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Abstract: The thermal environment in educational buildings is crucial to improve students’ health
and productivity, as they spend a considerable amount of time in classrooms. Due to the complexity of
educational buildings, research performed has been heterogeneous and standards for thermal comfort
are based on office studies with adults. Moreover, they rely on single dose-response models that do
not account for interactions with other environmental factors, or students’ individual preferences and
needs. A literature study was performed on thermal comfort in educational buildings comprising
of 143 field studies, to identify all possible confounding parameters involved in thermal perception.
Educational stage, climate zone, model adopted to investigate comfort, and operation mode were
then selected as confounding parameters and discussed to delineate the priorities for future research.
Results showed that children often present with different thermal sensations than adults, which
should be considered in the design of energy-efficient and comfortable educational environments.
Furthermore, the use of different models to analyse comfort can influence field studies’ outcomes
and should be carefully investigated. It is concluded that future studies should focus on a more
rational evaluation of thermal comfort, also considering the effect that local discomfort can have on
the perception of an environment. Moreover, it is important to carefully assess possible relationships
between HVAC systems, building envelope, and thermal comfort, including their effect on energy
consumption. Since several studies showed that the perception of the environment does not concern
thermal comfort only, but it involves the aspects of indoor air, acoustic, and visual quality, their
effect on the health and performance of the students should be assessed. This paper provides a way
forward for researchers, which should aim to have an integrated approach through considering the
positive effects of indoor exposure while considering possible individual differences.

Keywords: thermal comfort; indoor environmental quality; educational buildings; energy consumptions;
local discomfort

1. Introduction

Students spend a good part of the day in schools, and, especially when considering
children, they are particularly exposed to an unfavourable indoor environmental quality
(IEQ) [1]. Therefore, the relations between classroom characteristics and comfort should
be carefully investigated [2]. As the aim of educational buildings is to provide the best
learning conditions for students and teachers [3], classrooms should be designed to improve
concentration and to stimulate the learning process [4–6], but also be climate-responsive [7].
Since the thermal environment can largely affect students’ wellbeing, it is also fundamental
to ensure thermal comfort in classrooms to improve students’ health and productivity [8].

For the assessment of thermal comfort, several indices have been developed [9], but
Fanger’s rational (or heat-balance) [10] and the adaptive models [11–13] are the most
commonly used. Indeed, it is necessary to raise questions regarding students’ possibility
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to adapt, as at different educational levels adaptation may differ, and, especially at low
educational levels, teachers are the only ones who can actively modify the thermal environ-
ment [14]. Nevertheless, it should be noted that children and adults do not always have the
same thermal perception, therefore pupils’ preference on the thermal environment should
be considered, as it could help to co-design classrooms [15]. Furthermore, in educational
buildings, different activities are carried out, which can influence the thermal comfort
evaluation especially at a high metabolic rate [16].

In educational buildings, the duration of field studies varied largely from less than a
week to a whole year [17], and they were performed according to three classes [18]: (i) Class
III, based on measurements of indoor temperature and humidity at a certain height; (ii)
Class II, including field measurements of the six basic parameters in one location at a certain
height; (iii) Class I, comprising the measurement of all the environmental parameters at
three different heights (0.1, 0.6, 1.2 m) to evaluate local discomfort. Most studies in schools
were performed according to Class II [17], while Class III was used for investigations of
the adaptive model [19,20]. Only a few papers have been based on Class I [21–24], and
in these cases draught, radiant asymmetry, vertical air temperature difference, and floor
temperature were measured [22,25,26]. Alternatively, other IEQ aspects were included in
the investigation, such as CO2 concentration [4,27,28] or other factors of IEQ, such as noise
level [29–31] or illumination level on the work plane [32–34]. Furthermore, as the goal for
the buildings of tomorrow is to combine the aspects of energy efficiency and comfort [35],
studies were also focused on the impact of thermal comfort on energy efficiency [22,36].
Indeed, due to the complexity of the parameters that influence buildings’ performance and
indoor environment, it is crucial to focus on the aspects that contribute to determining the
health and wellbeing of the occupants, also in relation to architectural and HVAC system
design, towards a multi-objective approach to building performance.

The measurement of environmental parameters has been often combined with sub-
jective measurement, which consisted of various types of questionnaires [17]. The first
ones included questions regarding thermal sensation and preference, while recent studies
also include the evaluation of local thermal comfort, humidity sensation and preference,
air velocity sensation and preference, personal regulation, preferred adaptive strategies,
information on the clothing worn, and the activity performed prior to the survey [25,37,38].
Simplified questionnaires for children were also provided, to ensure the correctness of
the collected data [39,40]. Recently, questionnaires have also included aspects of health
and performance of students [6,41,42]. Both longitudinal and transversal surveys were
used by researchers, but it was never defined how long the survey should be and how
many respondents are necessary for the evaluation of thermal comfort in educational
buildings [17,43].

Given the complexity of these environments, there is a lack of standards dealing with
thermal comfort in educational buildings, as current regulations such as ISO 7730 [44],
ASHRAE 55 [45], and EN 16798-1 [46] seem to be not sufficient to provide comfortable
conditions for students and teachers. Indeed, these standards refer to data recorded in
laboratories [44] or field studies using comfort data recorded on healthy adults in buildings
across the world [11,13], which do not take into account student and teacher individual
preferences. Indeed, standards were often developed for environments such as offices,
thus, they do not include the peculiarities of educational buildings and they are often
based on dose-response models that are not able to explain people’s individual preferences
and needs.

In conclusion, thermal comfort in educational buildings has been largely investigated
and there are many models and indices that have been used with this purpose. However,
there are still problems that should be solved, which do not emerge clearly due to the rapid
growth of scientific literature. Studies have been often carried out based on the experience
of single researchers, rather than adopting a coordinated effort of predetermined directions
to develop consistent solutions and guidelines. There is then the need for a collection, a
rationalised classification, and analysis of these studies to inspect the present state, aimed
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at identifying the current issues and to guide future research towards solutions to such
problems. This paper aims at filling this gap, highlighting the current issues in thermal
comfort studies, and proposing new directions for research with the purpose of integrating
the interactions between humans and the environment.

2. Methods
2.1. Search Strategy

The literature search was performed on the electronic databases Scopus, ScienceDi-
rect, Google Scholar, and Researchgate in the period from March to November 2020. The
search keywords used in the databases were {“thermal comfort”} AND {“classroom” OR
“class” OR “educational buildings”}, using an integrated search in the title, keywords, and
abstract of the papers. Moreover, the selected references were analysed individually to
extract relevant information. The following inclusion criteria were selected: (i) original
peer-reviewed articles; (ii) field studies investigating thermal comfort and related aspects
of IEQ in educational buildings; (iii) full text published in English. Exclusion criteria were:
(i) studies not focused on building engineering (e.g., articles focused on physiological or
psychological aspects only); (ii) articles investigating energy consumptions only; (iii) simu-
lation studies which did not include field measurements; (iv) books, book chapters, and
conference reviews. Review articles were inspected, but not included in the classification
of the studies in educational buildings.

Thanks to the possibility to analyse the number of resulting articles, Scopus was used
as the primary database to continue this review. From the initial search using the selected
keywords, 958 documents were extracted, and following removal of the ones without an
English full-text, 916 articles remained. Of these, 445 were research articles, 409 conference
papers, 27 were reviews, 18 book chapters, 2 books, and 15 conference reviews. In total,
854 papers (research and conference articles) were then analysed, as well as the 27 review
articles. From the title and abstract inspection, the final number of articles considered was
143. Figure 1 shows the geographical distribution of thermal comfort studies in educational
buildings, while Figure 2 shows the increase in thermal comfort studies in educational
buildings over time.

Sustainability 2021, 13, x FOR PEER REVIEW 3 of 28 
 

of single researchers, rather than adopting a coordinated effort of predetermined direc-
tions to develop consistent solutions and guidelines. There is then the need for a collection, 
a rationalised classification, and analysis of these studies to inspect the present state, aimed 
at identifying the current issues and to guide future research towards solutions to such 
problems. This paper aims at filling this gap, highlighting the current issues in thermal 
comfort studies, and proposing new directions for research with the purpose of integrating 
the interactions between humans and the environment. 

2. Methods 
2.1. Search Strategy 

The literature search was performed on the electronic databases Scopus, ScienceDi-
rect, Google Scholar, and Researchgate in the period from March to November 2020. The 
search keywords used in the databases were {“thermal comfort”} AND {“classroom” OR 
“class” OR “educational buildings”}, using an integrated search in the title, keywords, and 
abstract of the papers. Moreover, the selected references were analysed individually to ex-
tract relevant information. The following inclusion criteria were selected: (i) original peer-
reviewed articles; (ii) field studies investigating thermal comfort and related aspects of IEQ 
in educational buildings; (iii) full text published in English. Exclusion criteria were: (i) 
studies not focused on building engineering (e.g., articles focused on physiological or psy-
chological aspects only); (ii) articles investigating energy consumptions only; (iii) simula-
tion studies which did not include field measurements; (iv) books, book chapters, and con-
ference reviews. Review articles were inspected, but not included in the classification of 
the studies in educational buildings. 

Thanks to the possibility to analyse the number of resulting articles, Scopus was used 
as the primary database to continue this review. From the initial search using the selected 
keywords, 958 documents were extracted, and following removal of the ones without an 
English full-text, 916 articles remained. Of these, 445 were research articles, 409 conference 
papers, 27 were reviews, 18 book chapters, 2 books, and 15 conference reviews. In total, 
854 papers (research and conference articles) were then analysed, as well as the 27 review 
articles. From the title and abstract inspection, the final number of articles considered was 
143. Figure 1 shows the geographical distribution of thermal comfort studies in educational 
buildings, while Figure 2 shows the increase in thermal comfort studies in educational 
buildings over time. 

 
Figure 1. Geographical distribution of the studies on thermal comfort in educational buildings over time. 

  

Figure 1. Geographical distribution of the studies on thermal comfort in educational buildings over time.



Sustainability 2021, 13, 10315 4 of 28
Sustainability 2021, 13, x FOR PEER REVIEW 4 of 28 
 

 

Figure 2. Normalized number of studies (N) on thermal comfort in educational buildings. The nor-
malization is done with respect to the total number (143) of considered publications. 

2.2. Data Extraction and Analysis 
Data were extracted from the selected articles, analysing the full text. For the discus-

sion, the year, location of the study, educational stage, climate zone, model used to deter-
mine thermal comfort, building’s operation mode, and period of the survey were derived, 
when available. These characteristics were selected because they can possibly explain in-
dividual differences in thermal perception. From the analysis of the existing literature, the 
current issues were identified, and new directions of research were proposed (Figure 3). 

 
Figure 3. Methodology and supporting material used to define the directions for future research. 

3. Classification of the Studies 
By conducting a detailed analysis of the obtained results, it was possible to identify 

the main categories in which the studies, currently present in the literature, can be 
grouped. The investigation was based on manual grouping, which was conducted after an 
accurate inspection of the full text of the selected papers. It resulted that there were four 
main confounding parameters often identified by researchers as the main causes of differ-
ences in thermal sensations among students: the educational stage, climate zone, the model 
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normalization is done with respect to the total number (143) of considered publications.

2.2. Data Extraction and Analysis

Data were extracted from the selected articles, analysing the full text. For the dis-
cussion, the year, location of the study, educational stage, climate zone, model used to
determine thermal comfort, building’s operation mode, and period of the survey were
derived, when available. These characteristics were selected because they can possibly
explain individual differences in thermal perception. From the analysis of the existing
literature, the current issues were identified, and new directions of research were proposed
(Figure 3).
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3. Classification of the Studies

By conducting a detailed analysis of the obtained results, it was possible to identify
the main categories in which the studies, currently present in the literature, can be grouped.
The investigation was based on manual grouping, which was conducted after an accurate
inspection of the full text of the selected papers. It resulted that there were four main
confounding parameters often identified by researchers as the main causes of differences
in thermal sensations among students: the educational stage, climate zone, the model
adopted, and operation mode. Table 1 shows the variability of comfort temperatures
between the different categories found in the analysed studies. The influence of these
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confounding parameters on the thermal perception and the results of the analysis are
discussed below.

Table 1. Variability of comfort temperatures between the different categories found in the analysed
studies. The number of papers considered are reported in the parenthesis. Data extracted from [47].

Characteristics
Comfort Temperature

Min (◦C) Max (◦C)

Educational stage

Kindergarten (4) 20.7 26.0

Primary school (40) 14.7 30

Secondary school (39) 14.7 35

University (60) 15.5 31.5

Climate zone

Group A (21) 20.0 31.0

Group B (13) 14.7 25.0

Group C (97) 14.7 35.0

Group D (12) 16.0 26.0

Model adopted

Rational (38) 15.0 30.7

Adaptive (23) 14.7 29.2

Both (34) 16.0 31.0

Others (48) 14.7 35.0

Operation mode
Air conditioned (38) 14.7 26.9

Naturally ventilated (51) 14.7 31.5

Mixed mode (45) 15.7 30.0

3.1. Educational Stage

The educational stage is the most important aspect that should be evaluated when
considering thermal comfort in educational buildings. At different educational stages,
students present various ages, diverse possibilities to adapt, and carry out different ac-
tivities, which can influence their metabolic rate and their capability to respond correctly
to questionnaires regarding thermal sensation and preference. Indeed, the age can be
a crucial factor for the perception of the thermal environment, also due to the different
physiological and psychological characteristics of the pupils. Furthermore, the presence
of outdoor activities and stationary or transient conditions, which are determined by the
duration of lectures, is also a function of the educational stage. Finally, the density of the
classroom can also affect the perception of the thermal environment. Most studies were
carried out in universities, followed by secondary and primary schools, and kindergartens
(Figure 4).

The evaluation of thermal comfort in kindergartens is a recent topic, developed for
the first time in 2012 [48], and only a few works can be found in the literature. The
focus of previous studies was mostly on the development of new comfort models for the
children, both rational [49] and adaptive [50]. Since children at that age do not present with
reading or writing skills yet, researchers also aimed at creating a specific questionnaire
for thermal comfort assessment [51]. Studies indicated that pre-school children present
comfort temperatures 0.5 ◦C lower in summer and 3.3 ◦C in winter [52].

In primary schools, the first work on thermal comfort dates back to 1975 [19], which
estimated thermal neutrality from over 6000 assessments obtained. At this educational
stage, in most cases children prefer cooler environments, showing that the PMV model
underestimates mean thermal sensation up to 1.5 scale point [53], and children present
comfort temperatures about 4 ◦C to 2 ◦C lower than the predictions from rational and
adaptive models, respectively [54]. It is also important to highlight the differences between
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children’s and teachers’ thermal sensation [55], as it is more difficult to reach thermal
comfort for pupils. Indeed, children present with a lower comfort temperature [56], at
least 3 ◦C lower than adults during cooling seasons [57], and they are also less sensitive
to temperature changes than adults [11]. This different perception can be attributed
to children’s higher metabolic rate, as their activities involve several games including
physical exercise, as well as their limited possibility to adapt [52], the influence of the
characteristics of their home environments, and outdoor playing, which may alter their
thermal perception [47]. It was also demonstrated that social background and behaviour
can influence children’s thermal preference [58]. Furthermore, thermal comfort models
seem to predict inaccurately the thermal sensation of pupils, as the PMV index usually
overestimates the perception of scholars, while the adaptive model predicts higher comfort
temperatures than the actual ones [59–61].
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In secondary schools, students can give more reliable information on their thermal
state and preference, therefore it is easier for researchers to compare their subjective
response to the objective analysis. At this educational stage, several studies showed
differences in thermal sensations and neutral temperatures despite the climate, season,
and operation modes being the same [17], which can be a specific problem when trying
to set the comfort temperatures for the achievement of students’ wellbeing. For example,
children preferred cooler environments than adults [62–64] even in the tropics [65], and
thermal preference changed during summer months [66]. Moreover, students generally
accepted cool thermal sensations faster than warm thermal sensations [67]. In the past,
more emphasis has been given to the importance of energy savings rather than learning
conditions [68,69], therefore there are gaps in the literature considering the improvement
of students’ performance in relation to the indoor environmental conditions. For air-
conditioned buildings, there is evidence that HVAC systems do not always enhance comfort,
but they may also be a cause of global and local thermal discomfort [70].

In universities, students have a greater possibility to adapt, and they may be in
transient conditions since the duration of the lectures is shorter than at other educational
stages. However, even though Fanger’s theory was based on experiments carried out on
university students, researchers found some divergencies between the predicted thermal
sensation obtained with PMV and the real thermal sensation from questionnaires. This
can be attributed to several problems related to students’ possibility to adapt, adjusting
their clothing [24,38,71], or controlling the environment [38,71,72]. Even psychological
adaptation can play a fundamental role in adapting to the thermal environment [24].
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Furthermore, students may be in transient conditions, as the time they remain in the
classroom is limited and they often move outdoors. Differences in neutral temperatures
were found in laboratories and classrooms [73,74], in different seasons [23,75,76], and due
to gender differences [77].

3.2. Climate Zone

The classification per climate zone is relevant, since different climatic conditions can
influence the thermal perception and preference of students due to adaptive processes.
Considering that thermal history can affect students’ thermal comfort [78], the classification
per climate zone is relevant in the perspective of improving environmental conditions and
reducing energy consumptions in the global warming era. Indeed, the current challenge for
building designers is to provide low-energy buildings while enhancing thermal comfort,
especially under warmer conditions caused by climate change [79]. According to the
Köppen–Geiger climate classification [80], there are five different climate groups (from A to
E), divided according to the seasonal precipitation and temperature patterns. The climate
zone can influence students’ possibility to acclimatise, influences the indoor environment
from the outdoor conditions, but also affects the thermal insulation of the clothing worn by
students. Most studies have been carried out in the climate Group C, as can be noticed in
Figure 5.
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Group A includes the tropical climates and about 15% of the studies (22 studies)
were carried out in this climate, mostly in naturally ventilated classrooms, applying both
rational and adaptive models (Figure 5). Studies were carried out in India, Brazil, Indonesia,
Malaysia, Singapore, Nigeria, USA, and Ghana, as reported in Appendix A. In Group
A, the range of comfort temperature varied between 20.0 ◦C and 31.0 ◦C, indicating
large differences in the same climate zones [17], which makes the comparison of neutral
temperatures difficult. In Group A, students had a higher heat tolerance and they adapted
to the thermal environment, while the temperatures largely exceeded the comfort range
given by the standards [17]. These facts are particularly relevant, as they can have a
consistent impact on energy conservation strategies, although some studies show that in
the past twenty years the comfort temperature has decreased due to the increasing use of
air conditioners [81].

Group B includes dry (arid and semi-arid), hot, and cold climates. In this climate zone,
only 9% (13 studies) of the studies were carried out. Thermal comfort was investigated
during the whole year and used both rational and adaptive models (Figure 5). Studies were
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carried out in Jordan, Cyprus, Chile, Iran, China, Kuwait, and Saudi Arabia (Appendix A).
In Group B, comfort temperature varied between 14.7 ◦C and 25.0 ◦C, indicating less of a
difference than in Group A [17]. Nevertheless, these values also exceed the comfort range
given by standards, probably due to adaptation.

Group C includes temperate climates and comprises various types of climates, there-
fore temperature variations and adaptability within it can be large. Most studies were
carried out in this group (69%, 99 studies) (Figure 5), and included investigations in several
countries (Appendix A). Studies were carried out in all the seasons in naturally ventilated
and air-conditioned buildings, using both adaptive and rational models (Figure 5). The
first studies were carried out in the UK [66,82], which also presents the highest number
of investigations along with China and Italy. The comfort temperatures varied between
14.7 ◦C and 35.0 ◦C [17]. This variation is probably because in Group C there is a wide
range of climates, therefore students are exposed to various weather conditions. In this
climate zone, students showed a great capability to adapt, especially the ones exposed to
wider climate variations [83].

Group D includes continental climates, and limited research has been performed in
this climate zone (8%, 12 studies). Studies were conducted in naturally ventilated and air-
conditioned buildings during all the seasons using rational and adaptive models (Figure 5).
They were carried out in China, Korea, Romania, Sweden, Finland, Turkey, and Nepal
(Appendix A). The comfort temperature ranged between 16.0 ◦C and 26.0 ◦C [17], showing
a large variability in students’ preferences.

Group E includes polar and arctic climates, with an average temperature below 10 ◦C.
No study on thermal comfort in educational buildings was found for this climate zone.

3.3. Model Adopted

The model adopted to analyse thermal comfort in educational buildings is relevant, as
it can influence the predicted thermal sensation. Studies were carried out using the rational
model (27%, 38 studies), adaptive model (16%, 23 studies) separately or together (24%,
34 studies), or other indicators (33%, 48 studies) (Figure 6). Indeed, different models can
lead to diverse conclusions on the thermal state of students; therefore, it is fundamental to
choose the model that is the closest to their real thermal sensation, according to their diverse
characteristics and needs. Studies showed that none of the models accurately predict the
thermal sensation of students. Rational and adaptive models should be combined to
improve the prediction of the thermal environment, as they are complementary and not
contradictory [18].

The rational model is generally applicable to air-conditioned spaces where occupants
are in steady-state conditions with limited possibility to adapt. However, these conditions
do not always occur in educational buildings, which leads to an overestimation or underes-
timation of the thermal sensation. Furthermore, the rational model is often incompatible
in temperate and tropical climates [17]. To overcome these problems, corrections of PMV
index, such as ePMV [63,67] or aPMV [84] have been provided and used by researchers to
assess the thermal environment in educational buildings (Appendix A). Even though this
model seems to be, in most cases, too inaccurate to predict thermal comfort in educational
buildings, it is still widely used by researchers. However, it should be noted that the
reliability of the PMV index largely depends on the precision of the assessment input
parameters [85], which must be carefully evaluated to avoid misleading results.

In educational buildings, students often have adaptive opportunities. Most studies
reported higher comfort temperatures than the ones predicted by the adaptive model,
while lower comfort temperatures were found in secondary schools and compatible results
in universities [17]. These results are consistent with the assumption of the adaptive model
that considers occupants as able to modify their environment to achieve thermal comfort.
This type of adaptation is typical of university students, which show comfort temperatures
in line with the ones predicted by the adaptive model [17].
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3.4. Operation Mode

The operation mode of the classroom can also influence the thermal perception of the
students, as they experience diverse thermal environments in them (i.e., steady-state in air-
conditioned, transient in free-running buildings). The operation mode influences the indoor
environmental conditions also as a function of the outdoor climate, and different comfort
temperatures can be found in relation to the operation mode. Furthermore, it defines the
adaptation of the students and their control of the thermal environment, which can regulate
their thermal perception. Most studies were carried out in naturally ventilated (NV)
classrooms, followed by mixed-mode (MM) and air-conditioned (AC) schools (Figure 7).

In naturally ventilated buildings, the possibility to adapt is limited to the open-
ing/closing of doors and windows. Several studies on primary schools were performed in
naturally ventilated classrooms, and less in secondary schools, universities, and kinder-
gartens (Figure 7). In climates A and B, natural ventilation is often used as the operation
mode of classrooms, and less in climates C and D, as the colder climates need the presence
of HVAC systems to achieve comfort in buildings (Figure 7). In most studies, the adaptive
and rational models were both used, while when considered separately, the adaptive model
was used in more cases than the rational (Figure 7). In particular, in hot-humid climates, ob-
served comfort temperatures in naturally ventilated classrooms were found to be about 1.7
◦C lower than the ASHRAE-recommended value [86], showing the importance of carefully
evaluating comfort temperature also for energy savings. Furthermore, in naturally venti-
lated classrooms, students expressed comfort even when the environmental parameters
were out of the standard’s comfort zone [67,87]. These results are consistent with the adap-
tive hypothesis [13], which implies that humans can adapt behaviourally, physiologically,
and psychologically to the environmental conditions to which they are subjected.

About 30% of the studies (38 papers) were performed in air-conditioned classrooms
(Figure 7), where HVAC systems were switched on during the investigation period. The
highest number of studies in air-conditioned classrooms was in universities, followed by
secondary, primary schools, and kindergartens (Figure 7). The heating system was switched
on during the winter in temperate climates and longer in colder climates (Group D), while
the increasing use of cooling systems during summer, especially in warmer climates,
could be detected. Climate Groups C and D were often investigating air-conditioned
classrooms, and researchers usually used the rational model to assess thermal comfort.
Only a few studies used the adaptive model as well as both models (Figure 7), even if
adaptive behaviours were observed in air-conditioned schools [87]. Field studies in air-
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conditioned schools were also carried out to design energy efficient classrooms [88], with
evident implications on students’ wellbeing and energy consumptions.
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Studies in mixed-mode buildings were often investigating the thermal environment
during several seasons (Appendix A). Most studies in mixed-mode classrooms were equally
distributed in secondary, primary schools, and universities (Figure 7). Climate Group C was
the most investigated and both rational and adaptive models were used, both separately
or together (Figure 7). This operation mode should be carefully evaluated, as the comfort
temperatures and needs of the occupants vary according to the season of investigation
and the operation mode of the classroom. Differences in students’ performance between
conditioned and naturally ventilated classrooms were also evaluated [89], but no significant
difference was found. In this direction, studies comparing air-conditioned and naturally
ventilated spaces did not show different neutral temperatures, preferred temperatures, and
thermal acceptability [75].

4. Current Issues

In this section, the complete selection of the studies was analysed to identify the most
common issues that are present in the evaluation of thermal comfort in classrooms, which
are reported in the following paragraphs.

4.1. Evaluation of Global Thermal Comfort

Most of the investigations on global thermal comfort have been focused on field
measurements only, both objective and subjective, while few studies compared on-site
measurements with simulations. There is no agreement on how global thermal comfort
should be assessed, as different models and indices to assess thermal comfort were ap-
plied (Figure 8). Among them, the most common were the rational and the adaptive
models (Appendix A). Some researchers were focused on the assessment of air temperature
and relative humidity only in Portuguese school buildings [68,69], evaluating the impact
of refurbishments on the indoor environment [69] and also in relation to other aspects
of IEQ [2,34]. Indices such as effective temperature ET [19], new effective temperature
ET* [73,77], corrected effective temperature CET [19], tropical summer index TSI [90], or
the PMV correction for naturally ventilated buildings [91] were also calculated. The correc-
tions of PMV index, ePMV [63,67] and aPMV [84], were also applied. In several studies,
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the operative temperature was assessed, and the neutral temperature was derived from
the subjective responses of the students [75,92,93]. It was deduced that pupils’ thermal
sensation is higher than adults [59], and that their thermal sensation is not related to
indoor temperature only, but also to their home environment [58]. Furthermore, thermal
sensation changed during the class hour and adaptation occurred after about 20 min after
entering the classroom [94]. In some cases, the outdoor environmental conditions were
considered [49,58,95], as they can also influence the perception of the indoor environment.
The main purpose of these studies was to assess the environmental conditions in edu-
cational buildings [51]. For this reason, new algorithms and models were provided for
scholars [49,96,97], and adaptive comfort equations obtained from regression analysis were
developed for children [50,61] to assess the comfort temperatures in different educational
stages and all classrooms [47]. Ranges of comfort temperatures were also provided for
classrooms, considering different educational stages and climate zones [17,47]. To consider
the applicability and the differences between predictive models of thermal comfort, some
researchers performed a comparison between them [63]. However, it lacks agreement
among researchers in regards to the model that should be used to evaluate global thermal
comfort, which is one of the current issues that should be faced.

4.2. Evaluation of Local Discomfort

Recently, the assessment of local discomfort has become increasingly relevant, as it
can have a great influence on people’s wellbeing, but also on energy consumption. How-
ever, it lacks sufficient scientific evidence regarding the importance of local discomfort
on students’ wellbeing. The main causes of local discomfort found in classrooms were
draught risk [21,31,98], vertical air temperature difference [21,99,100], warm and cool
floors [21,99,101], and radiant asymmetry [21,25,98,99,101]. Studies were performed us-
ing the UCB Berkeley model for thermal comfort [26], questionnaires including specific
questions on local discomfort [21] and its causes [25], and in some cases, occupants were
asked to report the part of the body that was subjected to local discomfort [22]. The pur-
pose of these studies varies from evaluating the percentage of dissatisfied students due
to local discomfort [98] and the difference between global and local thermal comfort [22],
to investigating the relation between local thermal comfort and productivity [25]. Even if
a growing interest in this topic can be detected, only a few studies were carried out, and
broader knowledge on the issue of local discomfort is needed.

4.3. Energy Consumptions and Thermal Comfort

The impact of thermal comfort on energy consumption is a debated topic that was
faced by researchers in different ways. The evaluation of energy consumption has been car-
ried out through on-site measurements, simulations, or in climate chambers approximating
the conditions of the typical classrooms. In some cases, researchers investigated the direct
relationship between energy consumption and thermal comfort [22,36,102]. Energy con-
sumption was also compared to thermal comfort in association with indoor air quality [103]
and visual comfort [104,105]. The concerns about energy savings were compared to ven-
tilation strategies [95,106], HVAC systems operation, and architectural features [107,108].
Researchers also compared refurbished and non-refurbished educational buildings, which
resulted in a reduction of consumption for renovated schools [93,102,109]. An investiga-
tion into the influence of shading devices on indoor environmental quality and energy
consumption was also performed [110]. Finally, an algorithm to improve thermal comfort
and indoor air quality and reduce consumption, using the least amount of energy from
air conditioning and ventilation fans, was developed [111]. This analysis showed the im-
portance of combining the issue of consumption with thermal comfort studies to enhance
students’ wellbeing and reduce energy requirements. However, it is still difficult to propose
solutions that reduce energy consumption without compromising thermal comfort for
children and adults.
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4.4. HVAC Systems and Thermal Comfort

The evaluation of thermal comfort is fundamental for heating, ventilation, and air
conditioning system installation and settings, and has become increasingly important in
recent years [17]. Regarding heating and cooling systems, studies have been carried out to
compare traditional and innovative systems in terms of thermal comfort improvement [112].
Other investigations have been carried out to design better conditioning systems in edu-
cational buildings [88]. Through assessing comfort temperatures, it is possible to reduce
the need for heating and cooling systems and maximise the energy savings without im-
pairing thermal comfort [113]. Concerning ventilation strategies, their impact on thermal
comfort and IAQ was investigated [27]; as well as the effectiveness of different types of
ventilation, such as natural, hybrid ventilation, and air conditioning [114]; the acceptance
of thermal conditions; and energy use considering different ventilation strategies and
exhaust configurations [106]. Thermal comfort was also analysed considering stratum
ventilation using a pulsating air supply [115], and in relation to gender differences [116],
showing an improved thermal comfort in comparison to a conventional constant air sup-
ply. Then, field studies were carried out to compare the conditions found in educational
buildings with the criteria in the standards [117]. Since ventilation systems often create
a non-uniformity into the environment due to the air distribution, researchers analysed
the possibility to improve comfort through managing these non-uniformities, considering
thermal preferences [118]. The investigations of the HVAC systems’ impact on thermal
comfort are very heterogeneous because different types of conditioning systems exist. To
provide guidelines for their design and installation, it is necessary to understand their
impact on students’ wellbeing, while being aware of their individual needs, and not only
focusing on energy consumption.

4.5. Indoor Air Quality and Thermal Comfort

Indoor air quality (IAQ) has been often investigated together with thermal comfort,
as they are important aspects to ensure health and wellbeing in classrooms. CO2 concen-
tration was the parameter measured most frequently [68,119] and was compared with the
threshold limit values given by standards. In some cases, the CO2 concentration was found
to be below the threshold values given by standards [117,120,121], and, in other cases, no
correlation was found between CO2 concentration and number of people [94]. Instead,
in naturally ventilated buildings, CO2 concentration was found to be very high when
windows were closed [122]. No correlation was found in classrooms between CO2 values
and students’ feelings of tiredness [59]. From CO2 concentration decay in classrooms, the
air change per hour and the ventilation effectiveness in these spaces were determined [123].
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From a comparison between refurbished and non-refurbished buildings, it was seen that
the renovated constructions improved thermal comfort, but increased the CO2 concentra-
tion, and therefore reduced indoor air quality [109]. The impact of different ventilation
modes on thermal comfort and CO2 levels was also evaluated [27,69,124], as well as the
relation between IAQ and thermal comfort [2]. In some cases, the concentration of other
pollutants, such as VOCs, NO2, and CO was measured and correlated to the outdoor
conditions [125–127]. The subjective perception of air quality was correlated to the envi-
ronmental conditions, which showed that the perceived environmental quality was highly
correlated to parameters, such as air temperature and ventilation rates [6]. There is a need
to understand the relationship between indoor air quality and thermal comfort perception,
and to understand how to improve them without increasing energy consumption.

4.6. Indoor Envrionmental Quality

Indoor environmental quality (IEQ), which includes thermal comfort, air quality, vi-
sual, and acoustic quality, can affect students’ health, comfort, and productivity. Indeed,
research is increasingly focusing on multi-domain approaches to indoor environmental
perception and behaviour [128,129], inspecting the various aspects of IEQ on people’s
comfort and satisfaction [130]. The evaluation of IEQ through objective and subjective
measurements has been often carried out, while also considering the psychological and
physiological impact on occupants’ comfort [4,33], and pupils’ performance [131] or symp-
tomatology [132]. Indeed, the perception of the environment includes the four aspects
of IEQ and can have an impact on students’ health and learning abilities [41,70,131], but
also on their wellbeing [6,32]. In some cases, the subjective assessment was performed
through questionnaires to evaluate the perception, preferences, and needs regarding IEQ in
classrooms [133], but also statistical surveys have been carried out [134]. Thermal comfort
was frequently associated with lighting quality, considering different configurations of
architectural characteristics [32,110] and the impact on energy consumption [105,108]. Since
thermal perception is strongly related to acoustic, visual, and air quality, researchers should
not focus on the evaluation of thermal comfort only, but on all the aspects of IEQ.

4.7. Architectural Features and Thermal Comfort

Thermal comfort in buildings is closely related to their architectural features, including
dimensions, window-wall ratio, presence of shading systems, building orientation, articu-
lation of classrooms, and the properties of the building envelope [17]. Most researchers
considered classrooms as uniform spaces, however, due to solar radiation or to the position
of ventilation systems, classrooms are usually non-uniform environments, and therefore
thermal discomfort may occur locally. The influence of buildings’ envelope on thermal
comfort was evaluated [110], considering the effect of different types of insulated roofs
(e.g., PCM, composite) on the possibility of overheating of classrooms [135]. In addition,
dynamic characteristics of the envelope were evaluated and through the application of films
that allow the control of solar radiation [136,137]. In some studies, researchers assessed the
improved conditions of a renovation [138] or compared different types of school building
constructions (light weight and medium weight) [60]. The relation between classroom
characteristics and thermal comfort was also investigated [2,139], including the influence
of a façade design to prevent overheating and improve daylight requirements [140], and
the use of natural ventilation and ceiling fans to improve comfort [141]. The influence of
shading systems and window configuration, including the glass ratio and glass properties,
on occupants’ comfort and energy demands were also assessed [97,142]. Additionally,
studies were performed to allow building designers to choose the best configurations to
improve comfort and reduce energy demands [108], in addition to considering the influ-
ence of the local climate on the architectural project [107]. Finally, the effect of building
design on learning rate and perception was investigated in some works [143,144]. Despite
its importance, studies on thermal comfort involving these aspects are not frequent and
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should be increased to provide guidance to building designers, aimed at improving indoor
conditions and reducing consumptions.

4.8. Health and Productivity and Thermal Comfort

In the past, students’ productivity has been inspected in regard to air quality [27]
through the analysis of their performance in relation to different aspects of schoolwork
(numerical or language-based) under different ventilation rates [145], or through pro-
viding them diverse tests measuring arithmetic concentration, performance speed, task
performance accuracy, and visual memory [124]. Students’ learning efficiency was also
evaluated in relation to the characteristics of the shading systems [142] and increased
classroom temperature [146]. Scholars’ performance has been related to all the aspects of
indoor environmental quality [41,131,147] and to the thermal environment only [148,149].
The influence of IEQ on health and productivity has been demonstrated as a function of
Fanger’s PMV and personal factors [25]. Researchers showed that students’ health and
productivity depend on buildings’ features [2,143]. Thermal sensation as well as IEQ have
been correlated to health-related issues that can occur as students pass a considerable
amount of time in educational buildings [6,42,150]. It must be noted that the assessment of
the influence of the thermal environment on health and productivity is not easy, as several
variables can influence students’ performance and wellbeing. Researchers have tried to
determine students’ performance through questionnaires, in which they were self-reporting
their productivity [41], or through the measurement of speed errors [149]. Furthermore,
the effect of the microclimate in classrooms was assessed through the measurement of
cardiac autonomic control (ECG) and cognitive performances of the students [151]. This
issue remains a very interesting and debated topic, as it still lacks a generally accepted
scientific method to assess the influence of the thermal environment on students’ health
and productivity.

5. Conclusions and Directions for Future Research

The investigation of the current literature showed that researchers focused on different
issues, adopting diverse models and indices to investigate thermal comfort in classrooms.
However, to provide healthy and human-centred buildings, it is important to focus on
students’ individual needs and preferences, and not only on single dose-response relation-
ships that have been established for the average adult. It is also clear that the focus should
be on preventing negative effects as well as creating positive effects for human health.
Indeed, even if the environmental conditions comply with guidelines, in several cases the
prolonged stay indoors is not healthy [152]. An integrated approach that considers the pos-
itive and negative effects of indoor exposure is therefore needed, including the individual
preferences and needs of the occupants [152]. To achieve this integrated approach, several
aspects must be accounted for (Figure 9), while considering the individual differences that
may be present in relation to the diverse educational stages, climate zone, model adopted,
and operation mode.

From this analysis, it was possible to outline the current issues and delineate the
directions for future research. However, it is important to note the limitations that the
present study may have. The manual grouping of the confounding parameters, which was
useful for the direct control of the information contained in the scientific literature, could
be combined with statistic methods to test other possible classifications (e.g., country in
which the study was carried out, period of investigation, year). Furthermore, the grouping
per climate zone may present some limitations, as they include different countries that
are characterised by diverse sociocultural backgrounds, and therefore the variability of
comfort temperature can be very high. Even the different educational systems might affect
the opportunities to adapt and therefore the comfort temperature. These considerations
highlight that it is difficult to generalise indications regarding thermal comfort in educa-
tional buildings. On the contrary, from this review, it emerged the necessity of studies
aiming at meeting the needs of the students, in order to provide human-centred buildings.
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The evaluation of global thermal comfort was carried out using different models and
indices, but, in several cases, individual needs were not analysed. Given the variety of
indices that have been used for comfort assessment, it is important to define a model for
the evaluation of global thermal comfort in classrooms, which should take into account the
individual needs and preferences of occupants.

The same concerns are related to local thermal discomfort, even if few studies were
carried out on this topic. From this review it can be concluded that local discomfort is an
important issue that should be assessed not only to inspect students’ satisfaction but also to
investigate the reasons for the higher productivity of students located in certain positions
in the classrooms, to provide solutions that are more individual-centred.

Regarding energy demands, the literature showed that high consumptions are often
connected to the characteristics of the building’s envelope and to the improper control
of HVAC systems. Students’ dissatisfaction was often related to warm sensations during
winter and cold sensations in summer, due to the extensive use of HVAC systems [47].
Since thermal comfort is also a function of the ventilation strategy, building designers
need to consider the configurations that minimise consumptions and improve occupants’
wellbeing. The aim is then to provide comfort in classrooms and reduce energy demands
by looking at occupants’ needs and preferences [153].

In this direction, HVAC systems can have a great impact on people’s comfort and
energy consumptions. Studies including different ventilation regimes are necessary. More-
over, in order to inspect people’s needs, studies on personal comfort systems (PCS), which
operate at the individual level are needed.

However, thermal comfort evaluation should not overlook the interaction with other
environmental aspects since they all contribute to the human perception of the environment.
The integration of IAQ in thermal comfort studies is necessary and should include objective
and subjective measurements, working towards human-centred buildings. There is a need
to consider the differences between perceived and measured IAQ, combined with its effect
on thermal comfort.

Moreover, future studies should focus on the healing power of indoor environments
that involve all the IEQ aspects, including thermal comfort, air, visual, and acoustic qualities.
Indeed, people are subjected to a combination of them, and only through the analysis of
their combined effect is it possible to understand humans’ perception.
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This review showed the need for research in order to understand the relation between
thermal comfort and architectural features, to improve indoor environmental conditions
and wellbeing in classrooms. This is necessary to guide building designers, which should
be aware of the importance of occupants’ conditions, as architectural features can influ-
ence the perception both at human (i.e., influence of personal control on perception) and
environmental (i.e., providing uniform/non-uniform environments) levels.

Furthermore, as the indoor environment can affect students’ health and productivity, it
is fundamental to investigate it not as a single dose-response system only, but include inter-
actions at both human and environmental levels to define a methodology for understanding
the impact of the indoor environment on them.

All these issues showed that thermal comfort in educational buildings is still a very
debated topic. In this way, there is the need to analyse them, considering their effect on
individuals and their interactions with the environment. After the COVID-19 pandemic,
the importance of ensuring healthy environments became even more evident, also due to
the increasing amount of time that people spend indoors. Indeed, the pandemic period
revealed the difficulties in providing sufficient indoor air quality, which should be enhanced
without compromising thermal comfort and energy consumptions. There is the necessity to
adapt educational buildings to the pandemic and post-pandemic periods, which should be
considered together with climate change issues and needs identified before the pandemic.

This review, which critically analyses the studies according to different confounding
parameters, highlighted the current issues and defined a way forward in research, repre-
sented a contribution in this direction, and will guide researchers and building designers
towards a human-centred approach, which is currently lacking.
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Appendix A. Studies on Thermal Comfort in Educational Buildings

In this Appendix, the analysis of the 143 selected studies is reported. Table A1 shows
the studies on thermal comfort in educational buildings extracted from the literature,
including the relevant information necessary for the analysis:

- Author(s).
- Year of publication.
- Location of the study (country).
- Educational stage, which comprises kindergartens, primary, secondary schools,

and universities.
- Climate zone, which is analysed according to the Köppen–Geiger classification (where

A: tropical climates; B: dry (arid and semi-arid) hot and cold climates; C: temperate
climates; D: continental climates; E: polar and arctic climates).

- Model adopted, which includes rational, adaptive, both (rational + adaptive), and
others (where other indices or models were adopted, as described in Section 4).

- Operation mode, which consists of naturally ventilated (NV), air-conditioned (AC),
and mixed-mode (MM) buildings.

- Period of the survey, which expresses the season of measurements.
- Reference.
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Table A1. Studies on thermal comfort in educational buildings extracted from the literature.

Author(s) Year Location Educational Stage Climate Zone Model Adopted Operation Mode Time of Survey References

Auliciems A. 1969 UK Secondary school C Others AC Autumn–Spring–Winter [82]
Auliciems A. 1972 UK Secondary school C Others AC Autumn–Spring–Winter [148]

Auliciems 1973 UK Secondary school C Others NV Spring–Summer [66]
Humphreys 1973 UK Secondary school C Others NV Spring–Summer [62]
Auliciems 1975 Australia Primary school C Others AC Autumn–Winter [19]

Humphreys 1977 UK Primary school C Others NV Summer [154]
Kwok et al. 1998 USA Secondary school A Both MM Autumn–Winter [155]
Kwok et al. 2003 Japan Secondary school C Adaptive MM Summer [87]
Wong et al. 2003 Singapore Secondary school A Rational NV Summer [67]

Krüger et al. 2004 Brazil University C Others NV Summer–Winter [34]
Hu et al. 2006 China University C Others MM Summer–Winter [73]

Hwang et al. 2006 Taiwan University C Rational MM Summer [77]
Corgnati et al. 2007 Italy University C Rational AC All seasons [29]
Wargocki et al. 2007 Denmark Secondary school C Others NV Summer [145]
Wargocki et al. 2007 Denmark Secondary school C Rational NV Summer [146]

Zhang et al. 2007 China University C Rational NV Spring [92]
Cheng et al. 2008 Taiwan University C Rational MM Autumn–Spring–Summer [75]

Theodosiou et al. 2008 Greece Primary school C Others MM Autumn–Spring–Winter [103]
Al-Rashidi et al. 2009 Kuwait Secondary school B Both AC - [63]

Buratti et al. 2009 Italy University C Both AC Spring–Winter [99]
Corgnati et al. 2009 Italy University C Both NV Autumn–Spring [98]

Hwang et al. 2009 Taiwan Primary +
Secondary school C Both NV Autumn–Winter [86]

Mumovic et al. 2009 UK Secondary school C Rational MM Winter [31]
Zeiler et al. 2009 Netherlands Primary school C Rational AC Spring–Winter [112]
Yao et al., 2010 China University C Both NV Spring [24]
Cao et al. 2011 China University D Rational AC Summer–Winter [76]
Jung et al. 2011 South Korea University C Both MM Autumn–Spring [156]
Liu et al. 2011 Japan University C Others MM Summer–Winter [123]

Al-Rashidi et al. 2012 Kuwait Primary school B Others MM Spring [27]
Conceicao et al. 2012 Portugal Kindergarten C Both MM Summer–Winter [49]
De Giuli et al. 2012 Italy Primary school C Adaptive NV Spring [4]

Lee et al. 2012 China University C Rational AC - [70]

Liang et al. 2012 Taiwan Primary
+Secondary school C Adaptive NV Autumn–Winter [97]
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Table A1. Cont.

Author(s) Year Location Educational Stage Climate Zone Model Adopted Operation Mode Time of Survey References

Maki et al. 2012 Japan University C Others AC Spring–Summer [104]
Puteh et al. 2012 Malaysia Secondary school A Others NV - [150]

Teli et al. 2012 UK Primary school C Both NV Spring–Summer [53]
Barbhuiya et al. 2013 UK University C Others AC Spring–Winter [95]

Barrett et al. 2013 UK Primary school C Others MM All seasons [151]

D’Ambrosio et al. 2013 Italy Primary +
Secondary C Rational NV Summer–Winter [21]

Fabbri et al. 2013 Italy Kindergarten C Rational - Autumn [50]
Pereira et al. 2013 Portugal Secondary school C Rational MM Spring–Winter [157]

Teli et al. 2013 UK Primary school C Others NV Spring–Summer [59]
Wargocki et al. 2013 Denmark Secondary school C Rational AC Summer [149]

Yang et al. 2013 USA University C Others AC Winter [144]
Baruah et al. 2014 India University C Rational NV Spring–Winter [91]

Choi et al. 2014 USA University C Others AC - [41]
De Giuli et al. 2014 Italy Primary school C Both MM Spring–Summer–Winter [33]

Gao et al. 2014 Denmark Primary school C Adaptive AC All seasons [42]
Katafygiotou et al. 2014 Cyprus Secondary school C Others - - [36]

Mishra et al. 2014 India University A Both NV Spring–Winter [72]
Mishra et al. 2014 India University A Both NV Spring–Winter [5]
Pereira et al. 2014 Portugal Secondary school C Rational NV Spring [158]

Serghides et al. 2014 Cyprus University C Rational AC Summer–Winter [105]
Teli et al. 2014 UK Primary school C Both NV Summer [60]

Turunen et al. 2014 Finland Primary school D Others AC Spring–Summer [6]
Wang et al. 2014 China University D Adaptive AC Spring–Winter [23]
Yun et al. 2014 Korea Kindergarten D Both NV Spring–Summer [48]

Almeida et al. 2015 Portugal Secondary school C Others MM Spring–Summer–Winter [68]
Almeida et al. 2015 Portugal Secondary school C Adaptive MM Spring [69]
Barrett et al. 2015 UK Secondary school C Others MM All seasons [147]

De Dear et al. 2015 Australia Secondary school C Both MM Summer [83]
Fong et al. 2015 China University C Rational AC - [106]

Huang et al. 2015 Taiwan Primary school C Adaptive NV Autumn–Spring–Summer [159]
Huang et al. 2015 Taiwan Primary school C Adaptive MM Autumn–Spring [114]
Mishra et al. 2015 India University A Rational MM Autumn–Summer [89]
Nam et al. 2015 Korea Kindergarten D Both AC Spring–Summer [51]
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Table A1. Cont.

Author(s) Year Location Educational Stage Climate Zone Model Adopted Operation Mode Time of Survey References

Nico et al. 2015 Italy University C Both NV - [160]

Almeida et al. 2016 Portugal
Primary +

Secondary +
University

C Both NV Spring [101]

Liu et al. 2016 China Secondary school B Rational NV Winter [161]
Vittal et al. 2016 India University A Both NV Winter [90]

Castilla et al. 2017 Spain University C Others - - [139]
Hadad et al. 2017 Iran Primary school B Both MM Autumn–Summer–Winter [55]

Martinez-Molina
et al. 2017 Spain Primary school C Rational MM Autumn–Winter [54]

Mishra et al. 2017 Netherlands University C Adaptive AC Spring [94]
Montazami et al. 2017 UK Primary school C Adaptive NV Summer [56]
Montazami et al. 2017 UK Primary school C Adaptive NV Summer [58]

Stazi et al. 2017 Italy Primary school C Adaptive AC Spring–Winter [162]
Teli et al. 2017 UK Primary school C Adaptive NV All seasons [61]

Trebilcock et al. 2017 Chile Primary school B Adaptive NV Summer–Winter [163]
Wang et al. 2017 China University D Both AC Autumn–Spring–Winter [164]
Zaki et al. 2017 Malaysia, Japan University A, C Both MM Winter–Spring [74]
Bajc et al. 2018 Serbia University C Rational MM Winter [25]

Bluyssen et al. 2018 Netherlands Primary school C Others MM Spring [2]
Fang et al. 2018 China University C Both AC Autumn–Summer [26]

Hamzah et al. 2018 Indonesia Secondary school A Rational NV Summer [65]
Kim et al. 2018 Australia Secondary school C Both MM Autumn [37]

Kumar et al. 2018 India University A Both NV Spring–Summer [71]
Singh et al. 2018 India University A Both NV Spring–Summer [38]

Aghniaey et al. 2019 USA University C Both AC Summer [113]
Ali et al. 2019 Jordan Secondary school B Both NV - [102]

Barbic et al. 2019 Italy University C Others AC - [151]
Bluyssen et al. 2019 Netherlands Primary school C Others MM Spring [165]
Branco et al. 2019 Portugal Primary school C Others MM All seasons [125]

Calama-González
et al. 2019 Spain Secondary school C Adaptive NV All seasons [110]

Campano et al. 2019 Spain Secondary school C Both MM Autumn–Summer–Winter [166]
Chen et al. 2019 Taiwan Primary school C Others NV Summer [142]
Chen et al. 2019 Taiwan University C Rational MM Spring [167]

Chitaru et al. 2019 Romania Secondary school D Rational NV Summer–Winter [122]
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Table A1. Cont.

Author(s) Year Location Educational Stage Climate Zone Model Adopted Operation Mode Time of Survey References

Colinart et al. 2019 France Secondary school C Others - All seasons [138]
Costa et al. 2019 Brazil University A Others MM Summer [107]

Fabozzi et al. 2019 Italy University C Both MM Summer [168]
Haddad et al. 2019 Iran Primary school B Adaptive NV Autumn–Spring–Winter [169]
Hamzah et al. 2019 Indonesia University A Others AC Spring [88]

Heracleous et al. 2019 Cyprus University B Adaptive MM Winter [170]
Huang et al. 2019 China University D Others AC Spring [171]

Jindal 2019 India Secondary school A Adaptive NV All seasons [96]
Jing et al. 2019 China University C Rational AC Winter [22]

Karyono et al. 2019 Indonesia University A Others AC - [81]
Korateng et al. 2019 Ghana University A Adaptive NV Spring–Summer [172]
Lawrence et al. 2019 UK University C Rational MM Summer–Winter [93]

Li et al. 2019 China University C Others AC Summer [116]
Liu et al. 2019 China University B Rational NV Winter [84]
Liu et al. 2019 China University C Rational NV Winter [173]

Monna et al. 2019 Palestina Secondary school C Others MM All seasons [174]
Ranjbar 2019 Turkey University D Others MM Summer–Winter [124]

Shen et al. 2019 China University C Rational NV Summer–Winter [175]
Shrestha et al. 2019 Nepal Secondary school D Adaptive NV Autumn [120]
Simanic et al. 2019 Sweden Primary school D Others MM All seasons [117]

Tian et al. 2019 China University C Rational AC Summer [115]
Toyinbo et al. 2019 Nigeria Primary school A Others NV - [127]

Vallarades et al. 2019 Taiwan University C Rational AC Summer [111]
Zhang et al. 2019 Netherlands Primary school C Others - Spring [14]
Zhang et al. 2019 Netherlands Primary school C Others - Spring [133]

Al-Khatri et al. 2020 Arabia Secondary school B Both AC Summer [176]
Barbosa et al. 2020 Portugal Secondary school C Others MM Spring–Winter [109]

Boutet et al. 2020 Argentina Primary +
Secondary school C Others - All seasons [32]

Campano-
Laborda

et al.
2020 Spain Secondary school C Others MM Spring–Winter [132]

da Silva Júnior
et al. 2020 Brazil Secondary school A Rational AC Summer [177]

Hamzah et al. 2020 Indonesia Primary school A Both NV Spring [178]
Heracleous et al. 2020 Cyprus Secondary school B Adaptive MM Summer–Winter [179]

Jiang et al. 2020 China Secondary school B Both MM Winter [119]
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Author(s) Year Location Educational Stage Climate Zone Model Adopted Operation Mode Time of Survey References

Jowkar et al. 2020 UK University C Others MM - [78]
Jowkar et al. 2020 UK University C Adaptive MM Autumn–Winter [180]
Jowkar et al. 2020 UK University C Others AC Autumn–Spring–Winter [181]
Korsavi et al. 2020 UK Primary school C Adaptive MM All seasons [182]

Liu et al. 2020 China University B Rational NV Autumn–Spring [183]
Liu et al. 2020 China University D Rational MM Autumn–Winter [100]

Munonye et al. 2020 Nigeria Primary school A Both NV Autumn–Spring [184]
Papadopoulos et. 2020 Greece University C Rational AC Winter [126]

Pistore et al. 2020 Italy Secondary school C Others - - [134]
Talarosha et al. 2020 Indonesia Primary school A Others NV Spring [121]

Wang et al. 2020 China Secondary school C Rational AC Summer [131]
Zhang et al. 2020 China University C Rational - - [118]
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