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Abstract: Economic Load Dispatch (ELD) plays a pivotal role in sustainable operation planning in
a smart power system by reducing the fuel cost and by fulfilling the load demand in an efficient
manner. In this work, the ELD problem is solved by using hybridized robust techniques that combine
the Genetic Algorithm and Artificial Fish Swarm Algorithm, termed the Hybrid Genetic–Artificial
Fish Swarm Algorithm (HGAFSA). The objective of this paper is threefold. First, the multi-objective
ELD problem incorporating the effects of multiple fuels and valve-point loading and involving
higher-order cost functions is optimally solved by HGAFSA. Secondly, the efficacy of HGAFSA is
demonstrated using five standard generating unit test systems (13, 40, 110, 140, and 160). Finally, an
extra-large system is formed by combining the five test systems, which result in a 463 generating
unit system. The performance of the developed HGAFSA-based ELD algorithm is then tested on
the six systems including the 463-unit system. Annual savings in fuel costs of $3.254 m, $0.38235 m,
$2135.7, $9.5563 m, and $1.1588 m are achieved for the 13, 40, 110, 140, and 160 standard generating
units, respectively, compared to costs mentioned in the available literature. The HGAFSA-based ELD
optimization curves obtained during the optimization process are also presented.

Keywords: artificial fish swarm algorithm; economic load dispatch; genetic algorithm; hybrid genetic
–artificial fish swarm algorithm; multi-objective optimization; sustainable power generating system

1. Introduction

Modern power systems around the world are becoming increasingly complex, with
interconnections and varying load demands. There is an emergent need for power systems
to be sustainable, reliable, low-cost, smarter, and cleaner, which would allow the broad
participation of end users for energy generation and consumption and the management
of loads by intelligent devices [1]. With this changing outlook, Economic Load Dispatch
(ELD) is needed due to the lack of energy resources, increased power generation costs, and
environmental concerns. In the actual scenario, the power plants are not equidistant from
the load and there is no similar fuel cost function. Therefore, in order to provide cheaper
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power, loads must be distributed to various power plants to minimize power generation
costs. A practical economic dispatch (ED) problem has a highly nonlinear objective function
with equality and inequality constraints. The ELD problem is solved using conventional
methods such as lambda iteration, gradient methods, and non-conventional methods
(heuristic methods). However, these technologies may not provide optimal solutions
to find a global optimal solution as they require a piecewise linear and monotonically
increasing incremental fuel cost curve. Optimal economic operation and planning of
sustainable power generation systems is a very important pillar in the power industry [2].
ELD also refers to the operation of a power generation facility that produces energy at
the lowest cost in order to recognize operational limitations of power generation facilities
and provide reliable services to consumers. ELD schedules the output of available power
generation units at specific times to minimize overall production costs while satisfying
equality and inequality constraints [3]. Before 1973, due to the oil embargo measures that
led to a sharp rise in fuel prices, utility companies spent around 20% of their total revenue
on fuel for the generation of electric energy [4]. By 1980, this figure had increased to over
40% of the total revenue. In the five years following 1973, the fuel cost for electric utilities
in the United States increased by 25% per year. Due to the fact that fuel is an irreplaceable
natural resource, the efficient use of available fuels is of increasing importance [5].

Table 1 shows the parameters and assumptions for a moderately large power sys-
tem [2]. The idea of size of money was obtained by considering the annual operation cost
of a large utility for purchasing fuel. This cost reveals the direct requirement for customers’
income to be an average of 3.15 cents/kWh, targeted for recovering fuel costs. Savings in
the operation of a small part of the system refer not only to the amount of fuel consumed
but also to the substantial reduction in operating costs. Therefore, this field has gained
tremendous attention from engineers for many years. However, a regular change in the
basic fuel price level plays the role of emphasizing the problem and enhancing its economic
significance. Inflation also poses problems in developing economic operational techniques,
methods, and examples of power generation systems [6]. Moreover, the rapid increase in
the size and power demand of power systems resulted in reduced operating costs while
maintaining the thermal limitations of voltage security and transmission line branching.
Many mathematical programming and artificial intelligence techniques, such as GA-based
ELD, Particle Swarm Optimization (PSO)-based ELD [7,8], ELD based on dynamic pro-
gramming and evolutionary programming, and hybrid GA–PSO-based ELD, are applied
to solve the aforementioned problem. In the most common formulation, the ELD problem
is modeled as a large-scale, non-convex, nonlinear, static optimization problem in both
discrete and continuous control variables [9].

Table 1. Parameters and assumptions for total annual fuel cost.

Parameters Assumptions

Annual peak load and load factor 10,000 MW and 60 % Annual energy produced 107 MW × 8760 h/year × 0.60
= 5.256 ×1010 kWh

Average annual heat rate for
converting fuel to electric energy 10,550.56 KJ/kWh Annual fuel consumption 10,550.56 KJ/kWh × 5.256 ×

1010 kWh = 55.45 × 1013 KJ

Annual fuel cost (corresponds to
oil price at $18/bbl ) $3.00/1.055 GJ Annual fuel cost 55.45 × 1013 × 3/1.055 ×

10−9 $/J $1.5767 million

Many researchers [6–9] have modeled the nonlinear, convex nature of ELD problems
using pure quadratic functions, with the quadratic coefficients (a, b, and c) defined at the
start of the solution search process. Meanwhile, research work [10] developed realistic
models to incorporate the effect of multiple fuel cost functions and valve-point loading into
the formulation of the ELD problem. For example, the authors in [8] employed PSO with
the BAT algorithm for solving ELD problems considering inspired acceleration coefficients.
In [9], the authors analyzed the generating unit profiles of various distributed generation
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systems of different technologies. The energy loss was minimized for a distribution
system with a mix of renewable energy resources using optimization techniques [10]. The
authors in [11] proposed dynamic ELD in a sustainable power system using an accurate
forecasting model and improved salp-swarm optimizer considering PV, energy storage, the
power system, and various constraints of generating units. In [12], the authors proposed a
combined dispatch strategy (load following and cycle charging) for the energy management
and optimal operation of a hybrid energy system. A gradient-based optimizer inspired by
the Newton technique was used for solving the ELD problem considering the valve-point
effect [13]. The authors in [14] proposed a teaching–learning optimization for dynamic ELD
of wind energy and load demand uncertainties considering various operation constraints.
Most of the research works utilized various optimization techniques to minimize the fuel
costs, reduce environmental concerns, and ensure dynamic ELD. In this regard, this work
proposes a hybrid optimization technique to achieve the aforementioned objectives.

The key contribution of this work is to address the ELD problem by developing a
more realistic model and by considering the effects of valve-point loading and multiple
fuel cost functions. A multi-objective optimization problem is formulated that minimizes
the fuel cost of generating units and the amount of nitrogen-bearing (NOx) gases emitted
by the generating units during their operation. Therefore, there is an emergent need to
employ robust techniques to provide a reliable solution to the aforementioned complex
optimization problem. Some have used heuristic techniques in an attempt to solve the
abovementioned optimization technique to some extent, but this did not provide guaran-
teed efficient solutions. In order to provide a reliable and efficient solution, a hybridization
of two conventional heuristic techniques (GA and AFSA), called HGAFSA, is proposed in
order to solve the complex multi-objective optimization problem. HGAFSA is applied to
solve a multi-objective ELD problem considering the effects of multiple fuel cost functions
and valve-point loading. The effectiveness of the proposed approach is demonstrated using
five standard generating unit test systems (13, 40, 110, 140, and 160) and a 463 generating
unit system formed by the combination of the five systems, and the results are compared
with the best results presented in the literature. The choice of GA and AFSA is based on
the following factors: (a) GA is a heuristic technique with a well-defined set of search
equations that is effective in solving problems such optimal sizing and location of capacitor
banks and distributed generators [15], optimal power flow [16], optimal location of tie and
sectionalizing switches in distribution systems, and optimal network expansion [17], and
(b) AFSA is a relatively new heuristic technique based on well-refined and sophisticated
solution search equations and is widely applied in controller design, optimal PID tuning,
and objective function minimization/maximization [18].

The major contributions of this work to the existing body of knowledge are summa-
rized as follows:

1. HGAFSA, capable of solving a higher-order ELD, is developed and used to solve sev-
eral higher-order ELD problems, including 13, 40, 110, 140, 160, and 463 unit systems.

2. An ELD encoder algorithm is developed and linked to the developed HGAFSA to
form a HGAFSA-based ELD algorithm that minimizes any ELD cost function better
than every algorithm mentioned in the available literature.

3. The effectiveness of the developed HGAFSA is demonstrated on six ELD systems,
including the 463-unit system. Annual savings in fuel costs of $3.254 m, $0.38235 m,
$2135.7, $9.5563 m, and $1.1588 m for the 13, 40, 110, 140, and 160 units, respectively,
for the first five systems are achieved, compared to costs reported in the available
literature.

The remainder of the paper is organized as follows. Section 2 formulates the ELD
problem. The formulation of the proposed HGAFSA is presented in Section 3. Section 4
provides the performance validation and simulation settings of the proposed system. The
paper concludes with a brief summary and future directions in Section 5.
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2. Formulation of ELD

The purpose of the ELD problem is to find an optimal combination of power generation
that meets the constraints of equality and inequality while minimizing the total power
generation cost. The fuel cost curve for any unit is an approximation of the quadratic
function segment of the generator’s active power output by assumption [19].

2.1. The Cost Function

Cost function is a financial term used by a company’s economists and managers as a
way to express how different costs differ under different circumstances. This shows how to
display monetary output. Changes in the level of activities related to these outputs will
change rates and fees from overhead and operating expenses [19]. The linear cost function
has three basic types:

1. Functions of fixed cost (defined by a straight line with a zero (0) gradient).
2. Functions of variable cost (defined by a straight line with positive gradient and having

no intercept).
3. Functions of mixed cost (defined by a line having single or multiple gradient(s) and

intercept(s)).

In mixed environments, costs are fixed to specific points, which can be changed based
on related activities. Analysts use this type of function to make important predictions
about the market and to inform various decision-making tasks [19]. For a given network
of power generating units, a set of cost functions are usually defined based on the mixed
function types to account for the operational cost of each generating unit. Conventionally,
the quadratic form of the cost functions is most widely used [20]. A quadratic cost function
is a mixed cost function that partly comprises a single fixed cost function (represented
by a fixed coefficient, e.g., a) and two variable cost functions (represented by products of
coefficients b and c, and functions of output power P and P2). For a network of n generating
units, the overall cost function (FT) of the system is a summation of the n individual cost
functions [F(P1), F(P2). . . , F(Pn−1), F(Pn)] of the various units in the system. This can be
simply represented by Equation (1). An ELD problem is an optimization problem that is
aimed at minimizing the FT subject to a set of operating constraints [21].

FT =
n

∑
i−1

F(Pi) =
n

∑
i=1

ai + biPi + ciP2
i . (1)

In general, FT is used to represent the fuel or emission cost ($/hr) depending on the
values of the coefficients (ai, bi and ci) used [21]. In order to ensure proper operation of
the network of generating units, it is essential to ensure that a set of useful constraints are
satisfied. These constraints include the generator capacity (inequalities) and active power
balance (equality) constraints given in Equations (2) and (3), respectively [21].

Pi,min ≤ Pi ≤ Pi,max f or i = 1, 2, ..., n , (2)

where Pi,min and Pi,max are the minimum and maximum power output of the ith unit.

PD =
n

∑
i=1

Pi − PLoss . (3)

where PD is the total power demand and PLoss is the total transmission loss. The transmis-
sion loss PLoss can therefore be calculated by using the B matrix technique and is defined
by Equation (4) as follows [21]:

PLoss =
n

∑
i=1

n

∑
j=1

PiBijPj , (4)
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where Bijs are the elements of loss coefficient matrix B. The cost function defined by FT
in Equation (1) assumes a smooth quadratic fuel cost function without the valve-point
loadings of the generating units (where the valve-point effects are ignored). The generating
units with multi-valve steam turbines exhibit greater variation in the fuel cost functions. Since
the valve point results in ripples, a cost function with higher-order nonlinearity will result.
Therefore, the function F(Pi) in Equation (1) can be replaced by Equation (5) to account for
the valve-point effects [22]. Conventionally, sinusoidal functions are often added to the
quadratic cost function to account for the valve-point effect, as given in Equation (5).

F(Pi) = ai + biPi + ciP2
i + |ei × sin( fi × (Pi,min − Pi))| . (5)

where ei and fi are the cost coefficients of the ith unit with valve-point effects. In general,
the cost coefficients ei and fi are introduced as in Equation (5) to model the valve-point
loadings. Similarly, Equation (5) can be used to represent either the fuel or emission cost
($/hr) depending on the values of the coefficients (ai, bi, ci, ei, and fi) that are used. Finally,
Equation (5) also represents the proposed higher-order cost function considering the valve-
point loading effect. In practical situations, generating units are made up of subunits. These
subunits combine to give rise to the overall installed capacity of the unit. Most units are
designed to operate using more than one fuel type, particularly in the case in which there is
great fluctuation in the price and availability of the dominant fuel types [19]. In the case of
moderately large units, a combination of the available fuel types may be used to cover the
power demand over the specified period of time. This type of scenario introduces greater
nonlinearity into the overall fuel cost function. Therefore, the fuel cost function of such
a system can be modeled using a multiple fuel cost function, which is only defined for
a particular range of power output within the specified maximum and minimum power
generation. Considering both the valve-point loading effect and multiple fuels, the cost
function of the system may easily be represented using Equation (6) [19].

F(Pi) =

ai1 + bi1P2
i + ci1P2

i + |ei1 × sin( fi1 × (Pi1,min − Pi1)|Fuel1 : Pm
i in ≤ Pi ≤ Pi1

ai2 + bi2P2
i + ci2P2

i + |ei2 × sin( fi2 × (Pi2,min − Pi2)|Fuel2 : Pm
i in ≤ Pi ≤ Pi2

aik + bikP2
i + cikP2

i + |eik × sin( fik × (Pik,min − Pik)|Fuel3 : Pmin
ik−1 ≤ Pi ≤ Pmax

ik .

(6)

2.2. Artificial Fish Swarm Algorithm

AFSA guarantees a global optimum in solution search problems [23], which is of
great importance in artificial intelligence to perform behavioral modeling. Consider a
swarm consisting of N artificial fishes and a state vector X = (x1, x2, ...xn), where n states
or attributes of the artificial fish are to be optimized via the AFSA algorithm. In addition,
suppose that Y = f (X) represents the objective function giving the food concentration of
the artificial fish at the current position, and let Dij = ||Xi − Xj|| be used to describe the
distance between artificial fishes i and j. Other important parameters for the artificial fish,
including its vision field, maximum step for motion, the congestion factor, and maximum
attempts in each praying, are also taken into account and are expressed as visual, step, δ,
and try number, respectively. For better results, the congestion factor is used to constrain
the size of the artificial swarm [5]. The behavior of the artificial fish is described next as
praying, swarm, and chasing.

2.2.1. Praying

If the artificial fish is currently in state Xi, in order to carry out praying, then it must
select another state, e.g., Xj, that is located within its visual field. Afterwards, the search
for a minimal solution is continued until Yi ≥ Yj; if this is the case, praying is completed
by moving one step in the direction taken. However, if Yi ≤ Yj, another state Xj must be
reselected from the visual field randomly to analyze whether it can move forward based on
a certain forwarding condition. This procedure is repeated for try-number times, and if the
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forward motion condition is still not satisfied, it will take one step in a random direction.
Mathematically, this can be expressed as given in Equation (7);

xi−next−k = xi→k +
xjk − xik

‖Xj − Xi‖
∗ random(step) Yj > Yi ,

xi−next−k = xi→k + random(step) Yj ≤ Yi ,
(7)

where k = 1, 2...n, xij represents the kth element of Xi, which is the current state of the
artificial fish; xjk is the kth element of Xj, which is the state of the artificial fish after random
movement, and xi−next−k represents the kth element of xi−next, which is the next state of the
artificial fish. Similarly, Yi and Yj are the values of the objective function of the current state
and that after a random movement, respectively, and random(step) represents a random
number selected from the range defined by [0 step].

2.2.2. Swarm

In the swarming process, the fish has the natural ability to share food and avoid any
distraction that is encountered. Suppose that the current state of the artificial fish is given
by Xj, and the total number of other fishes in its vision domain is denoted by n. Now, if
n f = 0, this should mean that the visual domain of the given artificial fish is empty, so it is
time to implement praying. However, if n f ≥ 0, this means that there are other companion
fishes present in its vision domain, and it must start searching the central position Xc
(i.e., center between the present fishes) of its companions according to Equation (8) [24].

Xck =
(∑

n f
j=1 xjk)

n f
, (8)

where Xc represents the central position of the artificial fish among other fishes, Xck gives the
kth element of Xc, and Xjk denotes the kth element of the vector of jth companion j = (1, 2, ... , n).
The calculation of the food concentration of the artificial fish at the central position, given
by Yc, is the objective function with the constraint of Yc

n f
Yi

> 1. If the central position is less
congested and safer, the artificial fish must move towards this position using Equation (9);
otherwise, praying is implemented [24].

xi−next−k = xi→k +
xck − xik
‖Xc − Xi‖

∗ random(step) . (9)

2.2.3. Chasing

In an artificial fish swarm, when fishes are in search of food, neighboring partners
have the natural ability to trace and reach food more quickly. Suppose that Xi denotes
the current state of the artificial fish and n denotes the total number of companions in its
visual field. Now, if n f = 0, this shows that the visual field of the artificial fish is empty;
therefore, praying should be implemented. However, if n f ≥ 1, this indicates that some
companions do exist in its visual field; therefore, it should search and find a companion
with a minimum value of the corresponding function Xmax. Then, the constraint is checked,
i.e., Ymax

n f
Yi

> 1; if it is valid, this means that the fitness value of the corresponding
companion is small and it is not congested; thus, Equation (10) is implemented; otherwise,
praying is implemented [24].

xi−next−k = xi→k +
xmax,k − xik

‖Xmax − Xi‖
∗ random(step) . (10)

where xmax,k gives the kth element of state vector Xmax.
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2.3. Genetic Algorithm

Genetic algorithm (GA) is an optimization algorithm that simultaneously works on
several solutions (also called population), as opposed to other optimization methods
that work on one solution at a time [25,26]. It is an iterative optimization algorithm and
comprises several steps, briefly described below.

2.3.1. Reproduction

The foremost operation on a population is called reproduction, which establishes a
mating pool by the selection of good strings from a population. The mating pool is fed with
duplicate copies of the good strings, i.e., above average strings. Proportionate selection
of strings from the present population is the most common operation in the reproduction
process, where each string is selected based on its fitness probability. Hence, an ith string
is selected with a fitness probability of εi. The cumulative probability of all the strings
in a population is always ’1’ because the population size in GA is normally fixed. The
fitness probability of ith string is given as fi

∑N
j=1 f j

. N represents the size of the population.

In [27], the authors have presented a method for achieving a proportionate selection using
a roulette wheel, where the circumference for every string is marked exactly according to
its fitness.

2.3.2. Crossover

Crossover is the next operation applied to the string of the mating pool after the
reproduction operation. In this operation, two strings are selected randomly from the
mating pool and some of their portions are exchanged. For instance, in a single point
crossover operation, two new strings are produced by swapping the right-side portions of
two strings after cutting these at arbitrary places, as presented in [15].

A better child string can be produced by combining good sub-strings from either
parent if a suitable site is selected, which is usually selected randomly since the suitability
of a site is not always known [15]. However, it must be noted that the random selection of a
site does not make the search process random. If a single-point crossover is applied to two
1-bit strings from either parent, at most, different strings can be found as a solution in the
given search space. With the selection of a random site, 2i children strings are produced.
These strings may or may not contain good sub-strings from parent strings, which depends
on the selection of an appropriate site. This aspect is of little interest as, if the crossover
operation fails to produce good strings, the reproduction operation will produce more
copies in the following mating pool. In a similar way, with a two-point crossover operation,
two sites are chosen randomly. A multi-point crossover operation can be carried out in a
similar fashion, and this extension is usually called the uniform crossover operator.

For a case of binary strings, the uniform crossover operation is applied by selecting
from either parent every bit with a probability of 0.5 [15]. The major purpose of the
crossover operation is the search of the parameter space and the preservation of the
information from parent strings since these are labeled as good strings after due selection
by the reproduction operation. Maximum information is transferred or preserved from
parent to child strings with a single-point crossover operator search as opposed to that
of the uniform crossover operator, where the search is extensive but the information
preservation form parent to child is minimal. For a crossover probability of Pc, the crossover
operation is applied to 100Pc% of the strings in the population and the remaining strings,
i.e., 100(1−Pc)% are transferred to a new population [15].

2.3.3. Mutation

In genetic algorithms, search procedures are normally carried out with the crossover
operator. However, a mutation operation may also be used sometimes for this purpose,
which uses certain mutation probability Pm, to change a 1 to 0 and vice versa. The detailed
process of mutation is explained in [15] where a new solution is created after a change
in the value of the fourth gene. The mutation operation is necessary to diversify the
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population, which can be demonstrated with the above example, where a long string of
zeros occurs, and a 1 is required to obtain a new solution that is more optimal or near to
optimal. Mutation is also helpful in improving a local solution.

3. Formulation of Hybrid Genetic–Artificial Fish Swarm Algorithm

The proposed HGAFSA is designed based on the available parameter dredging steps
present in the conventional GA and AFSA. However, each of the separate algorithms (GA
and AFSA) is assumed to be composed of three major steps, as described below.

1. GA

(a) Reproduction;
(b) Crossover;
(c) Mutation.

2. AFSA

(a) Praying;
(b) Swarming;
(c) Chasing.

The mathematical formulation of these steps has been described in Section 2. The
proposed HGAFSA is a logical combination of the six steps listed above. It is worth noting
that the GA uses a binary operation on a set of binary codes known as chromosomes, which
further comprise gins, whereas the AFSA uses real numbers ranging between zero and
one as the parameters of the so-called artificial fish. As such, a decoder function and an
encoder function are required to serve as converters from GA to AFSA and vice versa.
These functions are intended to decode binary code into real numbers and later encode
real numbers into binary.

3.1. Decoder Function

The decoder function takes in four parameters as inputs and generates a decoded
version of the main parameter as the output. Here, the main parameter is the chromosome
(X), whereas the remaining three parameters are:

1. xmin → Lower boundary of the desired decoded output;
2. xmax → Higher boundary of the desired decoded output;
3. Nbits → Number of bits per parameter.

The steps involved in decoding a single chromosome can be described using Algorithm 1.

Algorithm 1: The decoder function
input : X, xmin, xmaxandNbits
output : Xdecoded

1 Evaluate: N =number of bits in X;
2 Evaluate: p = N ∗ (Nbits)

−1 //number of parameters;
3 Evaluate: q = 0.5[1,2,...Nbits ]//quantization levels;
4 Evaluate: qnorm = q ∗ (∑Nbits

i=1 qi)
−1//quantization level normalization;

5 Evaluate: Xdecoded(i) = [q(1) ∗ X(j + 1)q(2) ∗ X(j + 2)...q(Nbits ∗ X(j + Nbits)];
6 for i← 1 to p and j← (i− 1) ∗ Nbits do
7 Xdecoded = [Xdecoded(1)Xdecoded(2)...Xdecoded(p)] ∗ (xmax − xmin) + xmin;

Using the decoder function, a vector X with p×Nbits elements is decoded into a vector
Xdecoded with p elements. As an illustration, consider X = [110110110111011110111011111011], if
xmin = 0 and xmax = 1, let Nbits = 6. Algorithm 1 yields = [0.8571 0.8730 0.4762 0.9365 0.9365]. In
the proposed HGAFSA, once any of the GA steps is executed, the resulting output/population
must be decoded before their respective fitnesses can be evaluated. Meanwhile, the resulting
output/population from the AFSA steps are directly evaluated using the fitness function
without being decoded.
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3.2. Encoder Function

The encoder function is also written to counteract the effect of the decoder function
presented in Algorithm 1. However, a reversed procedure is adopted based on Algorithm 1
(moving from step 7 to 1). Here, the decoder function is intended to generate chromosome
(X) given its decoded version Xdecoded, xmin, xmax and Nbits. However, the encoder function
formulation is omitted from this manuscript for brevity. Generally, it can be said that the
decoder function converts a chromosome into a fish, whereas the encoder function converts
a fish back into a chromosome. This can be further described using Figure 1. Furthermore,
it is worth noting that both X and Xdecoded are kept for reference during the optimization
process using the proposed HGAFSA. However, either X or Xdecoded is later discarded
depending on which of the GA or AFSA steps perform better at a given generation and at
a given step in the HGAFSA dredging process. At first, the entire population is stored as
chromosomes. However, each chromosome is either left as a X or transformed into a fish
Xdecoded depending on which of the HGAFSA steps (GA step or AFSA step) performs better.

Figure 1. Illustration of chromosome to fish conversion and vice versa.

3.3. Population Update

The proposed HGAFSA is composed of two unique algorithms (GA and AFSA)
with completely different parameter dredging procedures. When one of the GA steps is
executed on an encoded fish (chromosome), the resulting chromosome might be of poor
fitness compared to the result if an AFSA step had been directly performed on the fish
itself. However, this consequence might be reversed. Therefore, the population must be
carefully updated for optimality and an improved convergence rate. Algorithm 2 further
describes the population update procedure.
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Algorithm 2: Population updated
input : //list of steps to be executed in chronological order)

combined population of fish and chromosomes
output : P(k)

1 Define: Ω =;
2 for k← 1 to popsize do
3 for s← 1 to Nsteps do
4 if P(k) = f ish & S(s) AFSA then
5 Evaluate: f = Fobj(P(k));
6 Execute: P(k)→ S(s)→ P(k)new;
7 Evaluate: fnew = Fobj(P(k)new);
8 if fnew is better than f then
9 Store: [ fnewP(k)new]→ Ω;

10 else
11 Store: [ f P(k)]→ Ω;

12 else if P(k) = f ish & S(s)GA then
13 Evaluate: f = Fobj(P(k));
14 Execute: P(k)→ Encoder → P(k)Encoded;
15 Execute: P(k)Encoded → S(s)→ P(k)Encoded,new;
16 Evaluate: fnew = Fobj(P(k)Encoded,new);
17 if fnew is better than f then
18 Store: [ fnewP(k)Encoded,new]→ Ω;

19 else
20 Store: [ f P(k)]→ Ω;

21 else if P(k) = chromosome & S(s)AFSA then
22 Execute: P(k)→ Decoder → P(k)Decoded;
23 Evaluate: f = Fobj(P(k)Decoded);
24 Execute: P(k)Decoded → S(s)→ P(k)Decoded,new;
25 Evaluate: fnew = Fobj(P(k)Decoded,new);
26 if fnew is better than f then
27 Store: [ fnewP(k)Decoded,new]→ Ω;

28 else
29 Store: [ f P(k)]→ Ω;

30 else if P(k) = chromosome & S(s)GA then
31 Execute: P(k)→ Decoder → P(k)Decoded;
32 Evaluate: f = Fobj(P(k)Decoded);
33 Execute: P(k)→ S(s)→ P(k)new;
34 Execute: P(k)→ Decoded→ P(k)new,Decoded;
35 Evaluate: fnew = Fobj(P(k)new,Decoded);
36 if fnew is better than f then
37 Store: [ fnewP(k)new,Decoded]→ Ω;

38 else
39 Store: [ f P(k)]→ Ω;

40 Sorting: Rearrage the vectors in Ω (in the order of optimality);

3.4. Model of the Economic Load Dispatch Problem

To solve the ELD problem using the proposed HGAFSA, a function is required to
convert the random numbers generated by it into electrical power demand scheduled to
the set generating units. Let P be a set of power to be generated by the available generating
units forming the ELD problem. Let Pmax and Pmin be the maximum and minimum power
allowable for each of the units, respectively. NG is the number of generating units. Then,

P = [P1P2P3...PNG−2PNG−1PNG ] , (11)

Pmax = [Pmax,1Pmax,2...Pmax,NG−1Pmax,NG ] , (12)

Pmin = [Pmin,1Pmin,2...Pmin,NG−1Pmin,NG ] . (13)

The next most important parameter of ELD problem formulation is the total power
(PT) to be generated by the generating units to meet both the power demand and the
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power losses along the network. This can be described using the equality constraint as in
Equation (14).

PT = PD + PL . (14)

where PD is the total power demanded by the consumers and PL is the total power losses
in the network. PT can also be expressed using Equation (15).

PT =
NG

∑
i

Pi . (15)

As described earlier, to evaluate the fitness of a population generated by HGAFSA,
the population must be decoded into a fish (Xdecoded). However, this fish must be further
converted into a real power demand P. To achieve this, let Xdecoded be replaced by χ having
p elements, such that Equation (16) holds.

χ = x1x2x3...xp−2xp−1xp . (16)

An ELD encoder function is developed to transform χ into an equivalent P. The
overall process can be described using Figure 2.

Fobj,ELD ELD Encoder

Chromosome Decoder Fish χ

P = [P1..., PP]

Figure 2. Evaluating the fitness of a chromosome/fish.

An ELD encoder function is developed to transform χ into an equivalent P. The
overall process can be described using Figure 2. The function Fobj,ELD is the objective
function of the ELD problem. The ELD encoder function is given in Algorithm 3. The
proposed ELD encoder has the advantage that no generating unit can generate below its
minimum allowable generating limit. However, its generation may exceed the allowable
maximum. To prevent this, steps 11 to 14 are added to Algorithm 3 to enforce the maximum
limit constraint. Furthermore, in the developed ELD encoder, the power generation at any
unit cannot be lower than the minimum allowable generation at that unit. This is because,
in line 10 of the ELD encoder Algorithm, the addition of Pmin(h) enforces the lower limit
constraint. However, the parameter γ can be greater than the upper limit at a particular
generating unit due the presence of a rational function at the first part. The rational part
of γ usually results in approximation, pushing its value beyond the maximum allowable
limit. This phenomenon can be avoided by replacing γ with Pmax(h) when the upper limit
is exceeded or using line 11 to 14 of Algorithm 3.

However, it can be observed from step 16 of Algorithm 3 that the proposed ELD
encoder performs optimization during the encoding process. Therefore, it could be termed
an optimal ELD encoder of order p. To further increase the performance of the proposed
ELD encoder, the dimension of X can be extended for every given χ generated by the
proposed HGAFSA. This extension is modeled in Equation (17).

χext = [χ, χ|(sin(2πχ)|, χ|(cos(2πχ))|] . (17)

With this extension, a new optimal ELD encoder of order 3×p can be formed by
modifying steps 6 and 14 of the former optimal ELD encoder (order p) described earlier.
This can be achieved using Equations (18) and (19), respectively.

par = [1, 2, 3, ..., 3× p] , (18)
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s = [1, 2, 3, ..., 3× p] . (19)

Equation (17) can be used to boost the performance of HGAFSA by further exploring
the solution search space. This is because, for every new set of possible solutions χ, two
additional solution sets are also searched, i.e., χ1 = χ|(sin(2πχ))| and χ2 = χ|(cos(2πχ))|.
Therefore, the probability that the optimal solution will lie within the three search spaces
(χ, χ1, and χ2) must always be greater than or equal to the probability of the obtained
optimal solution being within χ alone. As such, the performance of the original ELD
encoder (which makes use of χ alone) will definitely improve. In the other hand, the ELD
encoder of order 3× p is of a higher rate of convergence than the original ELD encoder
(with order p).

Algorithm 3: ELD Encoder
input : χ, p, NG, Pmax, Pmin and PT
output : P

1 Creat: ζ = [] ;
2 for g = [1, 2, 3, ..., NG] do
3 ∂ = (Pmax(g)− Pmin(g)) ∗ χ/max(χ);

4 ζ =
[

ζ
∂

]
;

5 Create:ε = [];
6 for par = [1, 2, 3, ..., p] do
7 for g = [1, 2, 3, ..., NG] do
8 ρ(g) = ζ(g, par);

9 for h = [1, 2, 3, ..., NG] do

10 γ =
(PT−∑

NG
g Pmin(g))∗ρ

(∑
NG
g ρ(g))

+ Pmin(h);

11 while max(γ− Pmax) > 0 (enforce the upper limit constraint for each generating unit) do
12 ρ = rand(1, NG). ∗ ρ + rand(1, NG);
13 repeat
14 for loop at step 9;
15 until;

16 ε =
[ ε

γ
]
;

17 for s = [1, 2, 3, ..., p] do
18 Evaluate:Fit(s) = Fobj,ELD([ε(s, 1) ε(s, 2) ε(s, 3) ... ε(s, NG − 1) ε(s, NG)]);

19 Determine: K ← Fit(K) = min(Fit);
20 Assign: P = [ε(K, 1) ε(K, 2) ε(K, 3) ... ε(K, NG − 1) ε(K, NG)];

3.5. The Proposed HGAFSA-Based Higher-Order ELD Algorithm

The ELD problem is one of the power system analysis problems with a large number
of possible solutions. However, such solutions form a set of local optimums. As the
number of generating units increases, the possible solutions increase exponentially. As
such, an algorithm that can deeply search into the solution domain is required to locate
the global optimum solution. In this work, the HGAFSA optimization algorithm with
high computation capability and a fast rate of convergence is developed for complex
ELD problem solving. The flow chart for the proposed HGAFSA-based higher-order ELD
problem solver is shown in Figure 3.
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START 

Input: ELD parameters, 

Select suitable HGAFSA parameters 

HGAFSA 

Is initial population available? 

NO 

YES 

Set the best population as the starting point 

Is minimum cost accepted? 

YES 

NO 

Reproduce initial population 

Print minimum cost as global optimum cost 

Generate Optimization Curve 

Output Power allocation for each Generator 

STOP 

Figure 3. HGAFSA-based ELD algorithm.

4. Performance Validation

To demonstrate the effectiveness of the developed HGAFSA-based ELD problem
solving algorithm, six test systems are designed. The developed algorithm is programmed
in the MATLAB 2016a environment on a setup with 8 GB RAM and a 2.3 GHz Core I3
processing Computer running Windows 10.1.

A set of suitable parameters chosen for simulation analysis are listed in Table 2. To
achieve the desired objective of outperforming all existing ELD algorithms in the literature,
the best solution generated by HGAFSA is set as the starting point if it does not meet the
desired goal. This process is repeated as far as the optimum cost is higher than the best
cost presented in the literature so far.

Table 2. HGAFSA simulation parameter settings.

Parameter Algorithm Abbreviation Value

Population Size GA, AFSA Psize 64

Number of Parameters GA, AFSA NoP 32

Visual Distance AFSA VD 0.875 to 1

Crowdness Factor AFSA CF 0.09 to 0.5

Step Size AFSA Ssize 0.00125 to 0.1

Max. Iteration GA, AFSA Max_Iter 10,000

Mutation Rate GA MR 0.4 to 0.75

Selection Probability GA SProb 0.375 to 0.5

Number of Bits GA NoB 8
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4.1. Test System 1

The proposed HGAFSA algorithm is tested for a 13 generating units (Gen. units) test
system having a non-smooth fuel cost function with valve-point effect, and its effectiveness
is demonstrated compared to that of the oppositional grey wolf optimization (OGWO)
algorithm [28] for the mentioned test system. The system data, such as fuel cost coefficients
and active power limit thresholds for different generators, are adopted from [29] and the
power demand assumed for the given test system is 2.52 GW. The simulation results of the
13-unit system are comparatively analyzed in Table 3 for our proposed HGAFSA and other
optimization algorithms, such as improved coordinated aggregation-based PSO [30], shuf-
fled differential evolution (SDE), oppositional real-coded chemical reaction optimization
(ORCCRO) [31], biogeography-based optimization (BBO), hybrid differential evolution-
based BBO (DE/BB) [32], and oppositional–invasive weed optimization (OIWO) [33]. The
performance of HGAFSA is measured in terms of fuel cost ($/h) and power loss (MW),
compared to the mentioned optimization algorithms, in Table 3. The fuel cost of HGAFSA
is lower (24,141.26 $/h) compared to other algorithms. Comparatively, HGAFSA reduces
the fuel cost of the generation system under consideration. Similarly, SDE and ORCCRO
result in the same power loss (40.09 and 40.11) as HGAFSA (40.22), but lower than GWO,
OGWO, and OIWO. Therefore, the reduced fuel cost and minimum power loss shown
in Table 3 prove the efficacy of our proposed HGAFSA. Figure 4a shows the HGAFSA-
based optimization curve. Figure 4a reveals that the algorithm converges at the thirteenth
generation system to a cost of 24,141.2687 $/h. This results in annual savings of $3.253 m.
Figure 4b presents the cumulative power generated by the units. In ELD, the power gener-
ated by each unit must lie within its maximum and the minimum allowable power output
(upper and lower limits). Therefore, the power allocations must lie within this limit and
the optimum power allocated to each unit (Pi) must lie within its limits. Finally, the cost
functions of the various generating units influence the optimum power allocated the units
and, thus, define the pattern of the ’optimum Pi’ curves for each of the six test systems in
this work. In general, the peak of the cumulative power curves can be described as follows.

Table 3. Comparison of results for 13-unit system.

No. of Gen. Units HGAFSA (MW) OGWO (MW) GWO (MW) OIWO (MW) SDE (MW) ORCCRO (MW)

1 628.32 628.29 628.16 628.31 628.32 628.32

2 299.20 299.18 298.92 299.19 299.20 299.20

3 299.20 297.50 298.22 299.19 299.20 299.20

4 159.73 159.72 159.72 159.73 159.73 159.73

5 159.73 159.73 159.72 159.73 159.73 159.73

6 159.73 159.72 159.72 159.73 159.73 159.73

7 159.73 159.73 159.71 159.73 159.73 159.73

8 151.73 159.73 159.67 159.73 159.73 159.73

9 148.02 159.73 159.66 159.73 144.74 144.72

10 114.79 77.39 77.39 77.39 113.12 112.14

11 95.58 114.74 114.60 113.10 92.40 92.40

12 92.40 92.39 92.38 92.35 92.40 92.40

13 92.40 92.37 92.35 92.39 92.40 92.40

Fuel Cost ($/h) 24,141.26 24,512.72 24,514.47 24,514.83 24,514.90 24,513.91

Power Loss (MW) 40.11 40.28 40.29 40.36 40.09 40.11
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(a)

(b)

Figure 4. HGAFSA optimization and optimal power allocation curves for 13 units. (a) Optimization
curve; (b) cumulative power generated.

1. Optimum Pi Curve: Defines the total power generated (Demand + Losses) by the
system of generating units;

2. Upper Limit Pmax Curve: Defines the maximum power that can be generated by the
system of generating units;

3. Lower Limit Pmin Curve: Defines the minimum power generated by the system of
generating units.

In the case of Figure 4b, Ppeak
i = 25,604, Ppeak

min = 550, and Ppeak
max = 2960.

4.2. Test System 2

The performance of the proposed algorithm, HGAFSA, and OGWO is validated for a
40 generating unit test system, where the data for valve-point coefficients and 40 generating
units are adopted from [34]. A total power demand of 10.5GW is assumed for the given
system. The real power generation output and fuel cost are calculated for the 40-unit
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test system by various methods, such as HGAFSA, GWO, OGWO [28], SDE [31], ORC-
CRO, quasi-oppositional teaching–learning-based optimization (QOTLBO) [35], hybrid
ant colony–genetic algorithm (GAAPI) [36], and krill herd algorithm (KHA) [37], and are
tabulated in Table 4. The HGAFSA appraoch results in a reduced fuel cost (136,396.9 $/h)
and minimum power loss (957.29 MW) compared to the approaches mentioned in Table 4.
Figure 5a shows the HGAFSA-based optimization curve, which converges at the fifty-
first generation to a cost of 136,396.9727 $/h. This results in annual savings of $382,350.
Furthermore, Figure 5b shows that all generators satisfy their inequality constraints.

(a)

(b)

Figure 5. HGAFSA optimization and optimal power allocation curves for 40 units. (a) Optimization
curve; (b) cumulative power generated.
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Table 4. Comparison of results for 40-unit system.

No. of
Gen. Units

HGAFSA
(MW)

OGWO
(MW)

GWO
(MW)

OIWO
(MW) SDE (MW) ORCCRO

(MW)
GAAPI
(MW)

QOTLBO
(MW)

KHA
(MW)

1 113.96 114 114 113.9908 110.06 111.68 114 114 114

2 113.69 114 114 114 112.41 112.16 114 114 114

3 120 120 120 119.99 120 119.98 120 107.82 120

4 179.74 183.57 181.04 182.51 188.72 182.18 190 190 190

5 96.97 87.81 87.83 88.42 85.91 87.28 97 88.37 88.59

6 140 140 140 140 140 139.85 140 140 105.51

7 300 300 300 299.99 250.19 298.15 300 300 300

8 284.8 300 300 292.06 290.68 286.89 300 300 300

9 289.02 300 300 299.88 300 293.38 300 300 300

10 279.65 279.72 279.97 279.70 282.01 279.34 205.25 211.20 280.67

11 168.81 243.61 243.62 168.81 180.82 162.35 226.3 317.27 243.53

12 94 94.17 94.14 94 168.74 94.12 204.72 163.76 168.80

13 484.04 484.27 484.45 484.07 469.96 486.44 346.48 481.57 484.11

14 484.05 484.33 484.23 484.04 484.17 487.02 434.32 480.54 484.16

15 484.04 484.04 484.24 484.03 487.73 483.39 431.34 483.76 485.23

16 484.08 484.07 484.03 484.08 482.3 484.51 440.22 480.29 485.06

17 489.28 489.21 489.62 489.28 499.64 494.22 500 489.24 489.45

18 489.3 489.26 489.32 489.29 411.32 489.48 500 489.55 489.30

19 511.32 511.33 511.46 511.32 510.47 512.2 550 512.54 510.71

20 511.33 511.49 511.49 511.33 542.04 513.13 550 514.29 511.30

21 549.94 523.47 523.47 549.94 544.81 543.85 550 527.08 524.46

22 549.94 546.64 547.68 549.99 550 548 550 530.10 535.57

23 523.3 523.38 523.37 523.28 550 521.21 550 524.29 523.37

24 523.32 523.33 523.13 523.32 528.16 525.01 550 524.65 523.15

25 523.27 523.40 523.34 523.58 524.16 529.84 550 525.05 524.19

26 523.28 523.30 523.35 523.58 539.1 540.04 550 524.46 523.54

27 10.01 10.01 10.06 10.01 10 12.59 11.44 10.89 10.12

28 10.01 10.01 10.63 10.01 10.37 10.06 11.56 17.43 10.18

29 10.01 10.06 10.51 10.01 10 10.79 11.42 12.78 10.02

30 96.96 87.80 87.80 87.86 96.1 89.7 97 88.81 87.81

31 190 190 190 190 185.33 189.59 190 190 190

32 190 190 190 189.99 189.54 189.96 190 190 190

33 190 190 190 190 189.96 187.61 190 190 190

34 199.99 200 200 199.99 199.9 198.91 200 200 200

35 200 200 200 200 196.25 199.98 200 168.08 164.91

36 169.2 164.89 164.83 164.82 185.85 165.68 200 165.50 164.97

37 110 110 110 110 109.72 109.98 110 110 110

38 109.99 110 110 109.99 110 109.82 110 110 110

39 110 110 110 110 95.71 109.88 110 110 110

40 550 511.85 511.54 550 532.43 548.5 550 511.53 512.06

Fuel Cost
($/h) 136,396.9 136,440.6 136,446.8 136,452.7 138,157 136,855.1 139,865 137,329.8 136,670

Power Loss
(MW) 957.29 973.12 973.28 957.29 974.43 958.75 1045.06 1008.96 978.92
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4.3. Test System 3

This system comprises 110 generating units with quadratic cost function characteristics.
A load demand of 15GW is assumed for this system, and other system data (fuel valve
coefficients and active power thresholds) are obtained from [38]. The minimum fuel cost
and generation capacity computed using HGAFSA and OIWO are tabulated in Table 5.
The results show that HGAFSA provides efficient and cheap power generation compared
to OIWO and other optimization algorithms mentioned in the literature. Figure 6a shows
the HGAFSA-based optimization curve. The algorithm is truncated at the hundredth
generation and at a cost of 197,988.892 $/h. This results in annual savings of $2135.69. The
saving in cost is lower because of the narrow margins for some of the generating units,
especially units 1 to 9, and the high cost of generation. Furthermore, Figure 6b shows that
all generators satisfy their inequality constraints.

(a)

(b)

Figure 6. HGAFSA optimization and optimal power allocation curves for 110 units. (a) Optimization
curve; (b) cumulative power generated.
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Table 5. Comparison of results for 110 unit system.

No. of
Gen. Units

HGAFSA
(MW)

OIWO
(MW)

No. of
Gen. Units

HGAFSA
(MW) OIWO (MW) No. of Gen.

units
HGAFSA
(MW)

OIWO
(MW)

1 2.4 2.4 38 69.99 69.98 75 89.99 89.99

2 2.40 2.40 39 99.99 99.99 76 49.99 49.99

3 2.40 2.40 40 120 120 77 160 160.01

4 2.4 2.4 41 157.18 156.8 78 295.76 291.36

5 2.4 2.4 42 220 220 79 175.05 177

6 4.01 4.01 43 440 440 80 98.01 97.75

7 4 4 44 560 560 81 10.01 10.01

8 4 4 45 660 660 82 12.01 12.30

9 4 4 46 616.43 619.53 83 20.01 20.04

10 64.39 63.05 47 5.40 5.40 84 199.98 199.99

11 62.16 59.27 48 5.4 5.4 85 324.99 324.51

12 36.29 35.65 49 8.40 8.40 86 439.99 439.99

13 56.62 57.43 50 8.4 8.4 87 14.42 18.86

14 25 25 51 8.4 8.4 88 24.32 23.33

15 25 25 52 12 12 89 82.44 84.40

16 25 25 53 12 12 90 89.25 91.9

17 155 155 54 12.01 12.01 91 57.61 58.29

18 155 155 55 12 12 92 99.99 98.07

19 155 155 56 25.2 25.2 93 440 440

20 155 155 57 25.2 25.2 94 499.99 499.97

21 68.9 68.9 58 35 35 95 600 600

22 68.9 68.9 59 35.01 35 96 471.47 469.27

23 68.9 68.9 60 45.01 45.01 97 3.6 3.6

24 350 350 61 45.01 45.01 98 3.6 3.6

25 400 400 62 45 45 99 4.4 4.4

26 400 400 63 184.99 185 100 4.40 4.40

27 500 500 64 185 184.99 101 10.01 10.01

28 500 500 65 185 185 102 10.01 10.01

29 200 199.99 66 184.99 185 103 20.01 20.01

30 100 100 67 70 70 104 20.01 20.01

31 10.01 10.01 68 70 70 105 40 40

32 19.99 19.99 69 70.01 70.01 106 40.01 40.01

33 79.99 79.48 70 359.99 360 107 50 50

34 250 250 71 400 400 108 30 30

35 360 360 72 400 400 109 40 40

36 400 399.99 73 104.96 107.83 110 20 20

37 39.99 39.99 74 191.49 188.81 Fuel Cost
($/h) 197,988.8 197,989.1

4.4. Test System 4

In this scenario, a power system comprising 140 generating units is considered and
the performance of the proposed HGAFSA algorithm is compared to OGWO, SDE, and
OIWA. These results validate that HGAFSA outperforms all other methods in producing
cheap power. The performance of both HGAFSA and OGWO is satisfactory but HGAFSA is
significantly better than OGWO. The fuel costs are computed as 1,558,619 $/h for HGAFSA
and 1,559,710 $/h and 1,559,953 $/h for OGWO and GWO, respectively. Figure 7a shows the
HGAFSA-based optimization curve. HGAFSA converges at the sixty-sixth generation to a
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cost of 1,559,710 $/h, resulting in annual savings of $9.55 m. Furthermore, Figure 7b shows
that all generators satisfy their inequality constraints.

(a)

(b)

Figure 7. HGAFSA optimization and optimal power allocation curves for 140 units. (a) Optimization
curve; (b) cumulative power generated.

4.5. Test System 5

The proposed algorithm is also tested for a test system consisting of 160 generating
units with non-smooth valve-point cost functions. In order to show the effectiveness of the
proposed technique for solving a large-scale ELD problem, transmission losses are ignored.
The fuel costs are computed as 9612.8 $/h for HGAFSA and 9745.1 $/h and 9813.3 $/h for
OGWO and GWO, respectively. These results indicate that the total production cost is lower
than that of all other methods mentioned in this work. Figure 8a shows the HGAFSA-based
optimization curve. The HGAFSA algorithm converges at the eighth generation to a cost of
9612.8295 $/h, providing annual savings of $1.158 m. Furthermore, Figure 8b shows that
all generators satisfy their inequality constraints.
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(a)

(b)

Figure 8. HGAFSA optimization and optimal power allocation curves for 160 units. (a) Optimization
curve; (b) cumulative power generated.

4.6. Test System 6

The test system comprises a 463-unit system formed by combining test systems 1 to 5
(Gen. Units of 13 + 40 + 110 + 140 + 160). The coefficient of the valve point is assumed to
be zero if not available for any generating unit. The simulation study is carried out under
valve-point loading multi-fuel cost and emotion. A total power demand of 120,000 MW
is used for the dispatch problem. The power loss components are assumed to be negli-
gible. The problem is solved using the proposed HGAFSA. The fuel cost is computed
as 1,645,338.7 $/h. Figure 9a also shows the HGAFSA-based optimization curve. The
HGAFSA algorithm converges at the eighty-sixth generation to a cost of 1,645,338.7385 $/h.
Furthermore, Figure 9b shows that all generators satisfy their inequality constraints.
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(a)

(b)

Figure 9. HGAFSA optimization and optimal power allocation curves for 463 units. (a) Optimization
curve; (b) cumulative power generated.

In general, the results of the overall simulation study are summarized and presented
in Table 6, which provides a comparative analysis of the developed HGAFSA and the
best-performing algorithms mentioned in the literature. Table 6 reveals that HGAFSA
outperforms all other algorithms for all simulation scenarios, with the best performance
obtained in the 140-unit test system. This, however, results in relatively high overall annual
savings. This work also provides a new benchmark test system of 463 units. In order to
further demonstrate the optimization parameter sensitivity of the proposed HGAFSA, a
range of sensitivity analysis is performed and is reported in the next subsection.

4.7. Sensitivity Analysis

Sensitivity analysis is carried out to provide an insight towards the selection of the
HGAFSA-based optimization parameter settings (a) to achieve the desired optimization
trade-off, (b) to boost the capability of replicating this work, and (c) to ease future advance-
ment in this area of research. Tables 7–13 present the optimization results obtained by
varying the most sensitive HGAFSA parameters over a number of Monte Carlo (NMC)
simulation trials. In the analysis, the NMC is maintained at 10 trials and the optimization
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result is averaged over the 10 trials. In each of the tables, the convergence optimum cost,
the number of function evaluations before convergence (NFEBC), the number of gener-
ations/iterations before convergence (NGBC), and the CPU time are averaged (over the
10 trials/NMC) and recorded/presented.

The convergence/optimization curve reaches a minimum value at a point referred
to as the ’point of convergence’. The number of optimization trials/generation before
the point of convergence, also known as the number of generations before convergence
(NGBC), is used to compare the performance of HGAFSA for different cases of optimization.
Contrarily, the NFEBC gives an idea of the computational intensity/expensiveness of any
given optimization algorithm. In Table 7, the Psize is randomly varied between 2 and
500 individual/candidate solutions, and it is observed that the best performance (i.e., the
lowest cost and a relatively lower NFEBC, NGBC, and CPU time) is achieved with 64-
candidate solutions. Furthermore, for Psize greater than 64-candidate solutions, HGAFSA
yields the optimum cost but with higher NFEBC and CPU time. However, the NGBC is
observed to decrease with an increase in Psize.

Table 6. Summary of results for the comparison of HGAFSA and OGWO/OIWO.

Test System Number of
Gen. Units HGAFSA ($) Best Cost in

Literature ($)
Annual

Savings ($)
Total Power

(MW) CPU (s)

1 13 24,141.26 24,512.72 3,253,957.2 2560.36 5.02

2 40 136,396.97 136,440.62 382,350.35 11,457.29 10.11

3 110 197,988.89 197,989.14 2135.68 15,000 104.3

4 140 1,558,619.09 1,559,710 9,556,337 49,342 47.12

5 160 9612.82 9745.11 1,158,803.5 43,200 10.23

6 463 1,645,338.73 none none 120,000

Table 7. Effect of population size (Psize) on HGAFSA convergence.

NoP = 32; VD = 1; CF = 0.5;
Ssize = 0.005; Max.Iter = 100; MR = 0.5;

Sprob = 0.5; NoB = 8; NMC = 10

Test Sys. Psize Cost ($) NFEBC NGBC CPU (s)

1 2 1,558,959 44,544 87 5.823

2 16 1,558,651 319,488 78 41.77

3 64 1,558,619 360,448 22 47.12

4 100 1,558,619 460,800 18 60.24

5 500 1,558,619 1,536,000 12 200.8

Table 8. Effect of number of parameters (NoP) on HGAFSA convergence.

Psize = 64; VD = 1; CF = 0.5;
Ssize = 0.005; Max.Iter = 100; MR = 0.5;

Sprob = 0.5; NoB = 8; NMC = 10

Test Sys. NoP Cost ($) NFEBC NGBC CPU (s)

1 2 1,559,930 51,200 100 6.693

2 16 1,558,700 729,088 89 95.31

3 32 1,558,619 360,448 22 47.12

4 64 1,558,619 622,592 19 81.39

5 124 1,558,619 1,079,296 17 141.1
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Table 9. Effect of visual distance (VD) on HGAFSA convergence.

Psize = 64; NoP = 32; CF = 0.5;
Ssize = 0.005; Max.Iter = 100; MR = 0.5;

Sprob = 0.5; NoB = 8; NMC = 10

Test Sys. VD Cost ($) NFEBC NGBC CPU (s)

1 0.25 1,559,130 1,638,400 100 71.39

2 0.5 1,559,009 1,638,400 100 71.39

3 0.75 1,558,909 1,490,944 91 64.97

4 1 1,558,619 360,448 22 47.12

5 1.25 1,558,619 491,520 30 50.25

6 1.2 1,559,658 1,638,400 100 71.39

Table 10. Effect of crowdedness factor (CF) on HGAFSA convergence.

Psize = 64; NoP = 32; VD = 0.875;
Ssize = 0.005; Max.Iter = 100; MR = 0.5;

Sprob = 0.5; NoB = 8; NMC = 10

Test Sys. CF Cost ($) NFEBC NGBC CPU (s)

1 0.03 1,559,992 1,638,400 100 71.39

2 0.06 1,559,986 1,556,480 95 67.82

3 0.09 1,559,930 1,490,944 91 64.97

4 0.5 1,558,619 360,448 22 47.12

5 0.6 1,558,666 851,968 52 55.69

6 0.7 1,558,802 1,343,488 82 58.54

Table 11. Effect of step size (Ssize) on HGAFSA convergence.

Psize = 64; NoP = 32; VD = 0.875;
CF = 0.5; Max.Iter = 100; MR = 0.5;

Sprob = 0.5; NoB = 8; NMC = 10

Test Sys. Ssize Cost ($) NFEBC NGBC CPU (s)

1 0.00125 1,558,619 360,448 22 70.68

2 0.005 1,558,619 360,448 22 47.12

3 0.01 1,558,689 524,288 32 68.54

4 0.025 1,558,679 1,097,728 67 71.75

5 0.05 1,558,692 1,343,488 82 58.54

6 0.1 1,558,629 1,507,328 92 65.68

Step size (Ssize) is another parameter of the HGAFSA that randomly affects its charac-
teristics. In general, the smaller the value of Ssize, the better the performance, as presented
in Table 11. An Ssize of 0.005 is used in this work. An important parameter of the HGAFSA
is the selection probability (Sprob). Sprob also randomly affects the characteristics of
HGAFSA, as shown in Table 12. Maintaining the value of Sprob at 50% (0.5) can work
for most optimization problems. Similar to Sprob, the mutation rate (MR) also randomly
affects the behavior of the developed HGAFSA, as shown in Table 13. A 50% mutation
rate (MR = 0.5) is sufficient to handle most optimization problems. Finally, it is noted that,
despite the effect of parameter variation, the HGAFSA outperforms most of the existing
algorithms, regardless of its parameter settings.
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Table 12. Effect of selection probability (Sprob) on HGAFSA convergence.

Psize = 64; NoP = 32; VD = 0.875;
CF = 0.5; Max.Iter = 100; MR = 0.5;
Ssize = 0.005; NoB = 8; NMC = 10

Test Sys. Sprob Cost ($) NFEBC NGBC CPU (s)

1 0.1 1,558,629 442,368 27 48.19

2 0.2 1,558,621 507,904 31 55.33

3 0.3 1,558,650 475,136 29 51.76

4 0.5 1,558,619 360,448 22 47.12

5 0.7 1,558,629 622,592 38 67.82

6 0.8 1,558,622 491,520 30 64.25

Table 8 shows that an increase in the number of parameters (NoP) results in earlier
convergence but with higher computational expensiveness and convergence time. It is
also found out that a choice of 32 parameters is sufficient to achieve a relatively good
convergence characteristic. Table 9 presents the effect of the visual distance (VD) on the
convergence characteristics of HGAFSA. The choice of VD alters the value of NGBC, and
an improper selection of VD may result in a large value of NGBC or even lead to local
minimum/premature convergence. A trail and error procedure can be used to obtain a
suitable VD for any given optimization problem. However, it is found that a VD = 1 is
most suitable for solving the ELD problem. The effect of the crowdedness factor (CF) is
demonstrated in Table 10. Even though the results reported are the average of 10 trials,
the effect of CF on HGAFSA is observed to be random. However, with CF = 0.5, the
least/optimum cost is obtained for all scenarios.

Table 13. Effect of mutation rate (MR) on HGAFSA convergence.

Psize = 64; NoP = 32; VD = 0.875; CF = 0.5; Max.Iter = 100;
Ssize = 0.005; Sprob = 0.5; NoB = 8; NMC = 10

Test System MR Cost ($) NFEBC NGBC CPU (s)

1 0.1 1,558,629 540,672 33 58.9

2 0.25 1,558,621 638,976 39 69.61

3 0.5 1,558,619 360,448 22 47.12

4 0.75 1,558,650 524,288 32 57.12

5 1 1,558,629 573,440 35 62.47

5. Conclusions and Future Directions

HGAFSA is developed using a hybridization of the conventional binary-coded GA
and real-coded AFSA using a decoder (which converts a GA ’chromosome’ into an AFSA
’fish’) and an encoder (which performs the reverse operation of the decoder). An ELD
encoder algorithm is also developed and integrated with the HGAFSA to form a more
robust, efficient, and reliable technique (with a guaranteed high rate of convergence) for
solving complex ELD problems. A sensitivity analysis is carried out on the optimization
parameter settings of the developed HGAFSA. It is concluded that a trial and error method
can be used to select a suitable set of parameters in order to optimize an ELD problem. The
convergence of HGAFSA is randomly dependent on most of its parameters, and despite
the limitation of the parameter choice, its solutions would always be better than most of
the existing algorithms. The choice of encoder/decoder function further enhances the
optimization process. This feature of HGAFSA makes it robust and almost insensitive
to the choice of optimization parameter setting and enables it to support a wide range



Sustainability 2021, 13, 10609 26 of 27

of optimization parameter settings. The effectiveness of the HGAFSA is demonstrated
through the simulation of solutions to a multi-objective ELD problem with higher-order
cost functions using 13, 40, 110, 140, 160, and 463 generating unit test systems. Outstanding
performance is demonstrated by the proposed HGAFSA-based ELD approach for most of
the test systems. The future directions include the integration of the proposed ELD encoder
with other meta-heuristics techniques in order to increase the efficiency and performance
and its comparison with the proposed HGAFSA. The computational expensiveness of
HGAFSA can also be further reduced by minimizing the number of repetitive steps in
the algorithm while still introducing a powerful function that could compensate for their
solution search ability. Another possible improvement is to modify the solution search
procedure by introducing a set of steps that could adjust the parameter settings of HGAFSA
based on the iteration counter to further enhance its rate of convergence.
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