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Abstract: Bushfires have been a key concern for countries such as Australia for a long time. These
must be mitigated to eradicate the associated harmful effects on the climate and to have a sustainable
and healthy environment for wildlife. The current study investigates the 2019–2020 bushfires in New
South Wales (NSW) Australia. The bush fires are mapped using Geographical Information Systems
(GIS) and remote sensing, the hotpots are monitored, and damage is assessed. Further, an Unmanned
Aerial Vehicles (UAV)-based bushfire mitigation framework is presented where the bushfires can be
mapped and monitored instantly using UAV swarms. For the GIS and remote sensing, datasets of
the Australian Bureau of Meteorology and VIIRS fire data products are used, whereas the paths of
UAVs are optimized using the Particle Swarm Optimization (PSO) algorithm. The mapping results
of 2019–2020 NSW bushfires show that 50% of the national parks of NSW were impacted by the
fires, resulting in damage to 2.5 million hectares of land. The fires are highly clustered towards the
north and southeastern cities of NSW and its border region with Victoria. The hotspots are in the
Deua, Kosciu Sako, Wollemi, and Yengo National Parks. The current study is the first step towards
addressing a key issue of bushfire disasters, in the Australian context, that can be adopted by its Rural
Fire Service (RFS), before the next fire season, to instantly map, assess, and subsequently mitigate the
bushfire disasters. This will help move towards a smart and sustainable environment.

Keywords: bushfires; disaster management; spatiotemporal analysis; unmanned aerial vehicles;
UAV path planning; geographical information systems; New South Wales Australia

1. Introduction and Background

Disasters around the globe have been impacting the global economies since the dawn
of time. These disasters include earthquakes, floods, hurricanes, tornados, landslides,
tsunamis, bushfires, and others [1]. Disasters result in the loss of lives, properties, real estate,
and livestock, with serious consequences for the economic development of the affected
countries. Accordingly, critical infrastructure, communications, real estate, vegetation,
and forests are lost, in addition to the lives that hinder regional development. The reason
behind frequent and recurring fire seasons is attributed to climate change [2–4]. Climate
change, deforestation, growing urban development, and utilization of combustible sources
are increasing the global temperatures in countries around the world. This gives rise
to bushfires and extreme weather [5]. Consequently, the global fire seasons are getting
prolonged, and the daily temperatures are rising, which are predicted to worsen and be
more severe if climate change issues are not addressed [6,7]. In the era of demands for
global sustainability, it is imperative to address such climate issues.

Globally, bushfires and wildfires burn approx. 4% of the global land surface each
year, which amounts to approx. 30–46 million km2 of the global land surface [8]. However,
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due to its limited direct impact on individuals, it does not attract wider attention from
the media that is sometimes more focused on reporting only the tragic impacts of such
fires that directly impact human lives. As a result, these fires sometimes go unnoticed by
the world and are only discussed and addressed in the affected country. In the last two
decades, extreme bushfire incidents have been observed worldwide, causing immense
economic, social, and environmental loss. The trend of these fires is increasing, and in
recent years, this natural disaster has been experienced in the regions where the fires are
an unusual event. These include Brazil, Bolivia, Chile, Sweden, and the Arctic Circle [9,10].

In Australia, bushfires are a frequent phenomenon due to their geographic location,
varying temperatures, and other natural causes [5]. The deadliest fires in Australian
history occurred in 1851, 1939, 1983, 2009, and recently in 2019–2020. As per the report of
conversation.com.au, the costs of bushfires have passed $100 billion in Australia, making
it the costliest natural disaster [11]. Australia’s 2019–2020 bushfire season, known as the
Black Summer Fires, is regarded as one of the worst bushfire events in the country’s history
that had serious impacts on wildlife, forests, agricultural land, and public properties. It
impacted infrastructure in the states of New South Wales (NSW), Victoria, Queensland,
and others. The Black Saturday fires alone burnt 430,000 hectares of land. Overall, the
Black Summer fires burnt 10.7 million hectares, equivalent to an area of the size of South
Korea or Scotland and Wales combined.

Further, more than a billion wildlife animals have been killed, and over 2000 homes
were destroyed due to these bushfires [12]. The major causes of the 2019–2020 bushfires
included the extended drought conditions, which left dry bushlands and forests that acted
as extremely dry and spatially contiguous fuel spreading through forested regions of NSW
stretching from Queensland to Victoria. Several large-scale climate drivers contributed
to this dryness of 2019 summer, including a strong and long-lived positive Indian Ocean
Dipole and negative Southern Annular Mode. Further, the dryness of the landscape was
also influenced by reduced cool-season rainfall and other long-term climate trends. Due to
extreme fires, it was challenging to quickly detect and extinguish new ignitions in remote
areas where they started, resulting in delayed responses that fuelled the intensity of existing
fires and strained the resources. Further, the intensified and dense smoke, due to multiple
fire events, made it impossible to know where the fire edge was with precision because
line scanner aircraft could not fly, and alternate infra-red scanning was a low resolution
or unavailable. These issues made the firefighting more difficult, and the fires grew out
of control. The limited capacity to fight fires at night led to many fires taking big runs at
night and early mornings, causing havoc in the Australian states of NSW, Victoria, and
their border regions [13].

NSW is selected as the study area due to its history of bushfire events. It experiences
frequent fires due to its widespread vegetation and bushes that fuel draughts and extreme
temperatures. Table 1 shows some of the impactful fire seasons in NSW since 1965. In
1965, NSW observed 251,000 hectares of damage, damaging 59 homes, and causing three
fatalities [14]. In the 1984–85 fire season, much of the damage was experienced in the loss
of livestock and $40 million economic loss [15]. Similarly, in 2013, the Warrumbungle fires
impacted 53 houses, 118 buildings, and damaged agricultural infrastructure and buildings.
The 2017 Wentworth falls winter fires damaged an area of 52,000 hectares and destroyed
35 homes. The statistics signify that, though the human loss due to these fires in the past
had been low, the property and economic loss had been severe in each fire event. Further,
in the growing era of sustainability and wildlife protections, it is imperative to devise plans
that reduce the impacts of such fires on global climate, wildlife, and public properties.
Nevertheless, the latest fires associated with the Black Summer event had been tragic in all
aspects for the state of NSW and Australia in general. These have resulted in the loss of
33 lives, 10.7 million hectares of land burnt, more than 2400 homes destroyed, and more
than a billion wild animals lost [13].



Sustainability 2021, 13, 10207 3 of 32

Table 1. Major bushfires in New South Wales from 1965 to 2020.

Sr. Year Fire Events Area (Hectares) Deaths Property Damage Sources

1. 1965 Southern Highlands
Bushfire 251,000 3 59 homes [14]

3. 1980 Waterfall Bushfires 1,000,000 5 14 homes [16]

4. 1984–1985 NSW Fire season 3,500,000 5
0 homes, 40,000 livestock,

and $40 million
economic damage

[15]

5. 1994 Eastern seaboard fires 400,000 4 225 homes [17]

6. 2002 Black Christmas
bushfires 753,314 0 121 homes [18]

7. 2006 Jail Break Inn Fire,
Junee 30,000 0

7 homes,
4 non-residential

buildings
[19]

8. 2006 Pulletop bushfire,
Wagga Wagga 9000 0

2 homes, 2500 livestock,
3 vehicles, 50 km of

fencing
[20]

9. 2006–2007 Australian Bushfire
season 1,360,000 8

83 homes,
20 non-residential

buildings
[21]

10. 2013 Warrumbungle 54,000 0

53 homes, 118 other
buildings, Agricultural

equipment, and
infrastructure at Siding

Spring Observatory

[22]

11. 2013 2013-NSW fires 100,000 1 208 homes,
40 non-residential homes [23]

12. 2017 Wentworth falls
Winter Fire 52,000 0 35 homes [24]

13. 2019–2020 Black Summer 1,700,000 33 2439 homes, more than
billion wild animals lost [13]

The state of NSW used several remote sensing techniques during the 2019–2020 fire
seasons to assess the fire damages. Fire and land management agencies at state and
federal levels have remote sensing capabilities that provided useful information during the
planning, preparation, and response phases of the 2019–2020 bushfire season. NSW rural
fire service (RFS) uses remote sensing technologies in various ways. In a report, NSW RFS
reported that its firefighters on the ground and in vehicles provided the best intelligence
they could on fires, considering the extent and scale of the fires. Further, it found camera
platforms on helicopters with infra-red and high-definition imagery useful. Further remote
sensing data from multispectral scanning devices (‘line scanners’) mounted on contracted
fixed-wing aircraft was particularly helpful in assessing bushfire movements, spread, and
damages [25]. The NSW RFS reports that, across 165 days during the 2019–2020 season, a
total of 565-line scanning flights were flown, amounting to 7469 flight hours.

Another high potential solution to addressing the Australian bushfires emergencies
is UAV usage that does not rely on human pilots and has very little potential for data
losses. UAVs have been used in various fields such as smart cities, real estate, property
management, healthcare, construction, agriculture, and others [26–32]. These have been
extensively explored in addressing disaster situations such as emergency evacuation path
planning, flood response, and others [33–36].

Given that they do not require the presence of human resources, such vehicles can be
readily made available to use in case of emergencies such as bushfires. UAVs are thus ideal
tools that have been used in a post-disaster scenario. For example, in March 2015, when
Tropical Cyclone Pam, a category 5 storm, struck Vanuatu, UAVs were employed for map-
ping areas to assess the damage [37]. Similarly, when Typhoon Haiyan affected Philippines
in November 2013, UAVs were used for aerial imaging to get real-time information on the
disaster with the help of aerial imaging and the development of future frameworks for
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emergency response planning [38]. In a recent study, these have been proposed to be used
for bushfires in Victoria Australia [5].

Owing to the nature of the frequently occurring bushfires in Australia and NSW,
the current study aims to develop a novel framework for assessing the bushfires and
applies UAV swarm knowledge for better decision-making and pertinent hazard mitigation
strategies. It uses a geographical information system (GIS) based assessments of the fire hot
spots of NSW. Further, an unmanned aerial vehicle (UAV) based framework is presented to
monitor the bushfire hotspots and instigate immediate rescue measures for minimizing the
impacts of these bushfires. The paths of the UAVs are optimized for effective monitoring
of the affected areas with the potential to deliver any information, ration, or first aid kits.
Specifically, the PSO model, available at https://www.mathworks.com/matlabcentral/
fileexchange/69027-simulation-of-particles-in-particle-swarm-optimization (accesed on
9 August 2021) has been used in the study as a base model that has been considerably
modified and expanded to suit the needs of the current study.

The rest of the paper is organized as follows. Section 2 presents the potential tools and
techniques to help bushfires management. These include the GIS and remote sensing tools
and UAVs. Section 3 presents a comprehensive overview of the methodology of the current
study and lists key assumptions, constraints, and model codes used in the study for UAV
routing problems. Section 4 discusses the key results of the GIS-based assessment of the
fire hotspots and the routing results for UAV path planning. Finally, Section 5 concludes
the study and presents the future directions to build upon the current study.

2. Potential Tools and Techniques for Bushfires Management

Satellite data obtained through GIS and remote sensing is a widely used primary
source of information for the active mapping of fire and burned areas at regional to global
scales. The Moderate-resolution Imaging Spectroradiometer (MODIS) from NASA Terra
and Aqua satellites were the first satellite-borne sensors with the ability of monitoring
fire radiative energy (FRE) release rate, or power (FRP), quantitatively on a worldwide
scale. Researchers around the globe have used these to assess wildfires [39,40]. Two kinds
of satellite data are used to detect fire events: active fire and burned area products [41].
Burned area products are based on the variations in the reflectance or with the combination
of reflectance and active fires [42,43]. In comparison, active fire products are dependent on
the detection of thermal anomalies [44].

The GIS tools that enable the monitoring of bush fire hotspots are kernel density and
Getis-Ord Gi* hotspot analysis. The kernel is a widely used estimator that helps generalize
or smoothen discrete point data into a continuous surface area [45]. On the contrary, Getis-
Ord uses the Gi* statistics to calculate the degree of correlation of weighted features in the
specific distance threshold. It can be used to identify the clustering pattern in the study
area [46,47]. Gi* statistics benefit from concurrently capturing the frequency of the events,
the corresponding values, and the spatial relationship [46]. These simple yet efficient GIS
tools have extensive applications as spatial, such as and cluster analysis tools in bushfire
hazard management. Accordingly, remotely sensed data coupled with GIS tools could
facilitate the local administrations to reduce natural disasters such as bushfires [42].

In NSW, remote sensing is an invaluable aid in predicting the weather, climate and
assessing fire location. It has been used to assess fire conditions, extent, and behaviour by
the NSW Rural Fire Service (RFS) in the 2019–2020 bushfire season. However, Australia’s
capabilities in this field have not been harnessed to fight bushfires swiftly and properly.
Currently, these tools are only used after a fire is initiated due to a lack of automation and
implementation in Australian contexts. Remote sensing must be properly adopted for
automatic sensing of fire for big fire-risk seasons. The positive points are that Australia
has developed infrastructure and defence agencies that are already using remote sensing
techniques, which can be shared with other departments for bushfire management. The key
improvement areas include the enhanced capability for early detection of new ignitions,
real-time tracking of the fire edge progression and intensity as it spreads, and a better

https://www.mathworks.com/matlabcentral/fileexchange/69027-simulation-of-particles-in-particle-swarm-optimization
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understanding of vegetation and fuel load issues before the fires start. Such remote sensing
can monitor and analyse the causal factors of a bush fire, inform the planning department
to prepare for, and promptly respond to a bushfire event. Accordingly, a spatial technology
acceleration program is needed in NSW (and Australia) to maximize the information
available from all the various remote sensing technologies currently used.

For 214 days, from 10 August 2019 to 11 March 2020, NSW RFS flew its line scanning
aircraft for at least some time on 88% of days. These line scanning techniques produce
good quality imagery above active bush fires, making it possible to see details of the fire
edge, its extent, and intensity. Such imagery helped NSW RFS make informed decisions
about resource commitments and public warnings during fire events at the height of the
2019–2020 bushfire season. Not downplaying the efforts of the NSW RFS, the destruction
levels are still well above the acceptable levels, and the techniques must be revised and
improved to minimize the level of destruction. Accordingly, more line scanning and remote
sensing techniques can help improve disaster response. Given the relatively low number
of aircraft available, and the number of large fires raging simultaneously, only a relatively
small number of line scanner ‘snapshots’ of each fire had been possible in the Black Summer.
This is a serious drawback given the highly dynamic and dangerous nature of these fires.
Further, a drawback of any sensor mounted on piloted, fixed-wing aircraft is that the sensor
is useless when the plane cannot fly, as smoke/dust/fog makes flying impossible. The
NSW RFS estimates that there were 26 days between 10 August 2019 and 11 March 2020
when line scanning aircraft could not be used at all due to ambient conditions affecting
visibility or resourcing considerations. It is important to note that these figures do not
include instances where scanned imagery was insufficient or where scans could not be
completed frequently. While this is a relatively small period (12%), this inability to fly can
be an issue when information about new ignitions, edges, and spread is needed instantly.
Thus, it is imperative to explore new techniques and improve the existing ones for better
bushfire management. A candidate for this is the usage of a UAV.

UAVs have been used in bushfires assessment, in bushfire hotspot detection [48], and
economic evaluation of wildfires through UAVs [49]. Similarly, conceptual discussions
have been retrieved from literature as relevant to fire monitoring with UAVs through
cognitive human-machine interfaces and interactions [50], as well as remote sensing, to
assess grapevine canopy damage due to fire smoke [51] and improve readiness for the next
major bushfire emergency [52]. In the case of Australia, these have been proposed to assess
bushfires in the state of Victoria [5].

Different types of algorithms exist for planning and optimizing UAV paths efficiently
and effectively to reduce associated costs. These include Java-based algorithms, such as
greedy, inter-route, intra-route, Tabu, and particle swarm optimization (PSO) [53,54]. Other
studies have used Ant Colony Optimization (ACO) and Genetic Algorithm (GA) techniques.
However, PSO has never been used for path planning of UAVs for bushfire assessment in
NSW Australia, which is a humble contribution of the current study. PSO is a heuristic
method that starts its search process using an initial particle population [55–57]. Each
particle represents a potential solution to the problem [58]. There is a multi-dimensional
search space where these particles move around until they reach a constant state or the
computational constraints are fully exhausted. PSO mimics the behaviour of birds in a
flock or sheep in a herd [59]. It is based on a collection of particles in a swarm where each
particle represents a possible solution to the problem. Due to its established advantages,
PSO has been utilized in the current study, taking advantage of its ease of implementation,
few parameters to adjust, robust, higher efficiency in finding the global optima, converge
quicker, short computational time, and no overlapping.

A comprehensive, optimized UAV system has not been proposed, to date, in the rele-
vant literature for assessing bushfires issues and subsequent management in the Australian
context. This gap is targeted in the current study, where the applications of UAVs are
proposed and tested in the NSW region of Australia that is prone to frequent bushfires.
Overall, the current study uses a mix of remote sensing and GIS for bushfire hotspot assess-
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ments and develops a UAV based optimized path system for instigating a swift emergency
response to help mitigate bushfire disasters. Burnt locations and hotspots of 2019–2020
bushfire season in the NSW are assessed using GIS tools and remote sensing data of VIIRS.
Further, the statistical significance of these fire events, using the geostatistical tool of Getis
Ord Gi* statistics, is also assessed to discuss the impact of damage by the 2019–2020 fires.

3. Materials and Methods

This study follows a systematic approach for addressing the bushfires disasters in
NSW regions of Australia. A four stepped method is adopted in the current study, as
shown in Figure 1. In the first step, a review of the data available about global and
Australian bushfires is conducted, as evident from the introduction section of the current
study. This is augmented with the data about fires in NSW. Afterward, GIS, remote sensing
applications, and UAVs for bushfire assessments are discussed in the section of tools and
techniques available for bushfire assessment. In the second step of the current study,
GIS-based assessments and burnt area monitoring are performed using data from VIIRS,
and a UAV-based bushfire assessment framework is presented. In step three, the paths of
UAV swarms are optimized using the PSO algorithm to identify the shortest possible paths
for covering the bushfires area. In the fourth and final step of the study, the GIS-based
bushfire monitoring reports are presented along with the regression analysis for bushfires-
related socio-economic loss assessments. Lastly, the PSO-based UAV optimization results
are presented to discuss the best routes for UAVs in mitigating bushfires disasters and
instigating a swift response.

3.1. Study Area

The case study area of the current study is the state of NSW, Australia. The state is in
the southeast of Australia on the eastern coast. It houses Sydney, the most populated city in
Australia, and is among the top revenue-generating states in Australia. The area of NSW is
801,150 km2 and has a population of approx. 8.092 million as of 2020. Vegetation bushlands
cover over 80% of NSW and forests, as shown in Figure 2a, making it a frequent bushfire
experiencing state. The motivation to choose the NSW for this study is that the state was
set ablaze in the recent Black Summer fires and has reported the highest loss among all
Australian states. The state observed 10,520 fire incidents in its various parts, destroying
75% of the total infrastructure losses of the Black Summer fires. Figure 2b provides the total
fire events for NSW, based on GIS and remoting sensing, using the data from VIIRS sensors.

3.2. Study Datasets

Table 2 summarizes the dataset used in the study. The primary dataset used for this
study is the National Oceanic and Atmospheric Administration (NOAA) data of the VIIRS
fire product. The VIIRS empowers operational environmental monitoring and numerical
weather forecasting. It has 22 imaging and radiometric bands covering wavelengths from
0.41 to 12.5 microns. It provides sensor data records for more than twenty environmental
data records such as the clouds, sea surface temperature, ocean colour, polar wind, vegeta-
tion fraction, aerosol, fire, snow and ice, vegetation, etc. The on-orbit verification in the
postlaunch check-out and intensive calibration and validation have shown that VIIRS is
performing very well. It has been used in the current study due to its precise resolution
of detecting the smallest fires. The VIIRS sensor identified 10,446 fires, including minor
and major fires, within NSW for the 2019–2020 Black Summer time. Apart from the fire
product, climatic data for mean temperature, mean rainfall, and Forest Fire Danger Index
(FFDI) are acquired from the Australian Government Bureau of Meteorology. This data
is used to study the underlying climatic conditions responsible for these bushfires. These
datasets monitor the burnt area and bushfire hotspots in the NSW region for the Black
Summer period.
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Figure 1. Methodology of the current study.

Figure 2. New South Wales map with total fire events from the VIIRS sensors.
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Table 2. The datasets used for the study.

Data Type Date of Acquisition Source

Fire points VIIRS 14 October 2020 Fire Information for Resource Management
System (FIRMS)

Temperature Mean Temperature
Deciles 14 October 2020 Australian Government Bureau of Meteorology

Rainfall Rainfall Deciles 14 October 2020 Australian Government Bureau of Meteorology
Forest Fire Danger Index

(FFDI) FFDI Deciles 14 October 2020 Australian Government Bureau of Meteorology

3.3. GIS Analyses of the NSW Bushfires

Figure 3 provides the methodology flowchart to monitor the burnt area and map
bushfire hotspots in the study area. The data and annual reports, from the Australian
Bureau of Meteorology, of the region of interest were acquired. An in-depth review and
assessment were used to relate and understand the fire patterns and areas identified in
the analysis. Accordingly, four key steps were performed: burned area mapping, fire
clustering, hotspot monitoring, and environmental conditions and impact.

Figure 3. Methodology flowchart for mapping the bushfires hotspots in NSW.

For mapping the burnt area, ArcGIS software is used in which the interpolated
perimeters from the monthly accumulated fire points are generated using a convex hull
aggregation with the ‘aggregate points’ tool. The convex hull algorithm assigns an area
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including the clusters of points (minimum 3) at user-defined aggregation distance. Three
aggregation distances, 1 km, 2 km, and 5 km, are tested for the fire delineation. These
distances are chosen depending on the spatial resolution of the active fire products from
the VIIRS-375 m resolution. The idea is to visualize the total burned area due to the fires in
the NSW region. The validation of the fire samples is performed using visual interpretation
from Google Earth imagery. The High/Low Clustering (Getis-Ord General G) provides the
fires’ gathering pattern that is used to measure the extent of clustering in the fire data.

The z-score and p-value depict the statistical significance of the null hypothesis. In
this case, the null hypothesis states that the values linked with each feature are distributed
randomly. For monitoring the hotspots, Getis-Ord local Gi* spatial statistics is performed
to see the statistical significance of the fire incidents. Before the incremental spatial autocor-
relation tool is operated, beginning distance and distance increment must be set. Calculate
Distance Band from the Neighbor Count tool is used to monitor these parameters. The tool
gives the minimum, average, and maximum distance at which each point has at least one
neighbour. The resultant maximum distance is used as the beginning distance, whereas
the average distance achieved from the tool is used as the distance increment. Later, the
incremental spatial autocorrelation tool is used to measure data grouping in space. The
tool gives an output in the form of a graph of increasing distances and their corresponding
z scores.

The clustering distance is subsequently used in the Getis-Ord Gi* analysis as a distance
band or radius. The Getis-Ord local statistic is calculated using Equations (1)–(3).

Gi∗ =
∑n

j=1 wij.xj− −x ∑n
j=1 wij

S
2

√ [
n ∑n

j=1 wi2.j−∑n
j=1 wij]2

]
n−1

(1)

−
x =

∑n
j=1 xj

n
(2)

S = 2

√√√√[n
n

∑
j=1

x.j2 − (
−
x)

2
(3)

where xj is the attribute value for feature j, wi.j is the spatial weight between the feature

i and j, and n is the number of features.
−
x is the mean of all measurements, and S is the

standard deviation of all measurements. The Gi* is a zone, after which no more calculations
are required. The Gi* statistic returned for the features in the fire datasets is a z-score. For
the z-scores to be statistically significant, the higher the z-score value, the more intense
the cluster will be, hence classifying it as a hot spot. Consequently, the cluster will have
low values for statistically strong negative values, identifying it as a cold spot. Thus,
the spots can be classified into hotspots or cold spots for assessing the fires. Lastly, a
linear regression analysis is performed, with the response variables of the burned area,
fire incidents, fatalities, and the predicting variable as the fire season (year). Positive and
negative relationships are represented as increasing and decreasing trends, respectively.

3.4. PSO for UAVs Path Planning in Bushfires Monitoring

PSO is a metaheuristic algorithm that works on the principle of finding, generat-
ing, and searching for the shortest path. In this study, the PSO algorithm is used to
monitor the bushfire area. It is quite challenging, in bushfires, to reach the allocated
area and hover back to the depot. In the relevant literature, compared to the existing
algorithms such as ACO and GA, PSO is favoured to generate the shortest distance
with enhanced collision avoiding capability [60,61]. Moreover, it is the best possible
approach to significantly find the shortest distance in optimum time [62,63]. In the current
study, the PSO optimization algorithm used in UAV Bushfire Application is inspired by
“Seyedali Mirjalili (2021). Simulation of particles in Particle Swarm Optimization”, avail-
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able at (https://www.mathworks.com/matlabcentral/fileexchange/69027-simulation-of-
particles-in-particle-swarm-optimization, accessed on 9 August 2021). The document
was accessed on 9 August 2021. Significant changes have been made to the source code,
including changing the parameters, e.g., handle points, maximum iterations, population
size, inertial weight, as well as personal and global learning coefficients that have been
modified to be used in our specific application where the particles are the UAVs in a swarm.
Specifically, three-point handles have been used in the current study compared to the
source code. The function used in the current study is for five obstacles with different
positions and diameters, which are some of the novel additions and modifications, of
the current study, to the source code. Furthermore, based on the computation time and
transportation cost, the current study considers the best path for UAVs to reach the affected
area in the least time. For this purpose, the number of obstacles has been increased to five
to make a complex environment for UAVs to reach the destination.

The flow chart in Figure 4 shows the simulation model for the PSO algorithm. Initially,
the start and target points are determined for UAVs to fly from the depot (start) and reach
the target location. In step 2, the population size and parameters are set for particle velocity,
time steps, and personal and global learning coefficient. In step 3, the PSO algorithm model
is run to maximize the affected area coverage based on the cost function generated in step 4.
As a result, the random paths are generated, and the shortest path is selected based on the
maximum iterations.

Figure 5 provides a five-stepped framework for bushfire detection using UAVs through
the PSO algorithm. In step 1, the control unit is notified regarding the affected region where
the bushfire is ignited using field and satellite sensors. In step two, the control unit/van
is sent to the nearest safe area of the bushfire. This is done to avoid unnecessary battery
losses of the UAVs due to the hovering of UAVs as they have limited battery power. It
further ensures high endurance and better wireless communication with the UAV due to
the shorter distance. In step 3, the GPS coordinates of the UAVs are set, and the required
data is embedded to cover the targeted location for bushfire damage detection. In step 4,
the PSO algorithm is initialized to determine the shortest path between the start point
and the end destination, retrieving the data in lesser time and minimum transportation
distance. Based on the shortest path calculated, the UAV swarm assigns the task to each
other to minimize the energy consumption and better monitoring time. In the final step,
the real-time fire is monitored using cameras and sensors attached to the UAV. The data
is shared with the control unit in real-time, where it can be shared with all concerned
departments. A rescue relief team is notified instantly to reduce the effects of bushfires.

Figure 6 illustrates the pseudocode and demonstrates the trajectory of UAVs from
determining the maximum area coverage. In Figure 6, it is assumed that the B1, B2 are
the Barriers, UAV1, UAV2, and UAV3 are the UAVs, while P1–P10 are the locations to be
covered by the UAVs. The first step involves determining the target location, which is,
identifying the fire zone. The UAVs initialize themselves from P1 to compute the feasibility
paths in Step 2. These UAVs are launched from the control units or vans present in the
vicinity of the fire zone. To minimize the transportation distance, the UAVs communicate
with neighbouring UAVs and determine the shortest path possible in Step 3. In Step 4, the
optimization method is adopted, where three of the PSO algorithm functions are run to
maximize the area coverage, minimize the distance to the target, and minimize the number
of active UAVs. As a result, an efficient and cost-effective disaster management strategy is
devised whereby the UAVs can cover the maximum area in the shortest possible time, as
given in Step 5, and where all the locations from P1 to P10 are covered by the three UAVs
using PSO. This way, the barriers in the paths are avoided, as evident from B1 and B2 in
Figure 6, and an efficient maximum area coverage strategy is used to get data from the
target zone.

https://www.mathworks.com/matlabcentral/fileexchange/69027-simulation-of-particles-in-particle-swarm-optimization
https://www.mathworks.com/matlabcentral/fileexchange/69027-simulation-of-particles-in-particle-swarm-optimization
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Figure 4. PSO simulation model.

The area assignment for UAVs is based on the longitude and latitude coordinates
using GPS technology [64,65]. Table 3 lists the parameters and assumed values of these
parameters to assist the PSO algorithm. The inertia weight determines the contribution rate
of a particle’s previous velocity to its velocity at the current time step that is considered as
0.8 in the current study. The inertia weight damping ratio is assumed as 0.96. The personal
learning coefficients and the global learning coefficients to fit the maximum area curve are
1.25. These values are taken from the studies of Mirjalili et al. [66] and Mirjalili et al. [67]
based on the optimum results achieved.
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Figure 5. Schematic illustration of Bushfire Detection using PSO.

Figure 6. Routing mechanism to calculate best transportation distance using PSO.
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Table 3. The PSO parameters and their values.

Parameter Values

w = 0.8 Inertia Weight
wdamp = 0.96 Inertia Weight Damping Ratio

c1 = 1.25 Personal Learning Coefficient
c2 = 1.25 Global Learning Coefficient

3.5. Proposed Model

The parameters and functions of the proposed model are presented in Table 4.

Table 4. Model parameters and functions.

Parameters Functions

D Set of depot sites
T Set of target sites

0, n + 1 The start and end depots of the drone
V V = D ∪ T∪ (0) ∪ (n + 1)
R Set of UAVs
qi Requested demand for each target site i ε T
qr Capacity of drone r ε R
Pr Time required for UAV to cover area r ε R

ai. bi
Time window during which the UAV reaches the

target site
tij Time to travel from i to j, j ε V
r Maximum time lag between consecutive deliveries

The UAV starts its trip at a central (source) depot and travels between the depot and
target sites. At the end of mission completion, the UAV returns to an end (sink) depot
(which may or may not be the same as the starting depot). This routing problem can be mod-
elled on a directed, weighted graph G (V, A); consisting of vertex set V = {0} ∪ T ∪ {n + 1},
where vertices 0 and n + 1 are resp. to the source and sink depots. The UAV must reload in
between 2 deliveries. This has been accounted for in the arc costs. Optionally, a positive
load time for the UAVs can be added to the arcs between two target sites. The arc set A is
defined as follows:

• The source-sink depots have outgoing resp. incoming edges to/ from all other vertices.
• There is an arc (i,j) for all i; j ε T; i 6= j.

The arc costs are as follows:

• T0,i = minpεP ti,p + tp,j for all i ε T
• Ti,j = minpεP ti,p + tp,j for all i, j ε T
• Ti,n+1 = ti,n+1.
• T0,n+1 = 0.

The routing constraints can be modified as follows:

max. ∑
i εT

qi Yi (4)

∑
r εRεδ+(i)

. ∑
.

qr XijR ≥ qiYi ∀ i ε T (5)

Constraint (5) ensures that enough area is covered at the target site.

∑
jεδ+(0)

X0jr = ∑
i ε δ(n+1)

Xi, n + 1, r = 1 ∀ r ε R (6)



Sustainability 2021, 13, 10207 14 of 32

∑
jεδ+(i)

Xijr = ∑
j ε δ−(i)

Xj, i, r ∀ i ε T, r ε R (7)

Constraints (6) and (7) determine the shape of a feasible tour: a tour starts at the source
depot, visits a target site, and finally returns to the sink depot. Constraints (7) are the flow
preservation constraints. Further, between two consecutive visits, starting, processing, and
travel times must be considered (Constraint (8)).

Ti
r + tij −M

(
1− Xijr

)
≤ T j

r − Dr ∀ i, j ε V, r ε R (8)

ai+Dr ≤ T j
r ≤ bi ∀ i ε V, r ε R (9)

A target i ε T cannot be visited before ai, and the assigned task must be completed
before bi (Constraint (9)). The remaining Constraints (10)–(12) restrict the domains of
the variables.

Xijr ε { 0, 1} ∀ i, j ε V, r ε R (10)

Ti
r ε Z ≥ 0 ∀ i ε V, r ε R (11)

Yi ε { 0, 1} ∀ i ε T (12)

where, Xijr is a binary variable, indicating whether UAV r travels from i to j. Integer
variable Ti

r , i ε T, r ε R, record the time that UAV r finishes its delivery to target site i. For
notation purposes, δ− (.) resp. δ+(.) denote the incoming resp. outgoing neighbourhood
sets. The maximum time lag requirements between multiple tasks completed for a single
site can be schedules as below:

max. ∑
i εT

qi Yi (13)

∑
rεRl ε R0\ {r}

. ∑
.

qr Zl
rl ≥ qi Yi ∀ i ε T (14)

Constraint (14) ensures that assigned tasks have been completed at each target site.

∑
i εR0

Zi
r0l = 1 ∀ i ε V (15)

Constraints (15) and (16) are used to sequence the UAVs. A UAV can only be used once
for every target site, and whenever it is used, its delivery must be succeeded by another
delivery (possibly a delivery by the dummy UAV r0) (Constraint (15)). The dummy UAV
must be scheduled (Constraint (16)).

∑
l εR0 \{r}

Zi
rl = ∑

l εR0 \{r}
Zi

lr ∀ r, l ε R, r 6= l, i ε V (16)

Constraint (17) is the flow preservation constraint. Together with Constraint (16),
these constraints enforce that all assigned tasks are scheduled consecutively. Thus, each
task has exactly one successor and one predecessor.

Ti
r − M

(
1− Zi

rl

)
≤ Ti

rl − Dl ∀ r, l ε R, r 6= l, i ε V (17)

Constraint (17) links the completion time variables Ti
r and the sequence variables Zi

rl ,
thereby enforcing that tasks performed do not overlap in time.

Ti
l – Dl ≤ Ti

r + γ + M
(

1− Zi
rl

)
∀ r, l ε R, r 6= l, i ε V (18)

Constraint (18) enforces a maximum lag time between consecutive assigned tasks.

ai+Dr ≤ T j
r ≤ bi ∀ i ε V, r ε R (19)
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Constraint (19) ensures that assigned tasks performed by the UAVs are scheduled
within the time window. The remaining Constraints (20)–(22) restrict the domains of
the variables.

Zi
rl ε { 0, 1} ∀ i ε V, r, l ε R (20)

Ti
r ε Z ≥ 0 ∀ i ε V, r ε R (21)

Yi ε { 0, 1} ∀ i ε T (22)

The binary variable Zi
rl is equal to one if UAV r ε R completes its tasks immediately

before UAV l ε R to target site i ε T; otherwise, the value is zero. In this model, r0 represents
a dummy drone, R0 = R U {r0}. A feasible solution is obtained at the intersection of the
routing and scheduling polytopes. Connecting the two polytopes is accomplished via the
linking constraints:

∑
l εR0 \{r}

Zi
rl = ∑

j ε N
Xijr ∀ r ε R, i ε T (23)

Note that Constraints (14) and (17) in the route are identical to Constraints (5) and (9)
in the schedule, respectively, and are consequently dropped.

A disadvantage of the current model is that a single UAV cannot visit the same target
site more than once. This restriction is unrealistic as, often, a UAV can travel back and
forth between the depot and a target site. When the binary variables Xijr are replaced
by equivalent integer variables, indicating the number of times UAV R travels from i to
j, one can still distinguish the routes. However, expressing the scheduling constraints
becomes difficult in this case. Two options exist to address this issue: either the distinct
trips made by a single UAV are enumerated (e.g., UAV R travels from i to j during trip t), or
the visits to a target site are enumerated. The latter solution is applied in assignment-based
formulations for scheduling problems. This model is adjusted to our notation as below:

Let D and T be defined as above. In addition, for each target site i ε T, a new ordered
set consisting of visits to the target site, Ti = {1 . . . ..n(i)}, is defined where n(i) = [qi/min

r ∈R
(qr)]

is an upper bound of visits required by the target site i. A shorthand notation, ti
j will be

used to denote visit j for target i. A time window [ae, be] is associated with each visit eε Ti,
i ε T which is initialized to the time window for the corresponding site i ε T i.e., [ae, be] =
[ai,bi] for all i ε T, e ε Ti. Finally, W = Ui ε TTi is the combination of all the visits.

Let directed weighted graph be G (V, A); consisting of vertex set V= {0} ∪W ∪ {n + 1}.
Its arc set is defined as follows:

• The source-sink depots have outgoing resp. incoming edges to/from all other vertices
• A delivery/trip node ti

h has a directed edge to a trip node ti
j if h < j, i ε T, h, j ε Ti.

• There is a directed sedge from ti
u to tj

v, i 6= j, except if tj
v needs to be scheduled earlier

than ti
u.

The arc costs are as follows:

• T0, ti
j = minpεP tm0, p + tmp,i for all ti

j ε W.

• T ti
u tj

v = minpεP tmi, p+ tmp,j for all ti
u tj

v ε W ti
u 6= tj

v.
• T ti

j, n+1 = tmi, n+1.

• T0, n+1 = 0.

The entire model becomes,
max. ∑

i εT
qi Yi

∑
j ε δ+(0)

X0jr ∑
i ε δ−(n+1)

Xi, n + 1, r = 1 ∀ r ε R (24)

∑
jεδ−(i)

Xj, i, r = ∑
j ε δ+(i)

Xi, j, r ∀ i ε W, r ε R (25)
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S (i, 1) ≤ 1 ∀ i ε W (26)

Constraints (24)–(26) are the common vehicle routing constraints defining the starting
and ending location of the tour, flow preservation, and the number of times the UAV can
visit the site.

S (j + 1, 1) ≤ S(j, 1) ∀ i ε T, j ε {1, . . . .., n(i)− 1} (27)

∑
jεTi

S(j, qr) ≥ qi Yi ∀ i ε T (28)

Furthermore, Constraint (27) orders the visits: a delivery ti
j+1 cannot me performed

whenever delivery ti
j has not been made. This constraint, in conjunction with constraint (32),

implements the maximum time lag between consecutive deliveries. The sum of capac-
ities of the vehicles performing the deliveries for sites i ε T should cover the demand
(Constraint (28).

Ti − M
(
1− Xijr

)
≤ T j − Pr − Tij ∀ (i, j)ε A, i 6= 0, r ε R (29)

Ti– M
(
1− Xijr

)
≤ T j − Tij ∀ (0, j)ε A, r ε R (30)

Ti − S (i, Pr ) ≥ ai ∀ i ε W (31)

T j+1– S (j + 1, Pr )− T j ≤ γ ∀ i ε T, j ε {1, . . . .., n(i)− 1} (32)

T j+1 ≥ T j + S (j, Pr) ∀ i ε T, j ε {1, . . . .., n(i)− 1} (33)

Finally, Constraint (33) ensures that visits to the same customer/point do not overlap
in time

ai ≤ T j ≤ bi ∀ i ε V (34)

Constraints (29)–(34) enforce the necessary scheduling restrictions. Delivery cannot
be made outside the site’s time window (Constraints (31) and (33)); travel times need to be
accounted for (Constraints (29) and (30)).

Xijr ε { 0, 1} ∀ (i, j) ε A, r ε R (35)

Yi ε { 0, 1} ∀ i ε T (36)

where, S(i, α) = ∑ r ∈ R ∑ j ∈ δ+(i)a Xijr for all i ε W. Binary variables Xijr denote whether
UAV r ε R travels from i to j, i, j ε V. Binary variables Ti record the time that delivery i ε W
is completed. Additionally, Tn+1 records the makespan of the schedule. Finally, Boolean
variables Yi, denote whether customer i ε T is serviced.

4. Results and Discussions

As presented in the method section, the results of GIS, remote sensing, and the PSO-
based proposed model are presented in this section.

4.1. Monitoring the Burnt Area

NOAA’s sensor, VIIRS fire product with 375 m resolution, is used to aggregate the
perimeters of the fire with distances of 1 km, 2 km, and 5 km, as shown in Figure 7. The
examples show the extent of the land damaged by the Black Summer fire season, where the
burnt areas are shown in red colour. The maps show that the eastern part of the state is most
affected by the fires. Significant, and more impactful, fire events have hit the cities along the
coast, including Sydney, Coffs Harbour, New Castle, and Wollongong. The 1 km aggregates
show that the sporadic distribution of the fires is largely spread throughout the state, as
evident from Figure 7a. It depicts that each fire event has caused widespread damage.
Likewise, the 2 km and 5 km aggregates show the land damages of the respective distances
as shown in Figure 7b,c, respectively. The 5 km aggregates give the best depiction of the



Sustainability 2021, 13, 10207 17 of 32

burnt area. The areas shown in this map include the southeastern region that connects
NSW with the State of Victoria.

Figure 7. Examples of aggregates of varying distances using the VIIRS dataset. (a) Fire distance 1 km
(b) Fire distance 2 km (c) Fire distance 5 km.
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Additionally, the northern parts of the NSW are also heavily destroyed by these fires.
Upon visual validation of the output with the Google Earth imagery, it is found that 50%
of the national parks of NSW are impacted by the 2019–2020 fire season. This is in line
with the NSW report that states a significant impact on NSW vegetation. These fires have
resulted in damage of 2.5 million hectares of the state’s national parks [68].

4.2. Fire Clustering Patterns and the Significance

Figure 8 shows the level of clustering in the fire data, based on Get-Ord General G
statistics generated through ArcGIS. The z-score is based on the randomization of the
null hypothesis calculation. The distance method for the clustering analysis is Euclidean
distance assessed based on inverse distance. The distance threshold for the state of NSW
bushfire events is found to be 148,828.07 m. The higher z-score of 5.90 depicts a less than 1%
likelihood that the events’ highly clustered pattern could be attributed to random chance.
Therefore, these fire events are significantly high clustered along the entire state. Very
strong clustering patterns can be visualized in Figure 8 towards the north and southeastern
cities of NSW. Particularly in the southern parts, the clustering trend is quite pronounced
mainly because the epicentre of the fire is near the Victoria NSW border region.

Figure 8. Graph showing the level of clustering in the fires of Black Summer Fire Season and General
G Summary.

The statistical data generated by ArcGIS is presented in Table 5. As the z-score value
is positive, and the observed General G index is larger than the expected General G index,
high values for the attribute are clustered in the study area. Thus, more evenly distributed
fires are experienced in NSW. Therefore, the null hypothesis is accepted as evident from the
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p-value of 0.07, which shows statistical significance when the p-value is greater than 0.05.
Hence, it is confirmed that all the values linked with each feature are distributed randomly.

Table 5. The statistical values of the data obtained from ArcGIS.

Assessment Value

Observed General G 0.02
Expected General G 0.005

Variance 0.0
Z-Score 5.9
p-value 0.07

4.3. Monitoring of Bushfire Hotspots

The hotspot analysis, based on the Getis Ord Gi* statistics, is performed on the
aggregated features of 5 km for ease of computation. Figure 9a shows the fire hotspots
ranging in five categories: strong cold spots shown in dark blue, cold spots shown in
light blue, nonsignificant spots shown in yellow, hotspots shown in orange, and strong
hotspots shown in the red colour. Most of the NSW is covered sporadically with strong cold
spots, primarily concentrated in the Pilliga Nature Reserve, Wollerni National Park, Yengo
National Park, and the coastal regions in the north. Statistically, not-so-significant fire spots
could be observed in Blue Mountain’s National Park and Morton National Park. Strong
hotspots of bushfires are observed in the Deua National Park, situated in the southern
part of the state. Some of the clear hotspots could also be observed in the Kosciu Sako
National Park.

Similarly, Figure 9b illustrates the graph based on the z-score stats of the Get-Ord Gi*
analysis. The graph gives an insight into the types of bushfire hotspots. The number of
fires is plotted on the x-axis against their respective z-score values on the y-axis. The blue
colour is densely populated across the study area and depicts that more than half of the
state is included in the cold spots or strong cold spots. Some random parts of the state
bushfires are shown in yellow, depicting that these events are not statistically significant.
The relatively low z-score of 2.8–4.1 can be seen in the orange colour, which shows a good
clustering of hotspots. On the contrary, the strong z-score values above 4–10.5 depict strong
clusters of severe hotspots in the study area. Though these strong hotspots are not so
thickly populated across the study area, they impacted the fires throughout the state.

Figure 10 shows the complete picture of the bushfire hotspots in the state of NSW. The
graduated size of circles shows the intensity of the hotspots across the study area. The map
shows that the fire events have severely hit the eastern regions of NSW. Minor hotspots of
bushfires are densely and randomly dispersed throughout the study area. The noteworthy
and more impactful hotspots are shown in a bigger circle in southeastern NSW. These
include the Deua National Park, Morton National Park, and Kosciu Sako National Park.
Other larger hotspots are in the northeast in the Wollerni and Yengo National Parks. These
regions were already at risk of fires, considering the weather conditions of hot maximum
temperatures, dry and humid incidents, and the prevalent fire weather situations. Further,
it points out that the upcoming fire events will be more frequent and severe than ever
recorded before [6]. Thus, the government must act and put measures in place before the
next fire event.
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Figure 9. (a) Delineation of hotspots and cold spots, based on the Getis-Ord Gi* Statistics, (b) the
z-score graph of the hotspots of the study area. Note: blue shows the cold spots, yellow shows the
statistically nonsignificant spots, and red shows the strong hotspots.

4.4. Regression Analysis of the Black Summer Fires

Most of the northern and central areas of the NSW have observed extremely low pre-
cipitation in the year 2019. Some of these locations recorded the driest conditions in history.
Lower rainfalls impacted the water resources and the associated firefighting mitigating mea-
sures [69]. By the start of August, almost the entire NSW was stricken by severe drought
(55%), observing drought conditions (23%), and experiencing extreme droughts (17%). The
initial ‘Section 4.4 emergency’ was declared on 10 August 2019 [70]. Additionally, adequate
soil moisture deficits and prevalent winds facilitated the considerable frequency of fire
events [71]. A total area of 5,595,739 hectares was burnt, destroying 2475 houses, and
causing 25 casualties by 10,520 fire incidents in NSW, as shown in Figure 11.
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Figure 10. (a) Hotspots of bushfires in the 2019–2020 fire season. (b) The eastern side shows strong hotspots for fires and the
spatial directional distribution of the fires.

These fires of NSW made a record of burning more area than any other fire season in
the past two decades, as seen in Figure 11, that the authors compiled based on the data
available online. Figure 11 shows data for January of each odd calendar year starting from
2001 till 2019, where the number of fires is plotted. The 2019 fires have been the worst
disaster in terms of the number of fires and areas burnt. The year 2012 had the least burnt
area and lower numbers of fire, followed by 2008 and 2004.

Figure 12 shows the data for houses burnt and the fatalities of various fires in NSW
since 2001. All the data is plotted for the reports of January of the particular year. The
authors compiled the data based on online information and reports of the parliament of
Australia and NSW RFS. The Black Summer fire season has been an extraordinary disaster
where the burnt area, fatalities, and damaged houses are more significant than the previous
years. Before the 2019 season, the notable instances are 2001 and 2002 fires, with 250 houses
damaged and two fatalities each. The 2013–2014 fires resulted in the loss of three lives and
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damages to 350 houses. Similarly, 2013 and 2017 also resulted in the loss of two lives and
damages to approx. 200 properties.

Figure 11. The numbers of fire events in each season in NSW since 2001. (Note J-01 means January 2001, J-02 means January
2002 and so on. The x-axis shows the month and year, whereas the y-axis shows the number of fires.).

In Table 6, before the Black Summer fires, the trend of the burnt area showed a negative
slope, transitioning into a positive with the 2019–2020 fires, signifying a p-value of 0.019.
The frequency of fires has been decreasing until 2012 that started to increase post-2012.
It showed a positive trend for the dataset with a greater slope for 2001–2020. The data
analysis shows a positive linear relationship between the fire events and the burnt area
that is found to be statistically significant with a p-value of 0.59. A regression line for the
house damaged over the years shows a positive slope. It shows a statistically significant
p-value of 0.12. Due to the 2019–2020 fire season data, a statistically significant output with
a p-value of 0.54 is obtained. Fatalities are estimated to be about 1% of the houses damaged.
This dataset shows an error of 0.36 for the fatalities. The results are similar to an extensive
study performed by Filkov et al. [72], where the researchers explored the impact of the
recent fires on the houses and lives lost.

Table 6. Regression Analysis for 2001–2020 fire seasons in New South Wales.

Impact Factors Standard Error p r R2

Fire Season (y) vs. Burnt Area (x) 1,288,108 0.019 0.59 0.35
Fire Season (y) vs. Houses Loss (x) 52,737 0.12 0.39 0.15

Fire Season(y) vs. Life Loss (x) 5.30 0.11 0.40 0.16
Burnt Area(y) vs. Fire Season (x) 1639 2.75 × 10–19 0.59 0.31
Life Loss (y) vs. Houses Loss (x) 0.36 0.54 0.99 0.99
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Figure 12. Bushfire impacts on houses and fatalities in each fire season in NSW since 2001. (Note: J means January, A means
April, O means October, and D means December. The numbers after J, A, O, D refers to the year of data points). (a): Number
of houses burnt in various months since 2001 (the x axis shows the months and years, whereas the y-axis shows the number
of burnt houses). (b): Number of lives lost each year since 2001 (the x axis shows the months and years, whereas the y-axis
shows the number of fatalities).
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4.5. UAV Routing Results

As discussed in the Method Section, the UAVs’ paths were optimized using the PSO
algorithm to have the shortest possible distance for monitoring the fire events. For doing
this, different cases are considered in the target area of NSW Australia. Varying iterations,
number of UAVs, computation time taken by the control unit, and the best (shortest) travel
distance for UAVs are presented in Table 7. The iterations include 50, 100, 200, 300, 400, and
500, whereas the number of UAVs is varied between 20, 40, 60, 80, and 100 for each iteration.
From Table 7, in most of the cases, 20 UAVs give the best results for computation speeds,
and 100 UAVs give the best transportation distance to be covered (shortest distance). The
computation time ranges from 14.64 s for 20 UAVs and 50 iterations to 137.37 s for the
same number of UAVs with 500 iterations. On average, the optimized distance is around
12.81 km of area, which is a considerable distance, considering the limited battery operating
time of the UAV. This shows that the more UAVs there are in the swarm, the better the
results will be, as the UAVs can communicate with more UAVs in the swarm and share
the workload more efficiently. Thus, depending on the area to be covered, the UAVs in the
swarm should be increased. The values are generated through the MATLAB code for PSO
to optimize the UAV routes.

Table 7. Test cases with the number of iterations, UAVs, elapsed computation time, and optimized distance.

No. of Iteration (I) Number of UAVs (n) Elapsed Time(s) Best Transportation
Distance (km)

50

20 14.64 12.89
40 16.24 12.97
60 18.49 13.24
80 20.34 13.18

100 22.07 12.81

100

20 28.36 13.08
40 32.65 12.85
60 35.65 12.92
80 40.03 13.16

100 43.20 12.80

200

20 57.37 12.82
40 63.72 12.80
60 71.12 12.86
80 78.85 12.91

100 85.14 12.80

300

20 85.37 13.24
40 96.17 13.33
60 106.80 13.34
80 116.07 13.21

100 128.06 12.82

400

20 110.97 13.09
40 123.71 13.01
60 139.32 12.86
80 152.12 13.19

100 167.84 12.80

500

20 137.37 13.20
40 153.32 13.21
60 173.50 13.01
80 191.89 12.85

100 204.85 12.82

There is a trade-off between computational time and transportation cost. Moreover,
considering the number of iterations to be 200 and 400 for 100 UAVs, the best transportation
distance is the same (12.80 km); however, the elapsed time is 85.14 and 167.84 s. This shows
that the time can vary even with the same cost; hence, there is no universal rule for
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selecting a definite number of UAVs or inferring that the maximum number of UAVs will
give minimum cost in all cases.

Figure 13 shows the iteration results for all test cases involving 100 UAVs. The
optimal UAV path for detecting bushfires is simulated in the MATLAB environment. For
this purpose, a PSO algorithm is designed based on certain parameters such as iteration,
population size, inertial weight, damping ratio, as well as personal and global learning
coefficient to calculate the best transportation distance. Figure 13a,c,e,g,i,k illustrates a
2D scenario of UAV routing problem from starting point to destination. Blue circles are
the obstacles in the UAV trajectory. The best transportation distance and elapsed time
are calculated based on the UAV hovering from the start to the destination, where the
effect zone (bushfire) needs to be monitored. Three handle points, indicated in light red
circles, are considered to smoothen the path from start to destination. The x and y-axis
represent the lengths and widths of the plots or locations (P1 to P10). Figure 13b,d,f,h,j,l
shows the best transportation distance, concerning number of iterations. In all the cases,
the case study area’s optimized distance with 100 UAVs is 12.81 km, on average. When the
iterations are increased from a specific point, the distance follows a straight path. In the
case of the lower number of UAVs, the optimized distance is increased, which means lower
productivity and more battery losses. Thus, it is advised to use more UAVs in the swarm
for better results and less travel distances for swift disaster response.

Figure 14 shows a swarm of UAVs deployed at a test zone at NSW with their starting
points, destination point, and various possible routes. Using PSO, the Route 1 value is
12.89 km with a computation time of 14.63 s. Route 2 takes 18.49 s and gives an optimized
path of 13.24 km, whereas Route 3 has values of 12.80 km for the optimized path and
takes 22.69 s to be computed. Depending upon the scenario, if computation time is not the
highest priority, R3 has the best results for the optimized path. However, if computation
speed is the concern, Route 1 has the best values with just 14.63 s of computation time.
Thus, the trade-off between computation speeds and optimized routes may be input into
the control units through artificial intelligence or human presence. This decision can be
taken in real-time at the control unit or head office through remote administration.

Accordingly, the NSW and the rest of Australia can be covered through UAV swarms
whose paths are optimized through PSO algorithms to tackle any bushfire disaster. The
proposed system can be adopted by the NSW RFS to plan for upcoming fire seasons
actively. The system, if adopted, can help save lives, reduce the bushfire impacts on
properties and livestock, and save many species of wildlife from bushfire disasters. With the
growing availability of UAVs, the proposed system will cost way less than the post-disaster
rehabilitation and repairs. Vigilant and swift policy making is required in this context to
help mitigate the harmful effects of bushfires disasters by adopting the proposed system.

The area covered depends on the availability of UAVs and the technology level used in
the UAVs. As far as the costs associated with the increased number of UAVs are considered,
it can be estimated using the area coverage path planning, which depends on finding the
route that covers every point within the target area of interest [73]. Particularly, for our
system, the costs of using an increased number of UAVs will be greatly dependent on the
area coverage path planning for our area of interest.
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Figure 13. The 2D trajectory of the UAVs routing and the shortest transportation distance for test cases with 100 UAVs.
(a) 2D Scenario for 50 iterations and 100 UAVs (b) Transportation distance for 50 iterations and 100 UAVs (c) 2D Scenario for
100 iterations and 100 UAVs (d) Transportation distance for 100 iterations and 100 UAVs (e) 2D Scenario for 200 iterations
and 100 UAVs (f) Transportation distance for 200 iterations and 100 UAVs (g) 2D Scenario for 300 iterations and 100 UAVs (h)
Transportation distance for 300 iterations and 100 UAVs (i) 2D Scenario for 400 iterations and 100 UAVs (j) Transportation
distance for 400 iterations and 100 UAVs (k) 2D Scenario for 500 iterations and 100 UAVs (l) Transportation distance for
500 iterations and 100 UAVs.
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Figure 14. PSO-based optimized routes and computation speeds for UAVs in a test zone at NSW.

In various disastrous situations, many UAVs can be effectively deployed, as the utility
of UAVs is highly implicated and appreciated in such future situations. The UAVs can
play promising roles in various relief efforts in natural disaster situations such as bushfires,
storms, and earthquakes. Notably, UAVs can perform very crucial jobs as soon as disasters
emerge. These tasks include identifying people in emergencies who require urgent help.
Greater evidence supports the fact that UAVs display several advantages over traditional
searching and rescuing with a considerably higher speed. UAVs can perform additional
roles, such as delivering the rescue ropes and life jackets in dangerous areas where ground-
based rescue efforts are practically impossible and very difficult. These UAVs have an
inherent ability to assess the damage caused to infrastructures such as roads, buildings,
tunnels, bridges, etc. Different types of models can be effectively coupled with these
systems. Some of the most prominent examples are the traditional continuum model,
expand contract model, and disaster crunch model. The traditional continuum model
is based on sequential stages, focusing on the activities associated with pre-disaster and
post-disaster events. Our proposed systems can be effectively used if integrated with
such types of models. The coupling of our systems to these models will speed up and
enhance the projection, which will help attain an improved response from the governing
bodies. If the governing bodies for disaster management extend their support, UAVs can
be effectively used in natural disasters such as floods, bushfires, etc.

During the post-disaster assessment, the battery life of the UAV plays a significant
role in hovering time. In a recent study by Fotouhi et al. [74], the authors implemented a
control strategy for confined Phantom 4 mobility using a DJI software development kit
(SDK). Considerably, the speed of the UAV is directly proportional to the power utilized.
The pertinent results shows that the power utilization abruptly reaches 167 W, as the UAV
speed peaks to 10 m/s.

UAV battery consumption is always an important issue to address, keeping the
sustainability of technology in mind. A solution for the UAV battery energy consumption
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is proposed in Selim and Kamal [75] using UAV Base Station (UAV-BS) and Powering
Drone (PD). The PD provides the necessary charging for the hovering UAV-BS to make
it more efficient for monitoring the affected area without going back to the depot and
providing the optimum results. In the relevant study, during the initial timing block, from
0 to 1, the UAV-BS are initialized from 200 kJ capacity and consume the maximum energy
to reach the allocated spot.

5. Conclusions

The current study investigated the devastating 2019–2020 Black Summer fires oc-
curring in NSW Australia. Using the case study of the NSW region of Australia, GIS
and remote sensing analyses were conducted to map the burnt areas of NSW. The results
highlight that 50% of the national parks of NSW were impacted by the 2019–2020 fire
season, resulting in damage to 2.5 million hectares of the state’s national parks. The fire
clustering patterns indicated that these events are significantly, highly clustered in the
entire state, where very strong clustering patterns can be visualized towards the north and
southeastern cities of NSW. The clustering trend is quite pronounced on the southern side
of NSW, where it shares the border with Victoria.

Similarly, the hotspot mapping shows that strong hotpots of bushfires are in the Deua
National Park, situated in the southern part of the state, and the Kosciu Sako National
Park. Other larger hotspots are in the northeast in the Wollerni and Yengo National Parks,
which had been declared to be at risk by the government due to weather conditions of hot
maximum temperatures, dry and humid incidents, and the prevalent fire weather situations.
The government must act and enact measures before the next fire event; otherwise, the
data trends show that upcoming fires could be more devastating than the Black Summer.

A UAV-based bushfire monitoring system is proposed in the current study to monitor
the bushfires in NSW and instigate a swift response plan to minimize the losses. The paths
of the UAVs are planned and optimized using the PSO algorithm for avoiding barriers in
the path and covering the maximum area in the shortest possible time. The test results with
50, 100, 200, 300, 400, and 500 iterations and the number of UAVs varying between 20, 40,
60, 80, and 100 for each iteration show that 20 UAVs give the best results for computation
speeds, and 100 UAVs give the best transportation distance to be covered. Thus, the more
UAVs are there in the swarm, the better will be the results in most cases. These UAVs can
communicate with more UAVs in the swarm and share the workload more efficiently if
the number is higher. Thus, it is proposed to increase UAVs if more area is to be covered
and monitored.

The current study is limited to test cases without submission to field tests due to the
non-fire seasons. In the future, it can be tested in the field, and real-time results can be
assessed to test the in-field validity and performance of the proposed method. Nevertheless,
it is a first step towards addressing a key issue of bushfire disasters in the Australian context
that other countries in the world can adopt. For Australia and NSW, the RFS can adopt the
proposed system and have the UAV swarm ready before the next fire season to instantly
map, assess, and mitigate bushfire disasters. Further, it is recommended to develop a
shared, integrated platform for diverse data sources, intelligence, and information sharing
across government organizations where useful data can be shared. New wildfire risk
assessments should be conducted with high-resolution mapping technologies to assess
the current state of wildlife and help place protection measures in place. The scientific
understanding of “megafires” should be enhanced through retrospective analysis and fire
behaviour models, and associated inputs for real-time prediction should be investigated.
These, when achieved in their true essence, will help lay the foundation of enhanced
environmental sustainability for industry 5.0.
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