
sustainability

Article

Recommended System for Cluster Head Selection in a Remote
Sensor Cloud Environment Using the Fuzzy-Based
Multi-Criteria Decision-Making Technique

Proshikshya Mukherjee 1 , Prasant Kumar Pattnaik 2, Ahmed Abdulhakim Al-Absi 3 and Dae-Ki Kang 4,*

����������
�������

Citation: Mukherjee, P.;

Pattnaik, P.K.; Al-Absi, A.A.;

Kang, D.-K. Recommended System

for Cluster Head Selection in a

Remote Sensor Cloud Environment

Using the Fuzzy-Based Multi-Criteria

Decision-Making Technique.

Sustainability 2021, 13, 10579. https://

doi.org/10.3390/su131910579

Academic Editors: Baihua Li and

Fei Chao

Received: 15 June 2021

Accepted: 30 August 2021

Published: 24 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electronics Engineering, KIIT Deemed to be University, Bhubaneswar 751024, India;
pmdonamukherjee7@gmail.com

2 School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar 751024, India;
patnaikprasant@gmail.com

3 Department of Smart Computing, Kyungdong University, Gosung, Gangwon-do, Bongpo 24764, Korea;
absiahmed@kduniv.ac.kr

4 Department of Computer & Information Engineering, Dongseo University, 47 Jurye-ro, Sasang-gu,
Busan 47011, Korea

* Correspondence: dkkang@dongseo.ac.kr

Abstract: Clustering is an energy-efficient routing algorithm in a sensor cloud environment (SCE).
The clustering sensor nodes communicate with the base station via a cluster head (CH), which
can be selected based on the remaining energy, the base station distance, or the distance from the
neighboring nodes. If the CH is selected based on the remaining energy and the base station is far
away from the cluster head, then it is not an energy-efficient selection technique. The same applies to
other criteria. For CH selection, a single criterion is not sufficient. Moreover, the traditional clustering
algorithm head nodes keep changing in every round. Therefore, the traditional algorithm energy
consumption is less, and nodes die faster. In this paper, the fuzzy multi-criteria decision-making
(F-MCDM) technique is used for CH selection and a threshold value is fixed for the CH selection.
The fuzzy analytical hierarchy process (AHP) and the fuzzy analytical network process (ANP) are
used for CH selection. The performance evaluation results exhibit a 5% improvement compared
to the fuzzy AHP clustering method and 10% improvement compared to the traditional method in
terms of stability, energy consumption, throughput, and control overhead.

Keywords: sensor cloud environment; clustering; fuzzy multi-criteria decision-making; fuzzy analyt-
ical hierarchy process; fuzzy analytical network process; energy consumption

1. Introduction

A sensor cloud (SC) is a group of wireless sensor networks (WSNs) that perform their
work under the cloud [1]. As illustrated in Figure 1, an SC has three major components,
which include clients who take the services from the cloud; clouds that provide services
and storage of resources on demand; and WSN, which senses a variety of applications and
sends data to the cloud through a sink. Here, the base station (BS) is replaced by the cloud.

SCs have various applications such as Nimbits [2], Pachube platform [3], Ubiquition
Healthcare Monitoring [4], disaster detection [5], Google Health [6], Microsoft Health
Vault [7], agriculture [8], traffic monitoring, and wildlife monitoring [9,10]. Privacy and cost-
effectiveness are primary concerns in data collection and sensing. Due to the compactness
of SCs, limited power is supplied, and therefore effective and efficient utilization of power
in SC is required [11].

WSN clustering is a way to consume power using CH selection as it acts as a gateway
between the BS and member nodes. CHs gather data from the member nodes by using the
time division multiple access (TDMA) method and send the date collected to the BS [12]. In
a sensor cloud environment (SCE), different types of cluster-based routing protocols exist.
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Low energy adaptive clustering hierarchy (LEACH) is one of the basic cluster-based routing
algorithms [13]. LEACH has four phases, namely network deployment phase, neighbor
discovery phase, cluster formation and CH selection phase, and communication phase. For
CH selection, a different criterion needs to be considered. The main aim of the LEACH
algorithm is energy consumption. In LEACH, CH is selected based on residual energy, node
density, distance to the sink, or the average distance between a node and its neighbor. A
single criterion is used for CH selection in real time. Having a single criterion is not enough
for the head node chosen because if the residual energy of a head node is high and the
distance to the sink of that node is also high, then we cannot say that it is energy-efficient
communication. The same goes for the other criteria. Therefore, to solve such problems, in
this work, the multi-criteria decision-making (MCDM) technique was considered for CH
selection in a remote SC environment. The MCDM technique has been designed to identify
the desired alternatives and arrange alternatives in a small number of categories; the rank
of the alternatives gives the preference order. In the MCDM technique, decision matrixes
have four major parts, namely alternatives, attributes, weight, and performance concerning
attributes. In an SCE, we identified different criteria for CH selection and used the MCDM
technique to calculate the rank from different criteria, sub-criteria, and their alternatives.
In this technique, a pairwise comparison matrix was created from the criteria with respect
to different alternatives, and the weight of the matrix was calculated from the matrix. The
fuzzy analytical hierarchy process (AHP), the fuzzy analytical network process (ANP),
and the technique for order preference by similarity to the ideal solution (TOPSIS) are
popular MCDM techniques [14]. Another problem that occurs in the traditional LEACH
algorithm is that the CHs are changed in every round and the process is continued till the
last nodes have died. In this process, the energy utilization is greater and network lifetime
is less. Therefore, to solve this problem, we used the threshold value for CH selection
and the MCDM technique to calculate the threshold value. The LEACH is a hierarchical
architecture; therefore, to solve this problem, in this paper, we considered two MCDM [15]
algorithms: the fuzzy analytical hierarchy process (FAHP) [16] and the fuzzy analytical
network process (FANP) [17]. The FAHP MCDM is used to solve tree- or hierarchy-like
structures, but if the criteria and sub-criteria are increased, then it looks like network- or
mesh-type architecture. This problem was solved by using the FANP MCDM technique. In
the LEACH algorithm, we went further and modified the last two phases, these being the
CH selection and the communication phase. The novelty of our method is that we used
the FMCDM technique for CH selection in an SCE. Using this method, we reduced the
consumption of energy and increased network stability and lifetime in inter-cluster and
intra-cluster multi-hop communication models in WSNs.Sustainability 2021, 13, x FOR PEER REVIEW 2 of 18 
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This paper is organized as follows. Section 2 is a review of CH selection techniques
for WSN. CH selection using the fuzzy MCDM techniques FAHP and FANP is discussed
in Section 3, and so too is the CH selection algorithm. In Section 4, the result analysis of the
proposed technique is discussed. The concluding remarks are discussed in Section 5.

2. Related Work

In 1981, Hwang and Yoon proposed a network algorithm where they considered that
the nodes are created different clusters and each cluster has head node (one of the cluster
nodes) and remaining are member nodes. Head node has possibility to exhaust battery
power quickly. Therefore, dynamically changing the head nodes may be implemented
using rounds [18]. In 2002, Heinzelman et al. has proposed to improve LEACH algorithm
based on principle election of cluster head [19]. In 2004, Younis and Fahny [20] developed
‘Hybrid Energy-Efficient Distributed’ algorithm based on basis of the residual energy of
cluster head nodes. In 2006, Kim and Chung [21] focuses on mobile nodes. In 2013 Azada
and Sharma proposed a TOPSIS technique [22] focused on ‘Multiple Attribute Decision
Making’ approach of cluster leaders’ election. In 2016, Alami et al. [20], proposed and
energy efficient fuzzy technique for CH selection in WSN. The main aim of the work was to
reduce the energy consumption and increased the network life span using fuzzy parameter.
In 2017, Khan et al. proposed fuzzy-TOPSIS based election of cluster head in mobile
network using four criteria and compared with the traditional LEACH and Fuzzy [23]. In
2018, Liuhao Chen et al. [24,25], proposed the clustering algorithm on the basis of K-means
and PROMETHEE methods. In 2019 Y. Zhao et al. focused on a CH selection and dynamic
distributed clustering method. The authors considered the protocol and the clustering
algorithm [LTE-M] [26]. In 2019, P. Mukherjee et al. focused on CH selection using AHP
method [27,28]. In 2020, Dezert et al., proposed a modified Belief function base on inter-
criteria analysis using MCDM method [29]. In 2021, Alidrisi proposed supply chain model
using MCDM method [30]. In this paper, big data was used as a platform for finding the
role of green supply chain model (GSCM) over the supply chain finance and the fuzzy
ANP technique is used as MCDM method. In 2021, Rekha and Gupta surveyed different
CH selection method in WSN. They surveyed different algorithm like probabilistic, fuzzy
logic, adaptive, and multi-attribute decision making techniques and discussed different
challenges in network [31].

From the related work, we concluded that CH selection depends upon several criteria
and the fuzzy MCDM method was used to calculate the rank from the several criteria. In
this paper, we attempt to provide a framework for CH selection in remote SC environment
by which is important for head node selection due to existence of several clusters and nodes
position. Therefore, the main aim of this research is to build criteria from the node position
for CH selection in SC environment and to calculate weight for CH selection considering
their importance level. The entire process will be discussed in the next section.

3. Proposed Work
3.1. Cluster Head Selection Using Fuzzy MCDM Techniques

Clustering mechanisms have four phases, namely network deployment phase, neigh-
bor discovery phase, cluster formation and CH selection phase, and communication phase.
In this paper, we mainly focus on CH selection. Here, CHs are not changed in every round,
so it minimized the control overhead in the set-up phase. CH changes are dependent on
the threshold value. If the threshold value is less than the other member, neighbor nodes,
then re-clustering is occurring. In the proposed work, clustering scheme nodes take the
decision themselves based on ranking index value which is obtained from four criteria for
head selection. In real time, remote SC environment problem arises for CH selections using
a decision model because their exact complexity is unknown. Therefore, the problem can
be resolved by absolute representation of crisp values [32]. So, the fuzzy set theory is put
in place to solve this problem.
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In this work, MCDM techniques: AHP and ANP with fuzzy sets have been considered
for CH selection. We used Chang’s method [33,34] to solve the pair wise comparison matrix
in the triangular method, and by using Buckley’s method [35], we can calculate the weight
for both criteria and alternatives. The steps are as follows:

Step 1: To calculate the pair wise comparison matrix by using Chang method [35].

Where
∼
Tk represents the decision maker’s preference of via triangular numbers of criterion

over criterion.

∼
Tk =


∼

m11
k

∼
m12

k . . .
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Step 2: When more than one decision maker
(
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ij

)
required, then calculate the average

of preference of each decision maker
(
m̃ij
)

and Equation (2) is calculated in.

∼
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∑k
k−1
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K
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Step 3: Update the pair wise comparison matrix on the basis of average preferences

and shows the matrix
∼
T in Equation (3).

∼
T =


∼

m11 . . .
∼

m1n
...

. . .
...

∼
mn1 · · · ∼

mnn

 (3)

Step 4: Calculate the geometric mean of the triangular fuzzy number by the Buckley [27]
method of each individual criterion as shown in Equation (4); (g̃i ) represents the
triangular values.

∼
gi =

(
n

∏
j=1

∼
mij

)
, i = 1, 2, · · · , n (4)

Step 5: Calculate the fuzzy weight w̃i from the Equation (5). 1st we have to find the
summation of (g̃i ) and also find the inverse power of summation vector. Then change the
fuzzy triangular number and reorder in increasing manner.

∼
wi =

∼
gi ⊗ (

∼
gi ⊕

∼
gi ⊕ · · · ⊕ ∼

gi)
−1

= (lwi, mwi, uwi)
(5)

Step 6: The w̃i are still triangular fuzzy numbers, so de-fuzzification needed. Here we
used Chou [22] and Chang [26] method for de-fuzzification. The Equation (6) is applied for
de-fuzzification.

qi =
(lwi, mwi, uwi)

3
(6)

Step 7: Then qi is now a non-fuzzy number. So, the normalization is needed. The
Equation (7) shows the normalization li equation.

li =
qi

n
∑

n=1
qi

(7)
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3.2. CH Selection Fuzzy AHP Modes

In this section, FAHP method has been developed for CH selection to improve the
network lifetime and to minimize the energy consumption in the remote SC environment.
In FAHP, the pair wise comparison matrix is performed by the linguistic variables for both
criteria and the alternatives, which are represented by triangular numbers. Figure 2 shows
the interdependency relationship between the criteria. Here, four main criteria have been
selected: residual energy (RE), node density (ND), distance to the sink (DS) and the average
distance between nodes and neighbors (ADN).
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We first calculate the pair wise comparison matrix by using Chang method. Table 1
shows the pair wise comparison fuzzy matrix.

Table 1. Pair wise comparison matrix of criteria.

Criteria RE ND DS ADN

RE (1,1,1) (1,1,3/2) (1/3,2/5,1/2) (3/2,2,5/2)
ND (2/3,1,1) (1,1,1) (2/3,1,1) (1,3/2,2)
DS (2,5/2,3) (1,1,3/2) (1,1,1) (2,5/2,3)

ADN (2/3,1/2,2/3) (1/2,2/3,1) (1/3,2/5,1/2) (1,1,1)

Following the 1st step, we have to calculate the geometric mean from the fuzzy
comparison matrix from the Equation (4).

∼
gi =

(
n

∏
j=1

∼
mij

)
=

[(
1 ∗ 1 ∗ 1

3
∗ 3

2

) 1
4
;
(

1 ∗ 1 ∗ 2
5
∗ 2
) 1

4
;
(

1 ∗ 3
2
∗ 1

2
∗ 5

2

) 1
4
]
= [0.84; 0.96; 1.17] (8)

Hence, in Table 2, shows the geometric mean (g̃i ) of all criteria. Total value, inverse
values are also calculated and increasing order of the triangular fuzzy number is shown in
the last row of Table 2.

In the next step we have to calculate the weight w̃i of the criteria form the Equation (5),
as shown in Table 3.

Now the next step is calculating the non-fuzzy weight qi of each criterion and also
calculate the normalized weight li of each criterion. Table 4 shows the normalized weight
li and non-fuzzy weight.
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Table 2. Geometric mean matrix of criteria.

Criteria g̃i

RE 0.84 0.96 1.17
ND 0.82 1.1 1.2
DS 1.41 1.61 1.91

AND 0.51 0.60 0.76
Total 3.58 4.28 5.04

Inverse 0.28 0.23 0.2
Increasing Order 0.2 0.23 0.28

Table 3. Weighted matrix of criteria.

Criteria w̃i

RE 0.2 0.22 0.33
ND 0.16 0.26 0.34
DS 0.28 0.37 0.53

AND 0.10 0.14 0.21

Table 4. Non-fuzzy weighted and normalized weight matrix of criteria.

Criteria qi li

RE 0.25 0.24
ND 0.25 0.24
DS 0.39 0.39

ADN 0.15 0.13

3.3. Determining the Weights of Sub-Criteria and Alternatives with Respect to the Criteria

After calculating the normalized weight and non-fuzzy weight, we calculate weight
of sub-criteria and alternatives. Same procedure is applied for both the cases. The sub
criteria are Stability (SB), Energy Consumption (EC), and lifetime (LT), CH stability ratio
(CHR), control overhead (CO), throughput (TP), remaining energy of the node (RNE),
node distance between two adjacent clusters (NDAC), node to sink distance between two
adjacent clusters (NSAC). Tables 5–13 show the steps for weight calculation.

Step 1: Table 5 shows the comparison matrix of sub-criteria with respect to RE.
Step 2: Similar way we have to calculate geometric mean (g̃i ), weight, non-fuzzy

weight qi and normalized weight li. Tables 6–9 show the calculated value of the sub-criteria
with respect to the RE.

Table 5. Shows the comparison matrix of sub-criteria with respect to the residual energy (RE).

Sub-Criteria SB EC LT

SB (1,1,1) (2,5/2,3) (1,3/2,2)
EC (1/3,2/5,1/2) (1,1,1) (3/2,2,5/2)
LT (1/2,2/3,1) (2/5,1/2,2/3) (1,1,1)

Table 6. Shows the geometric mean of the matrix.

Criteria ~
gi

SB 1.26 1.55 1.8
EC 0.8 0.92 1.08
LT 0.6 0.7 0.9

Total 2.66 3.17 3.78
Inverse 0.38 0.31 0.26

Increasing Order 0.26 0.31 0.38
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Table 7. Weighted matrix of criteria.

Criteria w̃i

SB 0.33 0.48 0.68
EC 0.21 0.22 0.41
LT 0.19 0.22 0.34

Table 8. Non-fuzzy weighted and normalized matrix of criteria.

Criteria qi li

SB 0.5 0.45
EC 0.3 0.27
LT 0.3 0.28

Table 9. Pair wise comparison matrix of alternatives.

Criteria N1 N2 N3 N4

N1 (1,1,1) (2/3,1,1) (1,3/2,2) (2/5,1/2,2/3)
N2 (1,1,2/3) (1,1,1) (1,1,3/2) (3/2.1,1)
N3 (1/2,2/3,1) (2/3,1,1) (1, 1, 1) (1/2,2/3,1)
N4 (3/2,2,5/2) (1,1,3/2) (1,3/2,2) (1, 1, 1)

Table 10. Geometric mean matrix of alternatives.

Criteria ~
gi

N1 0.72 0.93 1.07
N2 0.90 1 1.22
N3 0.63 1.07 1
N4 1.1 1.31 1.65

Total 3.35 4.31 4.94
Inverse 0.3 0.23 0.20

Increasing Order 0.2 0.23 0.3

Table 11. Weighted matrix of alternatives.

Criteria w̃i

N1 0.14 0.21 0.32
N2 0.18 0.23 0.4
N3 0.13 0.25 0.3
N4 0.22 0.30 0.5

Table 12. Non-fuzzy weighted and normalized matrix of criteria.

Criteria qi li

N1 0.22 0.20
N2 0.27 0.25
N3 0.23 0.22
N4 0.34 0.32

Table 13. Normalized non-fuzzy weighted calculation of alternatives for criteria.

Criteria RE ND DS ADN

N1 0.35 0.33 0.29 0.28
N2 0.26 0.27 0.26 0.21
N3 0.19 0.18 0.23 0.22
N4 0.20 0.22 0.22 0.29
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The weighted matrix is calculated in Table 7 with respect to the RE.
The Table 8 shows the non-fuzzy weighted matrix calculation.
The Table 9 shows the pair-wise comparison matrix with respect to the alternatives.
Next, we have to calculate comparison matrix the geometric mean (g̃i ), weight, non-

fuzzy weight qi and normalized weight li. The Tables 10–14 show the calculated value of
the alternatives with respect to the RE. Here, four nodes are considered as a alternatives
N1, N2, N3, N4.

Table 14. Aggregated results of each alternative according to each criterion.

Criteria Alternatives with Respect to Criteria

Weight N1 N2 N3 N4

RE 0.36 0.35 0.26 0.19 0.2
ND 0.27 0.33 0.27 0.18 0.22
DS 0.2 0.29 0.26 0.23 0.22

ADN 0.2 0.28 0.21 0.22 0.29
Total 0.31 0.25 0.21 0.23

Table 10 shows the geometric mean of the matrix.
Table 11 shows the weighted matrix calculation.
Hence, node 1 has the highest probability to act as a CH with respect to the 4 criteria

in fuzzy AHP method. The N1 is the highest priority of the matrix. However, when the
number of criteria or sub-criteria are increased fuzzy AHP method does not work properly
then looks like a network-based structure in which computation time also increased. As
both MCDM techniques are multi-hop communication, fuzzy ANP method is introduced
for network like architecture. Details of the fuzzy ANP method is discussed in the next
section below.

3.4. CH Selection Fuzzy ANP Mode

In this section, FANP method has been developed for CH selection to improve the
network lifetime and to minimize the energy consumption in the remote SC environment.
In FANP, the pair wise comparison matrix is performed by the linguistic variables for both
criteria and the alternatives, which are represented by triangular numbers.

Figure 2 shows in the interdependency relationship between the criteria. Here, four
main criteria have been selected: residual energy (RE), node density (ND), distance to the
sink (DS) and the average distance between nodes and neighbor (ADN).

Step 1: Calculate the inner dependency matrix for CH selection criteria with respect
to the RE, ND, DS and ADN. Table 15 shows the inner dependency matrix of all criteria
with respect to RE. The normalized non-fuzzy relative weights of each alternative for each
criterion are shown in Table 15.

Table 15. Inner dependence matrix of the CH selection with respect to ‘RE’.

Criteria ND DS AND

ND (1,1,1) (1,1,3/2) (1,3/2,2)
DS (2/3,1,1) (1,1,1) (1,1,3/2)

ADN (1/2,2/3,1) (2/3,1,1) (1,1,1)

Step 2: Similar way we have to calculate geometric mean (g̃i ), weight, non-fuzzy
weight qi and normalized weight li. Tables 16–18 show the calculated value of the sub-
criteria with respect to the RE.
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Table 16. Geometric mean matrix of the CH selection with respect to ‘RE’.

Criteria ~
gi

ND 1 1.15 1.44
DS 0.87 1 1.15

AND 0.69 0.87 1
Total 2.56 3.02 3.59

Inverse 0.39 0.33 0.28
Increasing Order 0.28 0.33 0.39

Table 17. Weighted matrix of the CH selection with respect to ‘RE’.

Criteria w̃i

SB 0.28 0.38 0.56
EC 0.24 0.33 0.45
LT 0.19 0.29 0.39

Table 18. Non-fuzzy matrix and normalized matrix of the CH selection with respect to ‘RE’.

Criteria qi li

SB 0.41 0.38
EC 0.34 0.33
LT 0.29 0.29

3.5. Determining the Weights of Sub-Criteria and Alternatives with Respect to the Criteria

After the calculation of normalized weight and non-fuzzy weight, we have to calculate
the weight of sub-criteria and alternatives. Same procedure is applied for both the cases.
The sub criteria are stability (SB), energy consumption (EC), lifetime (LT), CH stability
ratio (CHR), control overhead (CO), throughput (TP), remaining energy of the node (RNE),
node distance between two adjacent clusters (NDAC), node to sink distance between two
adjacent clusters (NSAC). Tables 19–22 show the steps of weight calculation.

Table 19. Pair wise comparison matrix with respect to the stability among the sub-criteria
‘residual energy’.

Criteria EC LT

EC (1,1,1) (1,1,3/2)
LT (2/3,1,1) (1,1,1)

Table 20. Geometric mean matrix with respect to the stability among the sub-criteria
‘residual energy’.

Criteria ~
gi

EC 1 1 1.22
LT 0.82 1 1

Total 1.82 2 2.22
Inverse 0.55 0.5 0.45

Increasing Order 0.45 0.5 0.55

Table 21. Weighted matrix with respect to the stability among the sub-criteria ‘residual energy’.

Criteria w̃i

EC 0.45 0.5 0.67
LT 0.37 0.5 0.5
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Table 22. Non fuzzy weighted matrix and normalized weighted with respect to the stability among
the sub-criteria ‘residual energy’.

Criteria qi li

EC 0.54 0.54
LT 0.46 0.46

Step 1: Table 19 shows the comparison matrix of sub-criteria with respect to the
residual energy (RE) sub-criteria stability.

Step 2: In a similar way, we have to calculate geometric mean (g̃i ), weight, non-
fuzzy weight qi and normalized weight li. Tables 21–24 show the calculated value of the
sub-criteria with respect to the RE.

Table 23. Weighted super matrix formed every sub-criteria for CH selection.

Criteria Sub-Criteria
RE ND DS ADN

SB EC LT CHSR CO TP RNE NDAC NSAC

EC
SB 0 0.41 0.71 0.35 0.36 0.3 0.35 0.37 0.36
EC 0.45 0 0.29 0.32 0.33 0.38 0.33 0.37 0.31
LT 0.37 0.29 0 0.33 0.33 0.34 0.37 0.31 0.34

ND
CHSR 0.35 0.33 0.37 0 0.61 0.54 0.35 0.33 0.32

CO 0.34 0.38 0.31 0.54 0 0.47 0.32 0.35 0.35
TP 0.32 0.3 0.32 0.47 0.43 0 0.32 0.32 0.32

DS RNE 1 1 1 1 1 1 0 1 1

ADN
NDAC 0.54 0.61 0.43 0.52 0.5 0.54 0.63 0 1
NSAC 0.47 0.43 0.61 0.47 0.5 0.47 0.44 1 0

Table 24. Normalized weighted super matrix based on CH selection.

Normalized Weighted Super Matrix

Criteria Sub-Criteria
RE ND DS ADN

SB EC LT CHSR CO TP RNE NDAC NSAC

EC
SB 0 0.59 0.71 0.38 0.36 0.3 0.21 0.37 0.36
EC 0.54 0 0.29 0.33 0.32 0.37 0.2 0.33 0.31
LT 0.46 0.41 0 0.29 0.32 0.33 0.59 0.30 0.33

ND
CHSR 0.35 0.33 0.37 0 0.59 0.54 0.35 0.33 0.35

CO 0.34 0.38 0.31 0.54 0 0.46 0.32 0.35 0.4
TP 0.31 0.29 0.32 0.46 0.41 0 0.33 0.32 0.35

DS RNE 1 1 1 1 1 1 0 1 1

ADN
NDAC 0.54 0.59 0.41 0.5 0.53 0.53 0.59 0 1
NSAC 0.46 0.41 0.59 0.5 0.47 0.47 0.41 1 0

Then calculate the weight of the super matrix, limited super matrix and alternative
weighted based on sub factor CH selection form Tables 23–27 respectively. Tables 23–27
show the best strategy of the alternatives.

Table 25. Alternative weighted based on sub-criteria CH selection.

Over Criteria
Alternatives SB EC LT CHSR CO TP RNE NDAC NSAC

N1 0.25 0.34 0.45 0.33 0.32 0.29 0.30 0.30 0.29
N2 0.30 0.26 0.34 0.28 0.24 0.28 0.27 0.23 0.29
N3 0.27 0.29 0.22 0.19 0.24 0.26 0.24 0.24 0.23
N4 0.22 0.19 0.22 0.23 0.61 0.23 0.33 0.32 0.23
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Table 26. Pair wise comparison matrix of four alternative nodes based on CH.

Alternatives N1 N2 N3 N4

N1 (1,1,1) (1,1,3/2) (1,3/2,2) (1,1,3/2)
N2 (2/3,1,1) (1,1,1) (1,1,3/2) (1,3/2,2)
N3 (1/2,2/3,1) (2/3,1,1) (1,1,1) (1,1,1)
N4 (2/3,1,1) (1/2,2/3,1) (1,1,1) (1,1,1)

Table 27. Find normalized weight of alternatives to find the best strategy.

Alternatives li

N1 0.29
N2 0.27
N3 0.22
N4 0.22

Hence, node 1 has the highest probability to act as a CH with respect to the 4 criteria
in fuzzy ANP method.

In the traditional LEACH algorithm, CH selection depends upon the single criterion
and every round CHs are changed. In the proposed algorithm, the CHs do not change in
every round and the fuzzy MCDM method is used for CH selection. In the next subsection
the proposed algorithm will be discussed.

3.6. Proposed Algorithm

Once round clusters are formed, member nodes are communicating with the CHs. If
the index value-consistency ratio (CR) of CH is lesser than the index value of any nodes
addition to the threshold value (here 0.1) then CHs cannot act as CH node. Therefore,
further selection processes will be started. We also calculate consistency index (CI) value
from the pairwise comparison matrix. CI = (λmax − n)/(n − 1) where, λmax is the Eigen
value of the pairwise matrix and n is the number of criteria. CR = CI/RI, where RI is
random inconsistency (RI) indices, and the value is given by the Saaty value of CR ≤0.1
that we used. In this way, we can control frequent changes of head in every round. This
process continues till all nodes are died in the particular network. Figure 3 displays the CH
selection algorithm.
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4. Experiments and Evaluation

For experiments and evaluation, we used simulations and compared between LEACH
and our proposed work. For the simulation, we considered MATLAB software. Here, we
discuss the simulation parameter and results in Table 28.
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Table 28. Simulation environment.

Parameter Value

Area of Network 100 m × 100 m
n (Number of Nodes) 100

sn (Sink Position) 50 × 100
Packet Size (data) 4000 bits
Hello Packet Size 200 bits

Sink Position 1.5 m × 0.5 m × 0.5 m
Initial Energy 0.5 Joules

Data Aggregation Energy 50 pJ/bit/report
ETr (Transmitter Electronics) 50 nJ/bit

ETe (Receiver Electronics) 50 nJ/bit
Eamp (Transmit Amplifier) 100 pJ/bit/m2

For the purpose of simulation, the parameters shown in Table 17 have been considered.
Figure 4 shows the node deployment in wireless sensor network. One-hundred nodes are
deployed in the particular area where the red mark shows the base station of the network.
The total area of the network is 100 × 100 (sqm). The initial nodes are consuming 0.5 Joules.
Target of the sink position is (50 × 100).Sustainability 2021, 13, x FOR PEER REVIEW 14 of 18 
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Stability: The stability of the network is depicted in Figure 5. The first node dies in
170 rounds of LEACH (approximately), and the first node dies in 530 rounds of the fuzzy
AHP. However, in the proposed fuzzy ANP it dies around 1600 round (approximately) as
shown in the figure below. Thus, the proposed F-ANP technique performs well.

Life Span: Life span of the whole network is depicted in Figure 6. In fuzzy AHP, the
last node dies in approximately 1100 rounds; in comparison it takes approximately one
thousand rounds of LEACH and it occurs at 2400 rounds in the proposed fuzzy ANP
mechanism. This is due to the multi-criteria.

Energy Consumption: The per round energy of the network is recorded in Figure 7. The
proposed method uses less energy than fuzzy AHP because of the changing cluster leader.

Overhead: The overhead of the signal is shown in Figure 8, in which it is minimized in
our proposed method compared to the traditional LEACH and fuzzy AHP.

Throughput: The throughput of the network is depicted in Figure 9, which indicates
that the throughput is high for our proposed mechanism in comparison to others because
the fuzzy ANP is adopted in multi-hop.

5. Conclusions

In this paper, we proposed a novel algorithm based on fuzzy ANP and LEACH under
single cast-based LEACH network nodes, which are homogeneous in nature. Energy
efficiency, network lifetime, stability, and number of packet delivery were selected as main
criteria and compared with the traditional LEACH network and fuzzy AHP method. The
proposed algorithm was evaluated in terms of energy efficiency, stability, and network
lifetime. We have considered the fuzzy algorithm in which the nodes have the option to
act as a CH or not. In the proposed method, we control the heads that change frequently.
If the index value of CH is lesser than the index value of any node in addition to the
threshold value (here 0.1) then the CHs will not act as a CH node. Accordingly, further
selection processes will continue. This process continues till all of the nodes are asleep in
the network. Multi-criteria decision making has been used for the cluster head selection in
which multi-hopping increases the stability and lifetime.
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