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Abstract: Rock tensile strength (TS) is an essential parameter for designing structures in rock-based
projects such as tunnels, dams, and foundations. During the preliminary phase of geotechnical
projects, rock TS can be determined through laboratory works, i.e., Brazilian tensile strength (BTS)
test. However, this approach is often restricted by laborious and costly procedures. Hence, this study
attempts to estimate the BTS values of rock by employing three non-destructive rock index tests.
BTS predictive models were developed using 127 granitic rock samples. Since the simple regression
analysis did not yield a meaningful result, the development of models that integrate multiple input
parameters were considered to improve the prediction accuracy. The effects of non-destructive rock
index tests were examined through the use of multiple linear regression (MLR) and adaptive neuro-
fuzzy inference system (ANFIS) approaches. Different strategies and scenarios were implemented
during modelling of MLR and ANFIS approaches, where the focus was to consider the most important
parameters of these techniques. As a result, and according to background and behaviour of the
ANFIS (or neuro-fuzzy) model, the predicted values obtained by this intelligent methodology are
closer to the actual BTS compared to MLR which works based on linear statistical rules. For instance,
in terms of system error and a-20 index, values of (0.84 and 1.20) and (0.96 and 0.80) were obtained for
evaluation parts of ANFIS and MLR techniques, which revealed that the ANFIS model outperforms
the MLR in forecasting BTS values. In addition, the same results were obtained through ranking
systems by the authors. The neuro-fuzzy developed in this study is a strong technique in terms of
prediction capacity and it can be used in the other rock-based projects for solving relevant problems.

Keywords: rock strength; tensile behaviour; neuro-fuzzy; regression; non-destructive tests

1. Introduction

In rock engineering, rock fracture mechanics are associated with the behaviours of rock
deformation and failure patterns caused by crack initiation and propagation. The growth of
cracks in rocks happens due to small micro-cracks, micro-defects, and failures of large pre-
existing fractures in rock [1]. Rock has lower tensile resistance compared to compressive
and shear resistance due to its brittleness properties. Therefore, understanding rock
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behaviour such as tensile properties is essential for solving geotechnical problems during
underground openings, surface excavation, and rock blasting and to ensure underground
cavern stability. There are many methods for predicting rock tensile strength (TS). Direct
test is considered the most effective method to derive the tensile capacity of rock specimen.
Direct TS value can be determined accurately using a dumbbell-shaped specimen [2].
However, difficulties are often associated with the direct tensile test. Indirect approaches
such as the Brazilian disc test are widely utilised by researchers due to their simplicity
and efficiency during sample preparation and testing procedures [3]. Valid tensile pattern
Brazilian disc of rock specimens can also be visualised through digital image correlation [4].
Several tests such as the half-ring and semi-circular bending tests are relevant to determine
the TS of brittle rocks [5,6].

Aiming to obtain the most reliable method of TS value prediction, Xia et al. [7]
examined the dynamic TS of Laurentian granite three ways, by the dynamic direct tension
test (DTT), dynamic Brazilian test (BT), and dynamic semi-circular bend test (SCB). Their
findings suggest that the overestimation of TS value for BT and DTT can be corrected using
overload and internal friction impact mechanisms. The flat-joint model can reflect the peak
tensile stress in Brazilian disc specimens [8]. Yuan and Shen [9] proposed improving the
Brazilian tensile strength (BTS) method by increasing the number of disk specimens to twice
the number of standard samples. Larger specimen size will underestimate the intrinsic rock
TS as an indentation type of failure mechanism is anticipated [10]. The behaviour of rock
in tension can be an effective indicator of the state of rock weathering. Aydin and Basu [11]
stated that the Brazilian deformation index could differentiate rock weathering grade
and demonstrate the distinct behavioural pattern of rock during the weathering process.
Additionally, rock size contributes to underestimating TS value, while rock heterogeneity
leads to an overestimation of TS [12]. Thus, extensive correction coefficient studies are
needed to estimate rock tensile strength, ideally by using the Brazilian testing method [13].

Several experiments have been performed to estimate the rock TS reliably. To mention
a few examples, Nazir et al. [14] and Kabilan [15] have presented the significant correlation
between BTS and unconfined compressive strength in rocks statistically. Simple regression
modelling revealed that input parameters such as point load index (Is50), dry density
(DD), and Schmidt hammer rebound number (Rn) gave an average level of accuracy to
estimate the BTS values. Table 1 presents some of the important proposed empirical
equations to estimate BTS values together with their regression types and performance
predictions. Although performance capacities of these techniques are quite suitable, they
are often unpredictable when some uncertainties are not addressed during the development
process. However, numerous studies have highlighted the outstanding results of some
new computational techniques, i.e., artificial intelligence in evaluating and predicting rock
strength values [16,17].

Table 1. Some of the proposed empirically correlations between BTS and other rock tests.

References Proposed Equations Regression Type R2 Description

Heidari et al. [18] BTS = 0.88Is50 + 2.70 L 0.9 40 Gypsum rocks
Altindag and Guney [19] BTS = 0.0423SH1.2799 NL 0.8 143 rock samples

Farah [20] UCS = 12.308BTS1.0725 NL 0.6 195 of limestone specimens
Kahraman et al. [21] UCS = 10.61BTS L 0.5 Igneous rocks

Nazir et al. [14] UCS = 9.25BTS0·947 NL 0.9 40 laboratory strength tests
on dry limestone

Mohamad et al. [22] UCS = 15.361BTS− 10.303 L 0.8 40 sets soft rock samples

Khandelwal et al. [23] BI = 0.59BTS0.769 −
5.085BTS0.531 + 0.009γ2.332 NL 0.9 13 types of rock from USA

Mahdiyar et al. [24] BTS = 1.993e0.027Rn NL 0.7 100 granite block samples
Mahdiyar et al. [24] BTS = 0.022e2.182DD NL 0.7 100 granite block samples

BTS = Brazilian tensile strength, Is50 = point load index, Rn = rebound number, γ = unit weight, DD = dry density, UCS = uniaxial
compressive strength, BI = brittleness index, SH = surface hardness, L = linear, NL = non-linear, R2 = coefficient of determination.
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Artificial intelligence approaches perform the automatic creation of an analytical
model that recognizes patterns and make decisions without human interventions. Many
researchers have emphasised the capabilities of these techniques in the field of geotech-
nical engineering, and they have proven to aid various civil and mining engineering
problems [25–40]. For forecasting BTS values, Singh et al. [41] performed artificial neural
network (ANN) modelling analysis on schistose rock samples and they reported a good
level of prediction performance. Çanakci et al. [42] evaluated the performance of the ANN
and Gene Expression Programming model in predicting rock tensile and compressive
strength. The mechanical properties of Yavuzeli basaltic rocks from a region in Turkey
were used to construct the model algorithm. The neural network algorithm obtained better
results in terms of coefficient of determination (R2) with a value of 0.829. Ceryan et al. [43]
did a thorough analysis of rock TS modelling using support vector machine (SVM) ap-
proaches, the least square SVM method, and ANN to weigh their computational advantage.
Finally, they introduced LS-SVM as a robust model that can accurately and efficiently
predict rock TS because the analysis process is much faster than the other two models.
Table 2 shows some of the important studies in the areas of BTS prediction using different
artificial intelligence approaches. As is obvious from this table, the artificial intelligence
techniques are able to provide higher capability levels compared to empirical techniques in
estimating BTS values.

Table 2. Artificial intelligence approaches presented to estimate rock BTS values.

References Model Input Parameters Model Performance Description

Singh et al. [41] ANN Petrographical
characteristics MAPE = 11% Schistose rocks

Çanakci et al. [42] ANN Vp, DD, Rn, WA R2 = 0.99 86 samples of basalt from Turkey
Gurocak et al. [44] MLPN Is50, Rn, γ R2 = 0.84 174 samples from Turkey

Ceryan et al. [43] LS-SVM POR, Vp, SDI,
aggregate impact R2 = 0.86 55 carbonate rocks from Turkey

Mahdiyar et al. [24] PSO-ANN Is50, DD, Rn R2 = 0.93 Granite rock samples
Huang et al. [45] IWO-ANN Is50, DD, Rn R2 = 0.92 100 granite samples

Vp = p-wave velocity, Is50 = point load index, DD = dry density, Rn = rebound number, WA = water absorption, γ = unit weight,
MAPE = mean absolute percentage error, MLPN = multilayer perceptron network, PSO = particle swarm optimization, IWO = invasive
weed optimisation.

The problem related to the difficulty of conducting BTS tests, as mentioned before,
can be solved using rock index tests, which are easier and faster to carry out. The focus
of previous studies was to investigate the effects of both destructive and non-destructive
rock index tests in estimating BTS values. However, sometimes there is a need to have
non-destructive tests which will not fail during or after the test. Therefore, the objective
of this study is to consider and use results of only non-destructive tests, i.e., ultrasonic
velocity, Schmidt hammer, and density for prediction of BTS values. To do this, different
basic and advanced statistical models, together with an adaptive neuro-fuzzy inference
system (ANFIS) intelligent technique, are proposed for tensile strength prediction. The
models, their backgrounds, design procedures, and the obtained results in evaluating
behaviour of rock tensile strength will be discussed in detail. The more accurate and
reliable model will be introduced for the same purpose.

2. Methods and Material
2.1. Laboratory Tests

One hundred fifty-four rock samples of blocks of granite were brought from a tunnel
project located in Malaysia for assessment. In this project, there were three tunnel boring
machines, namely Kamila, Selpah, and Tiara Midori. The tunnel is intended to help
mitigate potential water shortages in the problematic region. The project utilized the
available surface water runoffs from several important rivers, i.e., Kelau River, Bentong
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River, and Telemong River. The tunnel starts in Pahang state with length of about 45 km
and goes to Selangor state, with different overburden values in its route.

Rock index tests can be categorized into destructive and non-destructive tests. De-
structive tests like point load are conducted to the specimen’s failure to understand the
sample behaviour under failure loading and stage, while non-destructive tests such as the
Schmidt hammer are those without damage during and after tests conducted to evaluate
a particular group behaviour, such as physical characteristics of the samples. This study
focuses on the use of only non-destructive tests, i.e., ultrasonic velocity, Schmidt’s hammer
rebound, and density in assessment and evaluation of tensile response of the rock samples.
Hardness of the rock surface was measured by performing non-destructive testing known
as the Schmidt Hammer Rebound (SHR) test. Following the testing procedure found in
the International Society for Rock Mechanics (ISRM) [46] guidelines, the average reading
computed from 10 SHR tests was denoted as Rn rebound number. The L-type hammer was
mounted vertically downwards against the rock samples. In addition, an ultrasonic veloc-
ity test was conducted to measure the degree of compactness of rock material. The core
samples should be flat at both ends to transmit primary waves (p-wave) through the core
samples. This test was conducted four times using Portable Ultrasonic Non-Destructive
Digital Indicating Tester (PUNDIT) equipment following the ISRM [46] guidelines. The
values recorded from the PUNDIT equipment are denoted as Vp. Specimens with higher
density (lesser voids) display a higher Vp value. Apart from Rn and Vp, dry density (DD)
tests were performed to measure the rock’s physical properties.

Brazilian tests were performed to measure the TS of rock samples indirectly. Cylin-
drical disc-shaped specimens with flat end surfaces were prepared prior to the testing
process. According to ISRM [46], the specimen’s size should have an approximate thick-
ness/diameter ratio of 2. In this article, a total of 127 data samples were established for
the modelling and analyses, where DD, Vp, and Rn were set as predictors and BTS was
assigned as the target value, which is very important to accurately predict.

The laboratory test results for this this study are summarized in Table 3.

Table 3. Laboratory test results summary.

Parameters Symbol Group Unit Min Max Ave. Sd.

Rn Input - 20 61 40.5 9.93
Vp Input m/s 2643 7702 5172.5 1331.60
DD Input g/cm3 2.35 2.79 2.57 0.11
BTS Output MPa 3.2 12.9 8.05 2.58

Min = minimum value, Max = maximum value, Ave = average value, and Sd. = standard deviation.

2.2. ANFIS Background

ANFIS is a proper intelligent system that integrates fuzzy logic with the principle of
neural networks [47]. Such a framework makes ANFIS modelling more systematic and less
reliant on expert knowledge [48]. Hence, this section will describe ANFIS architecture and
learning algorithms for the Takagi-Sugeno-Kang (TSK) fuzzy model. Generally, ANFIS
efficiency is influenced by the selection of number and shape of membership function (MF),
the number of rules, and their learning techniques. Seven fuzzy MFs are integrated in the
ANFIS tools while four of them are the most widely applied. The four types of MF are
Gaussian combination (gauss2mf), Gaussian curve (gaussmf), bell shape (gbellmf), and
trapezoidal shape (trapmf). The output MFs for the TSK-model consist of two parameters
which are constant and linear.

Five layers (i.e., fuzzy layer, product layer, normalised layer, defuzzy layer, and total
output layer) are needed to construct this interference system. The ANFIS algorithm system
can be simplified by assuming two inputs (x and y) and one output, f. The if-then rules for
the first order of TSK fuzzy model may be conveyed as [48–50]:

Rule 1 : I f (x is A1) and (y is B1), then z is f1(x, y) (1)
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Rule 1 : I f (x is A2) and (y is B2), then z is f2(x, y) (2)
where x and y are the input of ANFIS, A and B are the nonlinear parameters, and fi(x, y)
is the output of ANFIS expressed in terms of first-order polynomial. A five-layer ANFIS
with three inputs and one output model structure will be used to estimate BTS. The nodes
function for each layer will be further elaborated as follows:

• Layer 1 (fuzzy layer): Comprises adaptive nodes with functions expressed
(Equations (3) and (4)) as:

O1,i = µAi(x), i = 1, 2 (3)

O1,j = µBj(y), j = 1, 2 (4)

where x and y indicate the input nodes, Ai and Bi denotes the linguistic labels, µ(x, y)
implies the MFs.

• Layer 2 (product layer): Includes the product layer of two fixed nodes labelled Π
expressed as Equation (5).

O2,i = ωi = µAi(x)× µBi(y) , i = 1, 2 (5)

• Layer 3 (normalised layer): Node function is to normalise the weight function of the
following process and is labelled as N, Equation (6):

O3,1 = ωi =
ωi

ω1 + ω1
, (i = 1, 2) (6)

• Layer 4 (defuzzy layer): Contains adaptive nodes marked by a square, Equation (7):

O4,i = ωi fi, (i = 1, 2) (7)

• Layer 5 (total output layer): Contains fixed node with function to compute overall
output, Equation (8):

O5,i = fout = ∑ ωi fi (8)
where O1–5,i denotes the output of each layer and ωi represents the weight function of
the next layer. Figure 1 illustrates the architecture of ANFIS. In addition, the overview
of ANFIS flowchart is illustrated in Figure 2.

Figure 1. ANFIS architecture.
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Figure 2. ANFIS flowchart for prediction purposes.

2.3. Step-by-Step Overview of Research

The general flowchart used for developing the rock TS model is shown in Figure 3.
First, literature reviews of relevant research papers regarding indirect TS prediction were
conducted. After identifying the research objective and problem statement, the Pahang-
Selangor tunnel project was chosen to be studied. Obtaining adequate empirical data
from related literature helped in the selection of the most influential parameters. In
order to build the model, the database of non-destructive tests was prepared. In each
model, the considered input parameters were Rn, Vp, and DD, while BTS was set as
the target parameter. Then, both mathematical and soft-computing methods are used in
this study to evaluate tensile behaviour of rock material. The empirical equations for TS
estimation are proposed using simple regression (SR) and multiple linear regression (MLR).
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Following that, ANFIS modelling is conducted to predict the rock TS values. Each model
utilized the mentioned parameters and evaluated them based on their predictor intervals
performance. For comparison purposes, performance indices are applied to the proposed
model, respectively. Finally, the most reliable model is introduced as the suitable indirect
approach for predicting TS rock.

Figure 3. The sequence of research methodology.

It is important to note that we followed a typical flow of simulation and prediction
studies in the area of rock mechanics [16,51]. They normally start with a SR technique,
which is easy to conduct, but it is at the same time not accurate enough to solve the
problems. Then, we move to a MLR model where more than one predictor can be used to
increase prediction capacity. Finally, to increase the performance capacity, an intelligence
technique (which is AFINS in this study) is used to predict the target values (which is BTS
in this study).
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2.4. Statistical Index

In this investigation, R2, root mean square error (RMSE), variance account for (VAF%),
and a-20 index were selected and used to assess the predictive models. Willmott and
Matsuura [52] stated that large errors influenced the total square error rather than the
smaller error. When the variances associated with the frequency distribution of error
magnitudes increases, the RMSE increases. The fit accuracy of RMSE is numerically
equivalent to zero. The RMSE formula is based on Equation (9).

RMSE =

√√√√ 1
n

N

∑
i=1

(y′ − y)2 (9)

where y, y′ and N conveys the measured, predicted, mean values, and the total numbers
of data, respectively. R2 is an indicator to determine the model fit for a set of quantitative
dependent variables and their relation to the dependent variable. The determination of
acceptable R2 value is important to assess the adequacy and efficiency of the regression
model. According to Menard [53], a “good” R2 statistic should be dimensionless, have well
defined values with endpoints that lead to a perfect fit to lack of fit range (0 ≤ R2 ≤ 1), and
be applicable to any models with random or non-random variables. The R2 measurements
in this study are based on Equation (10).

R2 = 1 =
∑i(yi − ŷi)

2

∑i(yi − y)2 (10)

where yi indicates the measured value of the dependent variable with a value between
zero to one. ŷi and y conveys the predicted and mean values of dependent variables,
respectively. VAF is known as the proportion of the total population of the dependent
variable that can be clarified by the factor of interest. Equation (11) can be used to describe
the VAF formula:

VAF =

[
1− var(y− y′)

var(y)

]
× 100% (11)

where observed, predicted, and mean values are represented by y and y′, respectively.
According to Xu et al. [54], a20-index is the newly proposed engineering index that is
beneficial for evaluating artificial intelligence models by showing the number of samples
that fit the prediction values with a deviation of ±20% compared to experimental values,
as presented in Equation (12).

a20− index =
m20

M
(12)

where M represents the amount of dataset samples and m20 denotes the rate of experimental
value/predicted value that lies between the range of 0.80 to 1.20.

3. Modelling, Analysis, and Results
3.1. SR Modelling

The SR technique can evaluate the correlation between two variables (predictors and
targets parameters). SR assumes that the data followed a normal distribution pattern. In
this study, SR analysis was performed for 127 data samples during the initial stage of
the rock TS prediction. This part of the study was conducted to identify the relationship
between each dependant variable (as mentioned in Table 3) and the BTS values as a
target of the study. Various types of equations such as exponential (y = mexcx), linear
(y = mx + c), logarithmic (y = m ln(x) + c), and power (y = mxc) were used and the data
samples were evaluated for each model to obtain the best empirical forecasting outcomes.
Statistically, the best-fitted regression model results should project the value of R2 = 1.
Table 4 presents the results of each SR model analysis (according to the type of equations)
and their ranking. Noted that for each SR model, rank 4 indicates the best correlation
among all equations proposed.
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Table 4. Results of SR model analysis in estimating rock strength values.

Model Input Equation Type Equation R2 Rank

1 Rn

Exponential BTS = 2.5284e0.0279Rn 0.657 1
Linear BTS = 0.2182Rn − 0.5659 0.704 4

Logarithmic BTS = 8.4797ln(Rn)− 22.854 0.690 3
Power BTS = 0.139R1.0984

n 0.659 2

2 Vp

Exponential BTS = 2.4945e0.0002Vp 0.646 4
Linear BTS = 0.0015Vp − 0.3164 0.638 2

Logarithmic BTS = 7.518ln
(
Vp
)
− 56.298 0.611 1

Power BTS = 0.0013V1.0176
p 0.638 2

3 DD

Exponential BTS = 0.0101e2.5761DD 0.689 3
Linear BTS = 19.171DD− 41.274 0.670 1

Logarithmic BTS = 49.169ln(DD)− 38.371 0.671 2
Power BTS = 0.0146DD6.6245 0.693 4

From Table 4, Model 1 shows a lack of fit approximation with a similar R2 value of
0.658 ± 0.001 for exponential and power functions, respectively. In contrast, for Model 2,
exponential function indicates a good correlation between Vp and BTS, with an R2 of 0.646.
It can be seen that both linear and power functions have the same ranking score (2) while
logarithmic function ranks the lowest (1). Meanwhile, for Model 3, the power function has
the second highest correlation coefficient (R2 = 0.693) after Model 1. Therefore, the highest
performance prediction equations were selected for each predictor (i.e., linear for Rn,
exponential for Vp and power for DD). The graph of data plot for the best approximation
equations for Rn, Vp and DD are shown in Figure 4. Overall, the scatter plot of all models
has positive slopes, which corresponds to the positive correlation values. SR analyses
indicate that Model 1 with Rn input has the strongest correlation value (R2 = 0.70) among
two other models. By referring to previous investigations [24], the results of R2 for SR
analyses fall within the range of 0.5 to 0.81. In this study, the average R2 for SR analysis
was 0.664, which is satisfactory. However, consideration of only one parameter for the
prediction model is not enough to get the highest degree of accuracy. Hence, in the
next prediction stage, the MLR modelling will be applied where more than one input is
incorporated to predict BTS values.

Figure 4. SR analysis results (a) BTS vs. Rn, (b) BTS vs. Vp, and (c) BTS vs. DD.

3.2. MLR Modelling

Generally, regression analysis requires a strong correlation between the variable to
validate its credibility. In essence, MLR is the extension of ordinary least-squares regression
that requires more than one independent variable. In the next stage of regression analysis,
four models are introduced to predict BTS. Each model integrates different numbers of
inputs but use the same output (i.e., BTS). Previous studies have mentioned that higher
degree of accuracy can be achieved when more than one input is being considered [55,56].
A straightforward ranking approach can be used to evaluate each model [57]. The most
fitting model for MLR analysis is the one that generates the highest-ranking score. By
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referring to previous studies [58,59], 80% (102) of the whole data samples (127) were
selected randomly for the model’s training purposes. The remaining 20% (25) were used
to test the models. Table 5 shows the MLR regression equations for different models with
various combination types.

Table 5. MLR equations for BTS prediction.

Model No. Input Equation

MR1 Vp, DD BTS = 0.00089Vp + 11.5223DD− 26.4453
MR2 Rn, DD BTS = 0.13804Rn + 10.5113DD− 24.5321
MR3 Rn, Vp BTS = 0.143231Rn + 0.00076Vp − 1.76855
MR4 Rn, Vp, DD BTS = 0.11068Rn + 0.00041Vp + 8.69973DD− 20.9934

The series of MLR analyses for training and testing datasets together with prediction
capacity indices results are presented in Tables 6 and 7, respectively. The testing R2 values
for MLR Model 1 (MLR1) which integrates two inputs appears to lie in satisfactory values
of 0.68. Meanwhile, models MLR2 to MLR4 exhibit almost similar determination coefficient
values (R2 = 0.79, 0.71, and 0.78) that are acceptable. Considering the results of both train
and test stages, it can be concluded that the MLR4 model reveals the highest total ranking
score (15 + 13 = 28) for indices comparison with RMSE, VAF, R2, and a20-index values
of 1.051, 83.564%, 0.836, 0.843 for training datasets and 1.201, 77.869%, 0.780 and 0.80 for
testing datasets. Hence, the recommended regression equation for MLR analysis is in
fact the last equation presented in Table 5. Later, the performance of MLR models will be
discussed in more detail.

Table 6. Training results of MLR analysis.

Model No.
Training Data Training Ranking

Total Rank
RMSE VAF (%) R2 a20-Index RMSE VAF R2 a20-Index

MR1 1.24 76.97 0.77 0.75 1 1 1 1 4
MR2 1.09 82.17 0.82 0.84 3 3 3 3 12
MR3 1.22 77.75 0.78 0.75 2 2 2 1 7
MR4 1.05 83.56 0.84 0.84 4 4 4 3 15

Table 7. Testing results of MLR analysis.

Model No.
Testing Data Testing Ranking

Total Rank
RMSE VAF (%) R2 a20-Index RMSE VAF R2 a20-Index

MR1 1.43 67.42 0.68 0.72 1 1 1 1 4
MR2 1.18 78.94 0.79 0.76 4 4 4 3 15
MR3 1.39 70.13 0.71 0.72 2 2 2 1 7
MR4 1.20 77.87 0.78 0.80 3 3 3 4 13

3.3. ANFIS Modelling

As mentioned in the last section, the modelling by ANFIS should be started using
trained and test data that are already divided. In ANFIS modelling, the most important
factors/values should be considered. The MFs in ANFIS modelling can be customised
accordingly as one of the most important ANFIS parameters. According to MLR analyses,
Model 4, which takes into account three inputs, outperforms the other MLR models. In
this regard, the general characteristics of the ANFIS model consisted of three inputs data
(including Rn, Vp, DD) and one output data (i.e., BTS). The size of 102 × 4 training and
25 × 4 testing data were imported in the workspace and loaded into the system. Initially,
various fuzzy-interference system (FIS) properties were applied to define the acceptable
ANFIS architecture basis. The FIS model structure set to “grid partition” was used to
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classify the data and activate the neuro-fuzzy designer dialogue box. By utilising the same
sequence of training and testing datasets as the MLR study, the constructed ANFIS models
were educated with three types of MFs, namely Gaussian curve (gaussmf), Gaussian
combination (gauss2mf), and generalized bell-shape (gbellmf). In addition, the model
was constructed separately for each MF number (i.e., 2, 3, 4, and 5) and output type (i.e.,
constant and linear). Then, the fitness of each model with various ANFIS architectures
were weighed against one another according to their statistical index results.

During the ANFIS modelling, a total number of 24 different models were developed
to predict BTS values. However, to ensure that the prediction models are optimized and
that the statistical data are not overfitted or underfitted, the chosen models should not
have a substantial difference in training and testing performance. Hence, by following
these benchmarks, the strength of remaining 8 ANFIS models were emphasized in this
study and the models’ specifications are presented in Table 8. Overfitting is a frequent
issue in ANFIS modelling that appears when ANFIS overtrains the data [60]. The training
of datasets using ANFIS has a maximum number of epochs before overfitting takes place
which results in inaccurate prediction output. Multiple iteration guesses can be used to
determine the optimal number of epochs. At first, to decide the minimum number of
training epochs for each model, iteration was set up to 100 epochs, except for Model 1,
which had its epoch increased up to 150. An optimal range of epochs value was created
when the value of error tolerance became constant. The fitness of all ANFIS models was
examined through evaluating their RMSE, VAF, R2, and a20-index. A ranking system [61]
was applied to each model to identify the model’s performance in predicting BTS. The
statistical indices computed and ranking scores for the ANFIS training and testing datasets
are shown in Table 9. Based on this table, Model 4 was established as the most robust
model in predicting BTS as it indicates the highest total ranking scores of (32 + 32 = 64 for
train and test stages). Among all eight developed models, the statistical indices computed
for Model 4 show significant improvement for training (RMSE = 0.69, VAF = 92.99%,
R2 = 0.93, a20-index = 0.96) and testing datasets (RMSE = 0.74, VAF = 91.62%, R2 = 0.92,
a20-index = 0.96) results. Figure 5 shows the base FIS and the proposed ANFIS structure
for the selected model. Additionally, more information regarding the ANFIS parameters for
Model 4 (i.e., the best model) is presented in Table 10. Gaussian MFs of the input parameters
including Rn, Vp, DD are also displayed in Figure 6. These MFs and their range will give a
better view to the readers or researchers when they wish to solve similar problems using
ANFIS. More discussion regarding the best ANFIS model will be provided later.

Table 8. Eight ANFIS models and their specifications in predicting BTS values.

Model Name
Input Output

Epoch
MF No. MF Type MF Type

Model 1 222 Bell Membership Constant 117
Model 2 333 Bell Membership Constant 10
Model 3 222 Gaussian Constant 23
Model 4 333 Gaussian Constant 88
Model 5 222 Gaussian 2 Constant 17
Model 6 333 Gaussian 2 Constant 6
Model 7 222 Bell Membership Linear 9
Model 8 222 Gaussian 2 Linear 10
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Table 9. Statistical indices for testing and training ANFIS models.

Model
Name

Training Datasets Testing Datasets

Statistical Index Rank
Total

Statistical Index Rank
Total

RMSE VAF (%) R2 a20-Index RMSE VAF R2 a20-Index RMSE VAF (%) R2 a20-Index RMSE VAF R2 a20-Index

Model
1 0.98 85.69 0.86 0.89 3 3 5 5 16 1.10 81.19 0.81 0.84 7 7 6 7 27

Model
2 0.90 87.90 0.88 0.91 5 5 6 7 23 1.39 69.74 0.88 0.73 1 2 7 4 14

Model
3 1.01 84.80 0.85 0.87 2 2 4 3 11 1.15 79.37 0.79 0.80 5 5 4 6 20

Model
4 0.70 90.53 0.91 0.92 8 8 8 8 32 0.84 89.68 0.90 0.96 8 8 8 8 32

Model
5 1.01 84.73 0.85 0.88 2 1 4 4 11 1.14 79.50 0.80 0.84 6 6 5 7 22

Model
6 0.96 86.40 0.86 0.90 4 4 5 6 19 1.38 69.43 0.71 0.76 2 1 2 5 10

Model
7 0.85 89.20 0.89 0.88 7 7 7 4 25 1.32 71.82 0.73 0.84 3 3 3 7 16

Model
8 0.86 89.05 0.89 0.91 6 6 7 7 26 1.19 78.56 0.79 0.80 4 4 4 6 18
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Figure 5. The proposed architecture used in this research: (a) base FIS model, (b) ANFIS structure.

Table 10. ANFIS Model 4 with its specifications.

Number of Layers 5

Training Data Size 102 × 4
Testing Data Size 25 × 4

FIS Properties Grid Partition

Input FIS Structure
MF Type Gaussian
MF Number 333

Output FIS Structure
MF Type Constant

FIS Training
Optimum Method Hybrid
Error Tolerance 0
Epochs Number 88

FIS System
Input 3
Output 1
Rules Number 27
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Figure 6. MFs plot of the selected ANFIS model: (a) Rn, (b) Vp, (c) DD.

4. Discussion

This section provides a quantitative assessment in terms of the performance of all
established models during the testing and training phase. From the SR section, although
the coefficient of determination results is within the acceptable range (based on previous
studies), it did not yield a meaningful relationship with a strong level of accuracy. To
improve prediction performance for BTS estimation, MLR and ANFIS modelling techniques
were performed. As a result, four MLRs with multiple input parameters were proposed to
enhance the BTS prediction significantly. Model MLR4 was able to generate a R2 of 0.84
and 0.78 for the training and testing model, respectively. From this assessment, MLR R2

(performance capacity) seems to be more reliable compared to the SR analysis with R2

of 0.70 at most. It is important to mention that receiving a higher level of accuracy for
predictive models is always of importance and interest in civil and mining engineering.
Measured vs. predicted results of BTS for MLR4 are presented in Figure 7 for train and test
stages. As shown, the prediction capacity was remarkably increased by the MLR model
compared to SR models. However, higher R2 or performance capacity values do not always
imply that a model is superior. To evaluate the performance of the MLR model, the same
dataset arrangement was employed using the ANFIS algorithm.
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Figure 7. Measured vs. predicted BTS values by MLR Model 4.

The best predictive model will have the ideal best line of fit that minimizes the number
of squares of divergence from the line of various data points [23]. Therefore, an outstanding
predictive model will have the combination of lowest RMSE value and highest VAF, R2,
and a20-index values. Although the ANFIS model can run by using one training dataset,
Al-Hmouz et al. [60] mentioned that the efficiency of the model can be improved when
the testing datasets are combined with the training dataset to improve the accuracy of
the model. The results of the ANFIS models showed that Model 4 was able to receive
a high level of accuracy to predict tensile strength of rock material. The rule viewer of
the proposed model displays a better visualization of the FIS structure (Figure 8). Based
on the rule viewer, when the input parameter of Rn, Vp, and DD is 40.5, 5.17 × 103 m/s,
and 2.57 g/cm3, respectively, an output of BTS at 7.01 MPa is obtained. This figure also
suggests that the ANFIS Model 4 has produced a total of 27 rules in which each rule has a
single output MF, which is by default linear. The gradient vector was used to process the
change in MF parameters, which shows how well the ANFIS is modelled by a given set
of training data for a specific condition. FIS with many rules may generate a case-based
reasoning model, in which each pair of training data have their own rules.

Figure 8. The integrated rules in the proposed ANFIS model.
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The surface view tools generate and plot the output surface maps for the model which
can be used to display the dependency of two inputs on the system output (Figure 9). For
instance, high magnitude Rn and Vp will generate high BTS values (Figure 9a). Figure 9b
shows that the model will generate a BTS approximation of 20 MPa when Rn and DD
of 60 and 2.7 g/cm3 are being presented. Meanwhile, the plot clustering in Figure 9c
indicates that the model produces higher BTS output with the allocation of higher Vp and
DD input values. Table 11 shows the results obtained by the selected MLR and ANFIS
models to estimate BTS values. In addition, the graph of measured and predicted BTS
values obtained by the best ANFIS model is displayed in Figure 10. According to Table 11
and Figure 10, it is obvious that the ANFIS model is able to increase prediction capacity of
the MLR model in terms of all statistical indices. The clearer change is related to system
error, which decreased from 1.05 to 0.69 in training and from 1.2 to 0.74 in testing. In
addition, R2 of the model improved from 0.84 to 0.93 and from 0.78 to 0.92 for training and
testing stages, respectively. It is important to mention that full data used in the stage of
testing are presented in Appendix A for better understanding.

Figure 9. Surface visualization obtained from the selected ANFIS model. (a) BTS as a function of Rn and Vp, (b) BTS as a
function of Rn and DD, and (c) BTS as a function of DD and Vp.

Table 11. The results obtained by the selected MLR and ANFIS models to estimate BTS values.

Model Name
Train Test

RMSE VAF (%) R2 a20-Index RMSE VAF (%) R2 a20-Index

ANFIS Model 0.70 90.53 0.91 0.96 0.84 89.68 0.90 0.96
MLR4 1.05 83.56 0.84 0.84 1.20 77.87 0.78 0.80

Figure 10. Measured vs. predicted BTS values by the proposed ANFIS model in this study.

A critical analysis of predictive modelling results by several researchers using soft com-
puting techniques such as ANN was conducted to validate the outcomes of this research.
For instance, the range of R2 for an ANFIS predictive model proposed by Hasanipanah
et al. [59] that integrates Rn, DD, and point-load index is between 0.857 to 0.897 for the
testing stage of the model, which is lower than the performance prediction obtained in this
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study. Ceryan et al. [43], who developed LS-SVM in predicting tensile strength of rock, ob-
tained a R2 of 0.86 which is lower than this study. In two other studies, Mahdiyar et al. [24]
and Huang et al. [45] obtained similar results for their proposed models PSO-ANN and
IWO-ANN, respectively. It is important to stress that most of the conducted studies in
this field were focused on both non-destructive and destructive rock index tests. However,
this study aimed to consider and use only non-destructive test results where the samples
did not fail during or after these tests. By using these tests and the proposed structure of
the ANFIS model in this study, similar results can be obtained by the other researchers
and engineers.

5. Sensitivity Analysis

Sensitivity analysis (SA) which explores the relationship between a model’s expecta-
tions and its model inputs, is useful for a computer-based framework. The multivariate
nature of model inputs, as well as their uncertainty ranges, have a significant impact on
systems. Conductive SA methodology can be beneficial for making more reliable prediction
and allowing other researchers to make improvements in the future. Additionally, SA is
able to identify the essential variable(s) that can give major influence on the predictive
models. Hence, SA was carried out to recognize the relationship of each parameter with the
ANFIS model. To apply this method, the following equation can be utilized to determine
the relation strength (rij) between the model inputs (Rn, Vp, and DD) and output (BTS).

rij =
∑n

k=1 xikxjk√
∑n

k=1 x2
ik ∑n

k=1 x2
jk

(13)

where xik is the model input, xjk denotes the model output, and rij indicates the strength of
relation. Figure 11 shows the rij values between each input and output parameter. The SA
results demonstrate that Rn is the most important factor for BTS prediction, followed by Vp
and DD. Similar results can be found in the SR and ANFIS techniques of the same study.

Figure 11. The importance of each input variable.

6. Limitations and Future Works

This research is subject to several limitations. Firstly, the database collected is predom-
inantly made up of granite-type rock. According to Aydin and Basu [11], rock behaviours
are site-specific, as they differ from one location to another. In this regard, the application of
the recommended models to other types of rock that were not mentioned (such as basalts,
marble, pumice, and so on) should be made with caution, as they might not yield the same
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results as this study. It should also be noted that the model is appropriate to predict BTS
when values of rock indices such as Rn and Vp are available in the same range as this
research. It is suggested that future models should acquire data with larger sample sizes
and variations to improve prediction accuracy. Among the various prediction techniques,
this study focused on the capabilities of two conventional linear regression models (SR
and MLR) and one form of artificial intelligence method (ANFIS). The implementation of
optimization techniques such as IWO together with the ANFIS model can be considered
in the future to examine their capability in predicting BTS values. In addition, a larger
database comprising non-destructive rock index tests can be provided to propose a more
comprehensive intelligence technique, since generalization of the proposed models is an
important advantage in predictive models.

7. Conclusions

A comprehensive series of laboratory tests (i.e., non-destructive tests and Brazilian
tests) were performed on more than 154 block samples brought from a water transfer tunnel
project. Then, several SR-, MLR-, and ANFIS-based predictive models were designed and
developed to assess the applicability of these methods in forecasting BTS. According to
initial research, the need to develop BTS predictive models with higher degrees of accuracy
was discovered through SR analyses. A range of 0.6–0.7 was recorded for the coefficient
of determination of SR equations in predicting BTS values. Then, the authors decided
to use another statistical-based technique which is able to consider the effects of all non-
destructive tests as inputs in the analysis. From the regression statistic findings, the MLR4
model exhibited the best results with the highest-ranking scores of 28 among all other MLR
models. The computed training RMSE, VAF, R2 and a20-index values for this model were
1.05, 83.56, 0.84, and 0.84, respectively. The ANFIS model, on the other hand, significantly
outperformed MLR analysis in terms of overall quality of the model. Model 4 of the ANFIS
analysis achieved good model fit titles in which it ideally approximates the observed output.
For this reason, the prediction using ANFIS Model 4 shall be introduced as the most robust
approach in predicting BTS of granitic rock. In fact, the ANFIS structure proposed in this
study, enjoying advantages of both ANN and fuzzy theory, can handle the BTS problem,
which is complex and nonlinear. Proposing the ANFIS model, the accuracy of the MLR
technique can be improved until 0.91 and 0.90 R2 results are achieved. Additionally, based
on sensitive analysis assessment, Rn indicates the most effective input parameters on BTS
of the rock. Meanwhile, DD provides the lowest impact on BTS with Rij value of 0.969.
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Appendix A

Table A1. The used data in testing phase.

Sample No. Rn Vp (m/s) DD (g/cm3) BTS (MPa)

1 33 4670 2.61 5.75

2 34 3210 2.53 7.34

3 52 6102 2.59 11

4 54 7155 2.68 12.5

5 43 5217 2.59 11

6 42 6635 2.6 6.8

7 33 6080 2.68 9.1

8 57 6980 2.68 12.4

9 40 7003 2.54 7.5

10 27 3615 2.42 5.4

11 22 3430 2.48 5.85

12 37 6005 2.65 10.3

13 40 5832 2.63 9.8

14 50.8 7152 2.76 11.3

15 28 3866 2.42 5.1

16 48 6503 2.57 10

17 38 6430 2.6 10.1

18 37 3050 2.38 5.5

19 43 6320 2.58 7.99

20 57 6659 2.76 10.55

21 28 5040 2.52 4.99

22 29 2870 2.37 3.7

23 40 5463 2.55 7.1

24 42 7002 2.59 8.99

25 33 5125 2.7 9
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