, owing to the increasing cost for keeping solar
panels in shape to maintain the performance yield. The return of investment decreased
as the capacity of PV increased. The solar capacity of 99 kW reached its highest ROI of
1.72 with an average net profit of 2.1 hundred million KRW, while the 500 kW solar system
reached its highest ROI of 1.16 with an average net profit of 0.93 hundred million KRW. As
the solar capacity expanded, the ROI drastically fell and reached an average ROI of 0.03 in
the PV capacity of 1 MW. The case of solar energy capacity of 3 MW got negative ROI in
most scenarios of SMP and REC, the most extreme case reached an ROI of −80.4. It is a
poor investment in higher capacity cases, as the profit is not enough to recoup the initial
investment.

Table 2. Results of LSMC with optimal stopping time.

Capacity of PV Plant Optimal Investment Time Average Net Profit ROI

99 kW 2035 210.9 M KRW 57.85%

500 kW 2023 936.7 M KRW 38.78%

1 MW 2024 1396.5 M KRW 3.44%

3 MW 2024 3283.5 M KRW −18.92%

REC weight had a significant influence on PV profit, as all the three scenarios showed
a significant decrease in net profit when PV capacity was 3 MW. The decline in revenue
resulted from the significant impact of REC weight on installations greater than 3 MW. REC
weight of 0.8 was applied to the PV plant capacity greater than 3 MW, while REC weight of
1.0 was applied to the capacity under 3 MW but larger than 100 kW, and 1.2 to that under
100 kW. This shows that the application of REC weight according to the PV capacity had
the greatest impact on the total PV investment profit.

Figures 6–8 present the best timing for solar investment newbies to enter the REC
spot market to yield optimal profit. The histogram results formatted as percentage points
with y-axis in each of the four figures mean percentage of the optimal stopping time from
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1,000,000 LSMC simulations. Therefore, the frequently pointed year explicates the signal to
start investing. The figures only show the results using SMP-3 with REC-1, as they gained
the highest profit. However, the overall stopping time trend was similar when simulated
in different scenarios. Investors willing to install higher PV capacity must start investing
sooner than those intending to install lower PV capacity; the higher the investment, the
higher the profit. However, the case of solar capacity near 500 kW showed a trend unusual
from others. Figure 7 shows that the optimal investment time was the year 2023, but
starting investing in 2026 was profitless. Therefore, a PV capacity of 500 kW had sparsely
distributed overall investment timing and led to another precarious factor in venturing.
Therefore, the PV investment analysis method using the LSMC results investment around
2035 with a capacity of 99 kW could achieve optimal returns.
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6. Conclusions

The proposed LSMC-based method can be used as a decision-making tool for PV
investors to decide whether and when to invest in PV. The decision-making tool enables
PV investors to manage the risks associated with PV investments. The LSMC model
analyzes the profit of the PV generator in a certain scale of capacity and calculates the
optimal investment time when taking part in the REC spot market. Specifically, the work is
conducted by administering several scenarios reflecting the RPS market attributes. The
model examines the prediction of the PV revenue with the uncertainty of price elements,
such as generated solar power, SMP, and REC in advance of examining the investment plan.
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The expected PV revenue for the performance warranty time is computed by implementing
each predicted element.

It is important not only to determine the appropriate investment capacity, but also
to determine when to invest. One of the key factors in determining the PV investment
timing is the REC weight in the RPS policy. The REC weight affects the price of RECs in
the spot market as it determines the number of RECs supplied to the market. For moderate
price of REC, more renewable energy can be supplied. To supply sustainable energy, the
government should delicately adjust the REC weights of all renewable energy, not just PV.
In a future when renewables and conventional generators can compete in terms of LCOE,
the REC weight needs to be set to zero.

This study has limitations in a few respects. The revenue earned over the lifetime of
the PV is highly dependent on renewable generation curtailment and RPS policies such as
changes in REC weights. It is very difficult to accurately estimate the amount of renewable
generation curtailment and PRS policy changes over the lifetime of PV. Therefore, it is
also difficult to obtain the year-to-year volatility in PV revenues. These limitations can
be addressed by estimating the annual amount of renewable generation curtailment and
treating future PRS policy changes as multiple scenarios.

Further research is needed on the development of an economic evaluation method for
PV investment incorporating renewable generation curtailment. For sustainable energy
supply, Korea is promoting policies to expand not only solar power generation but also
wind power generation. Thus, the proposed LSMC-based method needs to be extended to
handle wind power investment.
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