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Abstract: Human activities, such as energy consumption and economic development, will signifi-
cantly affect the natural environment, while changes in the natural environment will also affect the
sustainability of human society. Studying the energy consumption changes of human society and
forecasting medium and long-term electricity demand will help realize the sustainable development
of energy in future society. However, current medium- and long-term electricity consumption fore-
casts have insufficient data samples and the inability to consider policy impacts. Here, we develop an
Economy and Policy Incorporated Computing System (EPICS), which can use artificial intelligence
technology to extract the summaries of energy policy texts automatically and calculate the importance
index of energy policy. It can also process economic data of different lengths to expand samples of
medium- and long-term electricity consumption forecasting effectively. A forecasting method that
considers policy factors and mixed-frequency economic data is introduced to estimate future social
energy and power consumption. This method has shown good forecasting ability in 27 months. The
effect of EPICS can be demonstrated by predicting the medium- and long-term electricity demand.

Keywords: medium- and long-term electricity consumption forecast; policy quantification; low
carbon economy

1. Introduction

Global warming is one of the main threats to human society, so reducing carbon
emissions has become the consensus of all countries. The energy and power industries
account for a large proportion of carbon emissions and are the main force in energy
conservation and emission reduction.

In order to reduce carbon emissions in the power industry, low-carbon power tech-
nologies have emerged. Low-carbon power technology mainly includes power system
carbon emission analysis, low-carbon power planning, power system low-carbon trans-
portation, etc. Among them, the medium- and long-term electricity consumption forecast
in the power industry is the basis for achieving low-carbon power planning and evaluation,
which can help the power system achieve economic and low-carbon goals. Statistics in
References [1–4] show that, for every 1% reduction in the error of electricity consumption
forecast, the annual operating cost of the power system will be reduced by 10 million
pounds. Thus, how to improve the accuracy of power consumption prediction has always
been a popular issue for researchers.

The medium- and long-term electricity consumption will be significantly affected by
many randomly changeable factors, such as macro-control policy, economy, and weather [5].
Accurately quantifying the “energy policy” for grasping the impact of economic changes
and energy policies on the power market is critical for improving the accuracy of medium-
and long-term electricity consumption forecasts. However, current research on the effect of
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policy implementation is mostly based on qualitative analyses, and research on quantitative
measurement of energy policy is still lacking. Existing methods [6–8] do not take into
account the complex non-linear relationship between electricity consumption and policy
factors; therefore, they cannot precisely quantify the impact of policy macro-control on
regional electricity consumption.

Many scholars have also carried out extensive research on medium- and long-term
electricity consumption forecasting considering economic factors. Most of the early stud-
ies [9–12] are based on the qualitative analysis of the causal relationship between economic
and power demand data. They use economic data to carry out extensive exploration on
load forecasting. It is in line with the current development trend of power consumption
forecasting but lacks quantitative empirical analysis. Besides, the medium- and long-term
power demand forecasting still has the following problems: (1) the short length of historical
data series leads to insufficient data samples, (2) it is difficult to improve the prediction
accuracy; (3) and the economic development and climate conditions of different regions
are not the same, leading to the prediction method not having a wide range of adaptability.

In this article, we establish the Economy and Policy Incorporated Computing System
(EPICS) for social energy and electricity consumption analysis. EPICS incorporates a
Bidirectional Encoder Representation from Transformers (BERT)-based [13] energy policy
quantitation module and a mixed macroeconomic data processing module. The energy
policy quantification module uses a BERT-based abstract extraction network to understand
and analyze a large number of power policy texts and then outputs the importance index
of each power policy text under the policy evaluation system. The importance index can
reflect the impact of different policies and measures on power load in different fields.
The mixed-frequency macroeconomic data processing module can work with various
economic data of different time dimensions and different influencing factors to carry out a
hybrid model for fully reflecting the relationship between economic factors and electricity
consumption. Finally, we propose a medium- and long-term electricity consumption
forecasting method integrating economic and policy factors. It takes macroeconomic data
of different time scales and the quantified energy policies as input.

EPICS innovatively applies artificial intelligence technology to the quantification of
energy policy for the first time, and realizes fusion processing of mixed economic data
with uneven data quality. Firstly, different from traditional policy evaluation models,
which mainly focus on qualitative analyses, the policy quantification module of EPICS can
objectively evaluate the implementation effects of energy policies, and dig out the merit
and demerit of each policy text with a high degree of accuracy. Secondly, the BERT-based
summary extraction model dramatically enhances the data processing ability of the entire
system, that a large number of power policy texts can be processed and utilized. It should
be noted that this is a novel and unique method, which has not been proposed in the
literature. Thirdly, we use the Masking layer in the Keras framework to cover and filter
out the vacant time steps, which effectively solves the problem of inconsistent data length
caused by different frequencies of macroeconomic indicators.

We also introduce a key application of EPICS in solving social energy and power
consumption analysis. Aiming at the problem that the traditional medium- and long-term
electricity consumption forecasting has insufficient data samples and only considers a
single historical load influencing factor [14–19], we use the economic and electricity data of
30 provinces in China to expand the data samples, and we take the policy factors and mixed
macroeconomic data as the input of the electricity consumption forecasting model to reduce
the prediction error of the model. For economic data with different frequencies, we use
the Masking layer under the Keras framework to cover and filter the vacant time steps in
the data with different time lengths. We use the Long-Short Term Memory (LSTM) [20–22]
network to realize the automatic feature extraction of the mixed data and build the feature
multi-input fusion model. In the 27-month consumption diction task in three provinces in
China, EPICS achieved high forecasting accuracy of 1.386, 0.985, and 1.683, which is 2.415
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higher than traditional methods, on average. This proves the effectiveness of the EPICS
framework. The list of symbols used in this paper is shown in Appendix A.

2. Materials and Methods
2.1. EPICS Framework

The EPICS framework has two types of input data: policy text data and mixed
frequency economic data. Among them, policy text data is unstructured and economic data
is structured. In order to jointly process these two kinds of data, the EPICS framework is
designed to contain two main modules: policy quantification module and mixed-frequency
economic data processing module. The structure is shown in Figure 1.

Sustainability 2021, 13, x FOR PEER REVIEW 3 of 18 
 

build the feature multi-input fusion model. In the 27-month consumption diction task in 
three provinces in China, EPICS achieved high forecasting accuracy of 1.386, 0.985, and 
1.683, which is 2.415 higher than traditional methods, on average. This proves the effec-
tiveness of the EPICS framework. The list of symbols used in this paper is shown in Ap-
pendix A. 

2. Materials and Methods 
2.1. EPICS Framework 

The EPICS framework has two types of input data: policy text data and mixed fre-
quency economic data. Among them, policy text data is unstructured and economic data 
is structured. In order to jointly process these two kinds of data, the EPICS framework is 
designed to contain two main modules: policy quantification module and mixed-fre-
quency economic data processing module. The structure is shown in Figure 1.  

 
Figure 1. Structure of EPICS. There are two inputs to the model: (a) policy text data and (b) mixed frequency economic 
data. The policy quantification module uses BERT-based automatic text summarization technology to refine many power 
policy texts. The mixed economic data processing module mainly uses the LSTM network to realize the automatic feature 
extraction of the mixed data and constructs the feature multi-input fusion model. 

• First, the policy text data is used as the input of the policy quantification module, 
which can extract a large amount of power policy text summaries through the auto-
matic text summarization technology based on BERT. In addition, the power policy 

Figure 1. Structure of EPICS. There are two inputs to the model: (a) policy text data and (b) mixed frequency economic
data. The policy quantification module uses BERT-based automatic text summarization technology to refine many power
policy texts. The mixed economic data processing module mainly uses the LSTM network to realize the automatic feature
extraction of the mixed data and constructs the feature multi-input fusion model.



Sustainability 2021, 13, 10473 4 of 18

• First, the policy text data is used as the input of the policy quantification module, which
can extract a large amount of power policy text summaries through the automatic text
summarization technology based on BERT. In addition, the power policy summary
can be quantified based on Policy Modeling Consistency Index (PMC-Index) [23].
This method can summarize the main content of policy measures and improve the
efficiency of policy quantification.

• Second, the output of the policy quantification module (PMC-Index) and mixed
frequency economic data are integrated. This step is to implement the joint processing
of structured data and unstructured data.

• Third, the fused data are utilized as the input of the mixed-frequency economic data
processing module. The mixing economic data fusion modeling module mainly uses
the masking layer of the Keras to cover and filter the vacancy time steps in the data.
The masking layer can mask a sequence by using a mask value to skip timesteps. For
each timestep in the input tensor, if all values in the input tensor at that timestep are
equal to “mask value”, then the timestep will be masked (skipped) in all downstream
layers. In addition, this module also uses the LSTM network to realize the automatic
feature extraction of the mixed data and constructs the multi-input feature fusion
model, which aims to cope with the issue that the data volume of medium- and
long-term power consumption is not sufficient for deep network model training.

2.2. EPICS Framework: Policy Quantification Module

Before quantifying policies, a sufficient amount of policy data must be obtained
and pre-processed. Electricity policy data usually exists in text, mainly including news
information, policy reports, etc. These data can be obtained on government official websites
and electric power portals through web crawler technology. However, there are many
useless interfering texts in these data. It is challenged to extract useful information from the
huge amount of text data by manpower alone. Therefore, it is necessary to use automatic
text summarization technology to extract and refine the massive amount of power policy
texts and summarize the main content of policy measures.

In order to pre-process of policy text, we propose a BERT-based abstract extraction
model. Figure 2 illustrates the structure of the model. The input text is separated by two
special symbols [CLS] and [SEP], where [CLS] is located at the beginning of the text, which
means that the feature is used for classification models. For non-classification models.
[SEP] means clause symbol, which is used to disconnect two sentences in the input corpus.

The processed input text is assigned to three kinds of embedding: token embeddings,
segmentation embeddings, and position embeddings. The token embeddings are used to
indicate the meaning of each tag. The segmentation embeddings are used to distinguish
two sentences. The position embeddings are used to indicate the position of each tag in
the text sequence. The input coding vector of BERT is the unit sum of the three embedded
features.

Summarization Layers are used to process each sentence vector Ti and calculate the
gold label Yi of each sentence senti. The loss of the whole model is the binary classification
entropy of the yield Ŷi and the gold label Yi [24]. The calculation process of Ŷi is as follows:

h̃l = LN
(

hl−1 + MHAtt
(

hl−1
))

, (1)

hl = LN
(

h̃l + FFN
(

h̃l
))

, (2)

where h0 is equal to PosEmb(Ti), and Ti is the sentence vector output by BERT. PosEmb
is the function to add positional embeddings to Ti. MHAtt is the Multi-Head Attention
operation [25]. LN is the layer normalization operation. The superscript l indicates the
depth of the stack layer. The final output still uses the S-type classifier:
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Ŷi = σ
(

W0hL
i + b0

)
, (3)

where h0 is the vector for senti from the L− th layer of the Transformer. W0 is the weight,
and b0 is the bias.
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After pre-processing the policy text through the above steps, we get the power policy
summary. Next, a suitable model needs to be established to evaluate and quantify the
policy summary. We propose a power policy quantitative model based on PMC-Index.

We establish 9 first-level variables and 33 second-level variables based on the specific
characteristics of China’s power policy. The detailed variable design is shown in Table 1.
See the Methods section for other calculation steps.
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Table 1. China’s power policy evaluation variables.

Primary Variable Secondary Variable

(X1) Nature of policy

(X1:1) Predicting
(X1:2) Proposal
(X1:3) Supervise
(X1:4) Support
(X1:5) Guide

(X2) Effect of policy
(X2:1) Long term

(X2:2) Medium term
(X2:3) Short term

(X3) Incentives and constraints

(X3:1) Governmental subsidies
(X3:2) Special fund

(X3:3) Laws and regulations
(X3:4) Talent incentive

(X4) Area of policy

(X4:1) Economy
(X4:2) Society

(X4:3) Environment
(X4:4) Science

(X4:5) Technological

(X5) Level of policy
(X5:1) National level

(X5:2) Provincial level
(X5:3) Local level

(X6) Recipients of policy

(X6:1) Ministries
(X6:2) Provinces

(X6:3) Autonomous regions
(X6:4) State Grid

(X7) Focus of policy

(X7:1) Energy prices
(X7:2) Energy investment

(X7:3) Environmental protection
(X7:4) Electric safety
(X7:5) Electric reform

(X7:6) Energy conservation

(X8) Evaluation of policy

(X8:1) Well founded
(X8:2) Clear objectives

(X8:3) Scientific solution
(X8:4) Reasonable planning

(X9) Openness of policy None

The calculation of the power PMC-Index includes the following steps:

• Setting policy variables and parameters: We refer to Estrada’s setting of policy eval-
uation variables and combine the specific characteristics of China’s power policy to
establish 9 primary variables and 33 secondary variables. The detailed variable design
is shown in Table 1.

• Establishing a multi-input-output table: Multi-input-output table is a data analysis
framework that can store a large amount of data and measure a single variable in
multiple dimensions. The multi-input-output table consists of primary variables and
secondary variables. Primary variables have no fixed order and are independent of
each other. Each primary variable can contain any number of secondary variables. All
secondary variables under each primary variable have the same weight, and the value
is always 0 or 1. This is because we are concerned about the impact of a policy in a
specific field in the process of PMC index modeling.

• Calculating PMC index: (I) Put 9 first-level variables and 33 second-level variables
into the multi-input-output table. (II) Determine the value of second-level variables
through text mining. As shown in Formula (4), each second-level variable obeys 0–1
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distribution, which means that the value of the second-level variable can be 0 or 1. (III)
Calculate the first-level variables according to Formula (5). (IV) Sum up the first-level
index value of power policy to calculate PMC index, as shown in Formula (6):

Xtj ∼ B(0, 1), (4)

Xt =
n

∑
j=1

Xtj

T
(

Xtj

) , (5)

PMC = ∑m
t=1 Xt, (6)

where Xtj represents the first-level variable, Xt represents the second-level variable,

and T
(

Xtj

)
represents the number of second-level variables.

2.3. EPICS Framework: Mixed-Frequency Economic Data Processing Module

The mixed-frequency economic data processing module of EPICS mainly includes
several steps: mixing input, coverage and filtering, feature extraction, feature merging, and
multi-layer perception. The mixed data, including the mixed-frequency economic data,
the historical power consumption data, and the quantified policy data, are processed by
the masking layer to mask missing data points, and they are then fed into the deep neural
network for feature extraction. Finally, through the feature merging layer and perception
layer, the monthly electricity consumption is predicted.

Macroeconomic indicators of different frequencies contain different characteristic
information. Among them, the high-frequency monthly economic data can reflect the
short-term fluctuations of the economic market to a certain extent. The low-frequency
quarterly annual data is not as real-time as the monthly data due to the long accounting
period. However, it is of great significance to accurately describe the long-term trend and
overall situation of regional economic operations. The extensive use of regional long-term
and short-term economic data for power consumption forecasting modeling helps establish
a more comprehensive model of the relationship between economic factors and power
consumption.

Low-frequency data in mixed frequency data can be regarded as high-frequency data
with missing values. The problem of missing low-frequency data caused by frequency
mixing is an inherent characteristic of macroeconomic data and cannot be directly filled
by traditional interpolation methods. Traditional econometric models often turn high-
frequency data into low-frequency data through accumulation or turn low-frequency data
into high-frequency data through interpolation. Then model the economic data of a single
frequency. However, this kind of processing method will change the original data, resulting
in the loss of important information.

Referring to the network [26] of the multi-input fusion model, we let the mixed data
pass the Masking layer to achieve coverage of the vacant time steps. Then let them enter
the deep learning network to realize the automatic feature extraction of different frequency
economic data. Finally, let the data pass the feature merging layer and the perception
layer to realize the prediction of monthly electricity consumption. In order to couple
multiple time series information, all variables at any time are concatenated into a vector
representation to form a new time series, as shown in the following formula.

X =
(

x1, x2, · · · , xn
)
= (x1, x2, · · · , xT)

T ∈ RT×n, (7)

xk =
(

xk
1, xk

2, · · · , xk
T

)T
∈ RT , (8)

xt =
(

x1
t , x2

t , · · · , xn
t

)
= (x1, x2, · · · , xT)

T ∈ Rn. (9)
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In the above formula, T is the time window size; n is the number of influencing factor
variables, in this article n = 53; xk is the numerical sequence of the k-th variable at time T;
and xt is the set of n variable values at time t.

2.4. Electricity Consumption Forecasting Methods Considering Economic and Policy Factors

The mixed-frequency economic data processing module contains a medium- and long-
term electricity consumption forecasting model. Next, we will introduce the construction of
the forecasting model. The basic idea to construct a medium- and long-term load forecasting
model considering economic and policy factors is to use PMC index and mixed frequency
economic data as the input of the LSTM electricity consumption forecasting model. At
present, the LSTM model is mainly used for short-term forecasting with relatively sufficient
data volume and has achieved high forecasting accuracy. However, its application on
medium- and long-term forecasting is less due to insufficient data [27]. In order to solve the
problem that historical data for medium- and long-term electricity consumption forecasts
is insufficient, we used the electricity economic data from 30 provinces in China to achieve
data enhancement.

Medium- and long-term electricity consumption is affected by many factors. In order
to couple multiple time series information, we concatenate variables at different times into
a vector representation.

Considering that the influence of economic and policy factors on medium- and long-
term electricity consumption is delayed, we select the historical economic and policy data
X and electricity consumption data Y in the previous 24 months as eigenvectors to predict
the next monthly electricity value YT+1. The model is a multivariate forecasting problem,
and its mathematical expression is:

Y = (y1, y2, · · · , yT)
T ∈ RT , (10)

ŷT+1 = F(y1, · · · , yT , x1, · · · , xT), (11)

In the above formula, T is the time window size. F is the model mapping function,
which is the nonlinear mapping relationship to be learned in this article.

In order to reduce the error brought by the Spring Festival to the electricity con-
sumption forecast, we first isolate the Spring Festival effect component in the electricity
consumption sequence. Then, we use the X-12-ARIMA seasonal adjustment algorithm to
decompose the remaining amount into long-term trend components, seasonal components
and irregular components. Finally, we use the model proposed in this article to predict
each component separately and sum them up to get the final prediction result. This method
can further improve the learning effect of the model.

3. Results
3.1. EPICS Policy Quantitative Results

The policy text data used in this article is obtained from the official websites of
China State Grid Corporation of China and China Electricity Council through web crawler
technology. We label the original data manually to get the power policy data. In order to
construct the original policy text as a data set suitable for the BERT-based abstract extraction
model, we use CoreNLP [28] to segment sentences and pre-process the data set according
to the method of See et al. [29].

In order to effectively evaluate the effectiveness of the EPICS on the task of extract-
ing power policy abstracts, this article uses the general index ROUGE [30] in the field
of automatic text summarization to automatically evaluate the quality of abstracts. This
index can count the basic units of overlap between the summary generated by the model
and the artificial summary and objectively evaluate the quality of the summary generated
by the model. In order to make a comparison, this experiment constructed an untrained
Transformer model, LEAD model, and REFRESH model as baselines. Transformer baseline
has six layers, a hidden size of 512 and a feedforward filter size of 2048. It uses the same
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architecture as BERT-based model but has fewer parameters and is randomly initialized.
LEAD is a simple summary extraction model that uses the first three sentences of a docu-
ment as a summary. REFRESH [31] is an abstraction system trained by global optimization
of Rouge index through reinforcement learning. In this article, the word overlap ROUGE-1
is used to evaluate the power policy text abstract, and the extraction results of the summary
on the power policy data set are shown in Table 2.

Table 2. Use ROUGE-1 to verify the abstract extraction capabilities of different models.

Model ROUGE-1

Lead 31.3
REFRESH 33.2

Transformer 32.3
BERT-based 34.7

The results show that the BERT-based abstract extraction model proposed in this
article has significant advantages over Transformer, LEAD, REFRESH, and other models
and can improve the Rouge-1 evaluation index of the power policy text abstract extraction
task by 1.5–3.4, which provides a reasonable basis for the following policy quantification.

After getting the summary of the policy text, we use word frequency analysis software
ROSTCM6 to conduct data mining on the policy text. The software can retrieve the
keywords related to the secondary variables in the multi-input-output table, assign values
to the secondary variables according to the retrieval results, and, finally, calculate the PMC
index values of each policy text.

In addition, we divided the obtained PMC index value into four grades according to
the evaluation criteria proposed by Estrada [23]. If the PMC index is between 10 and 9, the
policy text is “perfect”. If the PMC index is between 8.99 and 7, the policy text is “good”.
If the PMC index is between 6.99 to 5, the policy text is “acceptable”. If the PMC index is
between 4.99 and 0, the policy text is “bad”.

Table 3 shows the calculation results of the PMC index of the three policy texts, which
are graded according to the policy scoring criteria. As is shown in Table 3, the PMC index
of Paper-1 is 4.72, whose grade is “Bad”. Its scores of X7 and X8 are low, indicating that the
policy’s focus is not clear, and the content is not rational. The PMC index of Paper-2 is 5.43,
with a rating of “Acceptable”. Its scores of X7 and X8 are high, while scores of X1 and X2
are low, indicating that the policy is reasonable but ineffective. The PMC index of Paper-3
is 5.21, with a rating of “Acceptable”. Its scores of X2 and X5 are low, while other first-level
variable scores are moderate, indicating that the policy is less effective.

Table 3. Calculate the PMC index of 3 policy texts and classify them.

Paper-1 Paper-2 Paper-3

(X1) Nature of policy 0.4 0.2 0.4
(X2) Effect of policy 0.67 0.33 0.33

(X3) Incentives and constraints 0.5 0.5 0.5
(X4) Area of policy 0.4 0.4 0.4
(X5) Level of policy 0.67 0.67 0.33

(X6) Recipients of policy 0.5 0.75 1.0
(X7) Focus of policy 0.33 0.83 0.5

(X8) Evaluation of policy 0.25 0.75 0.75
(X9) Openness of policy 1.0 1.0 1.0

Total (PMC-Index) 4.72 5.43 5.21
Level Bad Acceptable Acceptable
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3.2. Mixed-Frequency Economic Data Processing Results

The economic data used in this article is selected from the economic power data
of 30 provinces and cities in China from January 2007 to December 2019. Due to the
large time span and wide spatial distribution of sample data, we set the ratio of the
training set and test set to 8:2 according to the temporal and spatial factors. The types,
quantity, and credibility of economic data have been effectively improved and standardized
with the continuous improvement of the intelligence of data statistics. Considering that
mid-to-long-term electricity consumption forecasting is a complex, multi-dimensional
and non-linear problem, we should ensure the comprehensiveness and extensiveness of
statistical indicators when selecting economic data. On the other hand, considering the
replacement of different indicators and the differences between regions, we should ensure
the time continuity and statistical adequacy of the selected economic data.

We introduce the three meteorological factors, temperature, air pressure, and humidity,
to characterize the significant influence of meteorological factors on electricity consumption.
We obtained a wide range of socio-economic data with various structures through open-
source websites, such as the national or local statistical bureau. Then we built a database
of macroeconomic meteorological indicators related to electricity demand based on the
above principles. The database contains 52 indicators, including 19 monthly indicators,
10 quarterly indicators, and 23 annual indicators. See Table 4 for specific indicators.

Table 4. Economic data of different frequencies obtained from open-source websites.

Index

Monthly data

Year, month, province information, consumer price index,
commodity retail price index, power generation, real estate

development investment, real estate development enterprise
housing construction area, real estate development enterprise

housing new construction area, real estate development
enterprise housing completion area, general public budget
income, financial institutions in foreign currency deposit

balance, financial institutions in foreign currency loan balance,
value of import, value of export, total value of export import
and export, average temperature, average pressure, average

relative humidity

Quarterly data

GDP, regional GDP index, total output value of construction
industry, completed output value of construction industry,

construction area of housing construction, newly started area,
labor productivity calculated by total output value, per capita

completed output value, completed area of housing
construction, fixed asset investment price index

Annual data

GDP, GDP real growth index, per capita GDP, per capita GDP
real growth index, added value of primary industry, added

value of secondary industry, added value of tertiary industry,
real growth index of added value of primary industry, real

growth index of added value of secondary industry, real growth
index of added value of tertiary industry, industrial added

value, consumption level of residents, consumption level of
urban residents, consumption level of rural residents,

consumption level comparison between urban and rural areas,
completed investment in fixed assets of the whole society,

investment in fixed assets (excluding farmers), investment in
fixed assets (excluding farmers), total retail value of social
consumer goods, added value of construction enterprises,

resident population, natural growth rate of resident population,
total electricity consumption



Sustainability 2021, 13, 10473 11 of 18

A simple list of mixed-frequency economic data is shown in Table 5. Here, we
only show the form of data organization in a certain region in a year. Due to large data
volume, we do not show the specific values of 4680 rows and 52 columns. We simplify
the representation of 19 columns of monthly data, 10 columns of quarterly data, and
23 columns of annual data. In addition, 0s in Table 5 represent the absence of data at those
locations, and 1s represent the existence of data at those locations.

Table 5. Simplified representation of mixed-frequency economic data.

Month Monthly Data
(19 Columns)

Quarterly Data
(10 Columns)

Annual Data
(23 Columns)

Jan 1 0 0
Feb 1 0 0
Mar 1 1 0
Apr 1 0 0
May 1 0 0
Jun 1 1 0
Jul 1 0 0

Aug 1 0 0
Sep 1 1 0
Oct 1 0 0
Nov 1 0 0
Dec 1 1 1

3.3. Electricity Consumption Forecast Results

In order to further verify the effectiveness of the EPICS framework, we input economic
and policy data into LSTM power consumption prediction network and conduct control
experiments in 30 provinces of China.

In the experiment, the EPICS method proposed in this article contains all the data:
mixing economic data, policy quantitative data, and electricity consumption data. LSTM1
uses mixed-frequency economic data and electricity consumption, LSTM2 only uses mixed-
frequency economic data, LSTM3 only uses monthly economic data, and LSTM4 only uses
electricity consumption data. We also designed two traditional load forecasting methods
as a comparison, in which the input of Gate Recurrent Unit (GRU) [32,33] network is
electricity consumption data. The Autoregressive Integrated Moving Average (ARIMA)
model predicts the power consumption components and then adds up to get the total
power consumption, whose input is historical power consumption data.

In order to measure the model training results, we use MAPE and RMSE to evaluate
the load forecasting results. The calculation Formulas are given by Formulas (12) and (13),
where n represents the number of samples, yi represents the actual value of the training
sample, and ŷi represents the predicted value of the training sample.

MAPE =
1
n ∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100%, (12)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
. (13)

Table 6 shows the prediction errors of the proposed method and the controlled experi-
ment method in the medium- and long-term electricity consumption of 30 provinces and
municipalities in China. Statistics show that the accuracy of the EPICS framework ranked
first in 24 provinces and second in the remaining 6 provinces. In these 6 provinces, the
gap between EPICS and the first-ranked model was very small. Specifically, the MAPE
difference between the two was maintained at 0.2–0.3%, and the RMSE difference between
the two was maintained at 0.3–0.6. Overall, the average prediction error of EPICS in
30 provinces in China was much lower than that of other models. The average MAPE
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of EPICS is 2.16%, and the average RMSE is 3.98. In order to show the generality of the
EPICS algorithm in more detail, we show the line chart of prediction error of 7 algorithms
in 30 provinces, as shown in Figure 3. It can be seen from the figure that the overall error of
the EPICS algorithm is low, which shows that the EPICS method is effective with better
performance in most regions.
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Table 6. Electricity consumption prediction error of different models in 30 provinces of China in 27 months.

Province
EPICS LSTM1 LSTM2 LSTM3 LSTM4 GRU ARIMA

MAPE% RMSE MAPE% RMSE MAPE% RMSE MAPE% RMSE MAPE% RMSE MAPE% RMSE MAPE% RMSE

Beijing 2.32 2.50 3.15 2.80 2.45 2.48 4.14 3.77 4.41 5.31 4.07 3.73 7.81 7.39
Tianjin 1.91 1.47 2.51 1.93 2.54 1.99 4.33 3.27 3.10 2.56 4.30 3.23 6.68 5.22
Hebei 1.20 3.82 1.54 4.87 1.58 5.03 2.26 7.20 3.24 9.82 2.42 7.97 4.02 12.07
Shanxi 1.72 3.28 1.85 3.31 2.42 4.70 2.29 4.66 3.20 6.41 3.29 6.01 4.91 9.73

Neimeng 2.67 5.97 2.69 6.11 2.78 6.09 2.54 5.43 4.24 8.99 3.90 7.87 7.45 13.52
Liaoning 1.15 2.29 1.56 3.06 1.57 3.46 2.08 4.70 2.65 5.46 2.51 4.60 3.63 7.96

Jilin 1.97 1.33 2.95 1.78 4.08 2.50 4.36 3.06 3.56 2.41 5.68 3.54 12.31 8.21
Heilongjiang 1.57 1.42 1.89 1.80 2.19 1.88 3.93 3.76 4.31 4.13 3.46 3.04 4.95 4.52

Shanghai 3.35 5.09 3.56 5.47 4.10 6.90 4.84 7.39 5.29 8.96 3.39 6.09 5.36 9.01
Jiangsu 1.37 8.81 1.55 9.78 2.15 12.80 2.58 13.38 3.00 16.72 3.47 19.17 4.14 25.17

Zhejiang 2.38 8.69 2.54 10.31 2.41 9.77 2.73 9.61 3.40 12.74 2.80 11.77 5.94 21.97
Anhui 2.17 4.08 2.70 4.40 2.93 6.48 3.18 5.82 2.89 6.45 3.63 6.18 5.72 9.23
Fujian 1.97 3.22 1.63 2.91 1.82 3.22 2.06 3.84 3.71 7.15 2.56 4.50 5.75 9.61
Jiangxi 2.39 2.61 2.71 2.91 3.46 3.37 4.00 3.63 3.66 3.67 5.73 5.13 5.38 4.85

Shandong 1.64 8.23 1.46 7.62 2.32 12.57 2.75 13.50 3.57 19.27 2.59 12.14 3.82 19.40
Henan 0.99 4.52 1.25 4.77 1.66 5.53 2.39 7.73 2.93 8.96 2.97 8.84 3.42 11.42
Hunan 2.79 4.72 2.83 4.31 3.82 6.36 3.23 5.43 3.72 5.70 3.96 5.79 5.17 8.12

Guangdong 2.23 12.12 2.22 13.42 2.46 13.96 3.61 18.75 4.49 28.41 2.57 13.62 5.00 23.97
Guangxi 1.69 2.43 2.25 3.62 2.93 4.83 3.34 4.93 5.63 8.67 3.28 5.12 6.08 10.18
Hainan 4.65 0.92 4.53 1.03 10.44 1.83 9.96 2.30 12.01 2.48 32.58 5.54 26.21 5.85

Chongqing 2.78 2.47 3.47 3.01 4.19 3.67 4.89 4.00 5.10 4.03 7.04 5.18 6.06 5.44
Sichuan 2.25 5.27 2.05 4.58 2.39 5.13 3.04 6.72 4.73 9.42 3.14 6.09 4.87 10.63
Guizhou 2.25 2.39 3.47 3.71 3.51 4.07 3.09 4.03 6.04 7.18 4.57 5.10 9.65 12.08
Yunnan 3.90 5.96 4.37 6.30 5.10 7.39 2.78 5.08 5.40 8.58 5.39 8.01 8.00 12.82
Shaanxi 2.28 2.71 2.39 2.95 3.24 3.84 3.01 4.10 2.66 3.45 3.28 3.96 7.01 7.42
Gansu 1.50 1.76 3.06 3.00 4.08 4.70 3.35 3.55 4.03 4.93 3.43 3.47 4.61 5.15

Qinghai 1.99 1.36 4.78 2.93 4.15 3.12 6.92 3.46 4.95 3.07 9.32 4.98 10.20 6.46
Ningxia 1.93 2.05 2.53 2.30 4.64 4.18 4.13 3.31 4.63 4.29 7.49 5.68 6.71 5.79
Xinjiang 2.21 4.69 2.74 4.04 2.79 4.66 3.40 5.87 4.81 9.91 4.03 5.71 8.06 13.16
Hubei 1.68 3.19 1.79 2.97 2.65 4.65 2.86 4.52 3.38 5.31 3.04 5.78 3.72 6.34

AVERAGE 2.16 3.98 2.60 4.40 3.23 5.37 3.60 5.89 4.29 7.81 5.00 6.59 6.75 10.42
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Observing the prediction results of the control group LSTM1~4, it can be found that
compared with LSTM4, which only uses electricity consumption as input to the LSTM
network, the MAPE of LSTM3 drops on average by 0.69%, and the RMSE drops on average
by 1.92. This is because LSTM3 adds monthly economic data as input, which shows that
economic data has a significant improvement effect on electricity consumption forecasts.
Compared with the LSTM3 model that only uses monthly economic data, the MAPE of
LSTM2 is reduced by an average of 0.37%, and the RMSE is reduced by an average of
0.52. This is because LSTM2 adds quarterly and annual mixing data as input, which
indicates that mixed-frequency economic data helps to improve the accuracy of electricity
consumption forecasts.

Compared with the electricity consumption forecasting method GRU, the MAPE of
the EPICS algorithm has dropped by 2.84%, on average, and the RMSE has dropped by
2.61, on average. Compared with the electricity consumption forecasting method ARIMA,
the MAPE of the EPICS algorithm has dropped by 4.59%, on average, and the RMSE has
dropped by 6.44, on average. This reflects the advantages of our model EPICS in learning
complex nonlinear relationships and long-term dependencies.

Figure 4 shows the comparison between the predicted value and the true value of all
methods in Jiangsu, Henan, and Hubei provinces. It can be seen from the figure that the
traditional load forecasting methods ARIMA and GRU are not as effective as other models
in fitting the trend of electricity consumption in the three provinces, and the error value
even reaches 4 billion kWh at some points at some points. EPICS and LSTM1–5 have very
close fitting effect on the trend of electricity consumption, but there are large deviations at
some specific time points, such as 14 and 21 time points in Jiangsu Province, 4 and 25 time
points in Henan Province, and 11 and 24 time points in Hubei Province. At these time
points, the EPICS maintains a high prediction accuracy, which shows that policy data and
mixed frequency economic data are helpful to improve the robustness of the system.
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Figure 4. Comparison of electricity consumption forecasting results with different models. The comparison between the
predicted value and the real value of our method and the control experiment in the three provinces. The predicted time
length is 27 months. (a) The electricity consumption forecast results of Jiangsu Province. (b) The electricity consumption
forecast results of Henan Province. (c) The electricity consumption forecast results of Hubei Province.

4. Conclusions

Most of the research on policy evaluation is based on qualitative research, and few
people study policy quantification [34]. Objective evaluation of the implementation effect
of energy industry policy is of great value for scientific policy-making [35]. Quantifying
complex policy texts into specific influence indexes is an important method to reduce the
subjectivity of policy evaluation, but its scientificity and rationality have always been sus-
pected. This article verified the effectiveness of the method through scientific experiments.
We use the PMC model to obtain the influence index of the policy text, and we then apply it
to medium- to long-term electricity consumption forecasting scenarios to observe the effect
of the model. The results of the experiment show that the PMC index is helpful to improve
the accuracy of electricity consumption forecasting and objectively reflect the influence of
the policy text to a certain extent.

Our study also shows that abundant mixing economic data information can not only
solve the problem of lack of historical data for medium- and long-term electricity con-
sumption forecasts but also effectively improve forecast accuracy. Traditional econometric
models often turn high-frequency data into low-frequency data through accumulation, or
turn low-frequency data into high-frequency data through interpolation and filling, and
then use single-frequency economic data for modeling. However, such processing methods
will change the original information of the data, leading to missing important informa-
tion of the data or adding useless artificial information, which will increase the error of
the prediction result and decrease the accuracy [36–42]. The economic data fusion input
framework proposed by us can fully explore the complex relationship between electricity
and economy. This has certain reference value for predicting the development trend of
electricity consumption under the background of complex economic situation.

In the future, researchers can use more powerful semantic extraction models to im-
plement generative text summaries and dig out more policy elements. It may improve
the comprehensiveness of abstract extraction and the accuracy of policy quantification.
At the same time, introducing more policy factors is expected to further enhance the
model’s capability of understanding the impact of policy on social activities, such as power
consumption, and improve the model’s information processing performance.
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Appendix A

Table A1. List of symbols used in this article.

Symbol Explanation

EPICS Economy and Policy Incorporated Computing System
BERT Bidirectional Encoder Representation from Transformers
GRU Gate Recurrent Unit
LSTM Long-Short Term Memory
PMC Policy Modeling Consistency

Ti Sentence vector of i-th sentence
Yi Gold label of i-th sentence

senti Each sentence of i-th sentence

PosEmb(Ti)
Function to add positional embeddings, i represents the

i-th sentence
MHAtt Multi-Head Attention

LN Layer normalization
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