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Abstract: Winter wheat fallow policy has a greater effect on water resource management, and the
water-saving effect in the fallow process of winter wheat can provide data support for precise water
resource utilization planning. In order to evaluate the water resource consumption of winter wheat
and the related effect from winter wheat fallow, this study searched the changing trends of cultivated
land evapotranspiration under five different scenarios through the object-oriented extraction method
and a SEBS model based on multi-source data. The results indicated that the evapotranspiration
during winter wheat growing period was higher than that of winter wheat fallow land, and there
was no big difference in evapotranspiration between the fallow land during harvesting and the
emergence of new crops. The evapotranspiration of winter wheat was higher than that of various
fallow land, and the evapotranspiration of abandoned land was higher than other fallow land in the
winter wheat growing season. From this point, this study concludes that the fallow land policy can
effectively reduce evapotranspiration during the growing of winter wheat, which is conducive to the
sustainable exploiting of water resources.

Keywords: water resource sustainable development; remote sensing; water-saving effect; evapotranspiration

1. Introduction

Water resources are scarce in the North China Plain with insufficient precipitation and
river water. In order to carry out agricultural production, a large amount of groundwater
is extracted for irrigation, especially for the winter wheat growth during which the pre-
cipitation is low [1,2]. Long-term over-exploitation of groundwater has caused the levels
of shallow groundwater to drop. The Pilot Implementation Plan of Cultivated Land Sea-
sonal Fallow System in Hebei Province was issued by the Department of Agriculture and
Rural Development of Hebei Province and the Department of Finance of Hebei Province,
China on 2 July 2019 [3]. In this plan, both natural fallow and ecological fallow were
recommended in order to obtain the benefits of seasonal fallow. Satellite remote sensing
was proposed to be employed for the tracking and monitoring of seasonal fallow land.
We could understand the changes in surface water through evapotranspiration, which
helps to clarify the role of winter wheat fallow in water conservation and provide scientific
data support for the sustainable development of water resources [4,5]. Therefore, it was
desired to quantitatively describe the changes in surface water evapotranspiration during
the fallow period of winter wheat.
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Previously, a number of studies for fallow land information extraction and evapo-
transpiration calculation were proposed through crop classification and evapotranspira-
tion models. There are many remote sensing crop classification methods such as time-
series vegetation index [6], supervised classification [7], decision tree [8,9], and neural
networks [10,11], where the time-series vegetation index method has a better classification
effect but requires a higher temporal resolution. To meet higher temporal resolution, the
existing time-series vegetation index usually used these combinations in previous studies:
MODIS-EVI [12], MODIS-NDVI [13], Landsat-NDVI [14,15], MODIS-Multi-Index [16], and
Multi-Source Satellite-NDVI [17]. Sentinel-2 has a relatively high spatial resolution (10 m
for visible light and near infrared) and temporal resolution (10 days, five days after the
launch of Sentinel-2b in 2017), and its temporal resolution was sufficient to capture the
vegetation phenology information. Therefore, many scholars have carried out research
based on Sentinel-2 time series data in vegetation classification [18–20], vegetation health
status monitoring [21], yield estimation [22,23], etc. For example, Magnus Persson [18]
used Sentinel-2 time-series data to classify tree species in central Sweden and compared
the sensitivity of Sentinel-2 to the classification; Sébastien Rapinela [19] used time-series
Sentinel-2 data to classify vegetation communities on the grassland, and proved that time
series data were better than single date and single band data in the classification accuracy
of vegetation types; Patrick Griffiths [20] used Sentinel-2 and Landsat combined time series
data to realize the mapping of German crop types; moreover, Mariana Belgiu [24] used the
time-weighted dynamic time warping algorithm (TWDTW) for object-based classification,
and compared the pixel-based TWDTW algorithm with the random forest algorithm, and
the object-based TWDTW algorithm with the random forest algorithm.

Most of the evapotranspiration models have been proposed based on radiative trans-
fer theory such as SEBAL and SEBS. Penman [25] first proposed the concept of potential
evapotranspiration and the calculation formula of evapotranspiration without horizontal
water vapor transportation and then proposed a model to obtain the evapotranspiration
on a single leaf based on the research of the water and transpiration mechanism. Menenti
proposed the SEBI model, which used the relationship between surface temperature and
evapotranspiration to realize the parameterization of evapotranspiration [26]. Bastiaanssen
developed the SEBAL algorithm, which was based on the surface energy balance equa-
tion and added a method to calculate latent heat flux [27,28]. Su [29] proposed a SEBS
model consistent with the basic principles of the SEBAL algorithm that no longer uses
the remainder method to calculate the instantaneous evapotranspiration, but calculates
the evaporation ratio by determining the latent heat flux of the dry and wet limit, and
then calculates the daily evapotranspiration by the relatively constant evaporation ratio.
Later, some scholars improved the calculation method of daily evapotranspiration and the
method of obtaining parameters on the basis of the SEBS model [30].

In past research, the research on fallow land has mainly focused on social, economic,
and extraction methods [31], while few studies have on the water-saving effect with
irrigation [32,33]. Research on evapotranspiration calculation with SEBS mostly uses
MODIS data, which have low spatial resolution for large-area, and Landsat data [34],
which has low temporal resolution for a single day. The research of fallow land and
evapotranspiration has been relatively independent, while few have been conducted on the
evapotranspiration of fallow land, and it is difficult to balance the high temporal resolution
and high spatial resolution that is needed in the water-saving research of winter wheat
fallow.

Therefore, as an extension of previous studies, the aim of this study was to obtain
multi-temporal, high-resolution evapotranspiration distribution trends and accurate evap-
otranspiration data of winter wheat and fallow land by breaking through the limitations of
existing remote sensing platforms, implementing multi-source data collaboration methods
and exploring multi-source remote sensing data evapotranspiration inversion research
programs. We chose Hengshui City, Hebei Province as the research area in the study as it is
located in the North China Plain where there is much winter wheat fallow land.
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2. Data and Methods

In order to explore the evapotranspiration changes between the fallow land and
planting areas of winter wheat, a general analysis framework was proposed as follows:
First, according to the phenological characteristics of winter wheat and fallow land, winter
wheat and fallow land were extracted from the remote sensing images. Then, the surface
energy balance system (SEBS), a relatively perfect evapotranspiration inversion method,
was used to retrieve the evapotranspiration. Finally, the evapotranspiration trend of winter
wheat and fallow land was obtained to analyze the impact of winter wheat fallow on the
sustainable use of water resources.

2.1. Multi-Source Data Processing

The data mainly include the remote sensing data that were used to calculate the
surface parameters (e.g., Sentinel-2 data and Landsat 8 data), and the meteorological data
that were used for analyzing atmospheric parameters such as temperature and pressure,
and surface temperature products.

Remote sensing data includes Sentinel-2 data, Landsat 8 data, and MODIS data.
Sentinel-2 is a European wide-swath, high-resolution, multi-spectral imaging mission. The
full mission specification of the twin satellites flying in the same orbit but phased at 180◦,
is designed to give a high revisit frequency of five days at the Equator. Sentinel-2 carries an
optical instrument payload that samples 13 spectral bands: four bands at 10 m, six bands at
20 m, and three bands at 60 m spatial resolution. Sentinel-2 data can be downloaded from
the European Space Agency (ESA) (https://scihub.copernicus.eu/dhus/#/home, accessed
on 18 July 2021). The Landsat 8 satellite payload consists of two science instruments—
the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). These two
sensors provide seasonal coverage of the global landmass at a spatial resolution of 30 m
(visible, NIR, SWIR); 100 m (thermal); and 15 m (panchromatic). A Landsat 8 scene size
is 185 km × 180 km and can be downloaded from the U.S. Geological Survey (USGS) (
https://glovis.usgs.gov/, accessed on 18 July 2021)). The MODIS has a viewing swath
width of 2330 km and views the entire surface of the Earth every one to two days. Its
detectors measure 36 spectral bands between 0.405 and 14.385 µm, and it acquires data at
three spatial resolutions—250 m, 500 m, and 1000 m. MODIS data can be downloaded from
the National Aeronautics and Space Administration (NASA) (https://ladsweb.modaps.
eosdis.nasa.gov/, accessed on 18 July 2021).

Due to the lack of thermal infrared bands in Sentinel data, the surface temperature
cannot be retrieved. Landsat 8 and MODIS surface temperature products are used to sup-
plement Sentinel data. Sentinel-2 data and Landsat 8 data require radiometric calibration
and atmospheric correction to generate apparent reflectance and emissivity, and MODIS
temperature products need to be reprocessed.

Meteorological data came from daily station observations from the China Meteorolog-
ical Data Network including air pressure, temperature, relative humidity, wind direction
and speed, precipitation, evaporation, sunshine, and ground temperature. In order to avoid
the errors in the marginal area, the sites around the study area were processed together
when selecting sites. Next, we performed normalized conversion, format conversion, and
quantitative relationship conversion on the data to obtain daily raster data of air pressure,
relative humidity, wind speed, and sunshine.

In addition, the wind speed was observed at 10 m, while other meteorological elements
were measured at 2 m. Therefore, the wind speed at 10 m was converted to the wind speed
at 2 m for the SEBS model applications. The conversion formula can be expressed as
follows [35]:

U2 = U10
4.87

67.8 ∗ 10 − 5.42
(1)

where U2 and U10 are the wind speed at 2 m and 10 m, respectively.

https://scihub.copernicus.eu/dhus/#/home
https://glovis.usgs.gov/
https://glovis.usgs.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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The specific humidity in the SEBS model can be calculated from relative humidity,
temperature, and air pressure:

q =
0.622 ∗ es ∗ K

(P − 0.378es) ∗ 100
(2)

where K and P are the relative humidity and the air pressure, respectively.
es is the saturated vapor pressure, which can be expressed from temperature t:

es = 6.1078e
17.27(t−273.16)

t−35.86 (3)

2.2. Object-Oriented Extraction Method

The extraction of winter wheat and fallow land was based on the phenology and
growth cycle length. Phenological information refers to the vegetation index and other
indicators for reflecting vegetation state from crops sowing to harvest. Crops with different
growth cycles have various change trends for the related indicators under the same time.
The phenological information on the remote sensing data is reflected as the image changes
over time. The long-term series data with a stronger anti-noise ability can effectively
represent vegetation phenological information [17,36].

The normalized difference vegetation index (NDVI) is the significant indicators for
reflecting the response characteristics of vegetation reflectance increase in the near-infrared
band. NDVI that is affected by pigment and structure can effectively reflect the regu-
lar changes under different growth stages of crops. Due to different crops with special
NDVI during the whole growth period, the vegetation index combined with time-series
information can explore growth period and growth state to distinguish the crops.

The multi-resolution segmentation algorithm (MRS) was applied for image segmenta-
tion through aggregating pixels into objects by iterating from the pixel level (Trimble, 2011).
Datasets of various extents were generated by partitioning each image into regular tiles.
The smallest tile size was 100 × 100 pixels, which doubled iteratively, until there was no
further partition, and the image was processed at its full extent. The geometric accuracy
improvement in quality rate during the multi-resolution segmentation was performed in
smaller extents compared to the whole image segmentation [37].

MRS algorithms were provided by the eCognition® software (Trimble, 2011), which
requires image layer weight, scale parameter, shape factor, and compactness factor. The
scale parameter determines the degree of segmentation. More object units are segmented
as smaller scale parameters with a smaller single area. In order to avoid trial and error and
the uncertainty of subjective selection, the Estimation of Scale Parameters 2 (ESP2) [38] was
used to assist, which relies on the cross-scale local variance to automatically identify three
suitable scale parameters for hierarchical segmentation.

The curve matching method as an effective method for long-term data classification
was integrated with the system analysis framework. The curve changes caused by pheno-
logical shift for crop classification were limited to advance or delay (translation) due to the
growth period compression or extension (tension). The curve had a small change range,
and similar crops had closer time-series NDVI curves.

The time-series NDVI curve was calculated for each object after segmentation. Through
matching the calculated time-series NDVI curve with the reference time-series vegetation
index curve, the crops can be classified according to the matching results. The matching
algorithm was time-weighted dynamic time warping. The algorithm uses a twist function
to describe the time correspondence between the curve to be matched and the reference
curve. The classification criteria can efficiently discriminate fallowed and non-fallowed
objects, as shown in Table 1.
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Table 1. Land use classification system and description.

Land Use Classification Winter Wheat Fallow Type Description

Winter wheat – Arable land with winter wheat

Winter wheat fallow

Spring corn Arable land without winter wheat but with spring corn

Summer corn Arable land without winter wheat but with summer corn

Abandoned Arable land without crop

Town – City and the artificial facilities such as building, road

Water – Water

Other vegetation – Features with vegetation characteristics but not belong to above

2.3. Inversion of Surface Evapotranspiration

The evapotranspiration inversion was based on SEBS, which consists of a set of tools for the
determination of the land surface physical parameters such as albedo, emissivity, temperature,
vegetation coverage, etc. from spectral reflectance and radiance measurements; a model
for the determination of the roughness length for heat transfer; and a new formulation for
the determination of the evaporative fraction on the basis of energy balance at limiting
cases [29].The inversion principle of the SEBS model is based on the energy balance between
the energy received on the Earth’s surface and that used for surface and soil temperature
increase, water evaporation, and biological photosynthesis. According to the energy
balance principle, the energy relationship on the surface can be expressed as:

R = G + H + λE + PH (4)

where R is the net radiation that denotes the energy of net surface absorbed or consumed;
G is the soil heat flux for the heat exchanged between the soil surface layer and vegetation;
H is the turbulent sensible heat flux; λE is the turbulent latent heat flux, where λ is the
latent heat of vaporization of water; and E is the evapotranspiration. PH is the biomass
energy increased by vegetation photosynthesis with a small and negligible value.

According to the SEBS, R requires surface albedo, emissivity, and land surface temper-
ature, G requires vegetation coverage, and H requires meteorological data. The emissivity
and vegetation coverage are easy to obtain, while the surface albedo needs to be reflected
by different parameters. The Sentinel-2 data do not have thermal infrared bands and cannot
directly retrieve the temperature. The land surface temperature is replaced by the predicted
Landsat 8 temperature, which was fused by MODIS temperature sequence and Landsat 8
surface temperature. Since the estimated temperature is asynchronous with Sentinel-2, we
compared the results of the Sentinel-2 inversion with the results of Landsat 8 during the
following experiment to ensure that the results were available.

The fusion method in this study was the spatio-temporal integrated temperature
fusion model (STITFM), which is based on the assumption that the difference of the same
homogeneous surface is uniform on different sensors. Assuming that the land-cover
type and sensor calibration does not change between dates T1, T2, and T3, then the
residual would also not change from dates T1, T2, and T3. Furthermore, random noise is
neglected [39]. The difference between the MODIS sensor and the Landsat sensor at the
same time is regarded as the error between the two sensors, and the error in T2 can be
calculated through T1 and T3 (Figure 1).
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Figure 1. The sketch map of the surface temperature fusion principle.

Direct surface albedo is the main factor that affects the radiated energy of the ground.
The single-band reflectance of Sentinel-2 multi-spectral data needs to be converted to
wide-band albedo, and the conversion formula is as follows [40]:

α = 0.2688α2 + 0.0362α3 + 0.1501α4 + 0.3045α8A + 0.1644α11 + 0.0356α12 − 0.0049 (5)

where αi is the reflectance of the i band.
In order to verify the accuracy of the surface reflectance results, the area that Landsat

8 and Sentinel-2 passed at the same time on 13 May 2019 were selected. As shown in
Figure 2, the results of Landsat 8 and Sentinel-2 data were consistent with the approximate
texture and brightness. The surface albedo of Sentinel-2 was sharper than that of Landsat 8
with high contrast and distinct boundaries.
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2.4. Analysis on Sustainable Utilization of Fallow Water Resources

The spatial overlay analysis and region analysis were used to process the winter wheat
fallow and inversion evapotranspiration, and the comparative analysis was conducted
on winter wheat and winter wheat fallow that contained spring corn, summer corn, and
abandoned land. The obtained analysis for the evapotranspiration difference between the
fallow land and winter wheat planting areas was used for comparing the related water
resource consumption and water saving effects.

3. Process and Discussion
3.1. Fallow Extraction

An object-oriented time-series vegetation index curve matching method was applied
for the extraction of winter wheat and fallow. Based on the whole growing season of winter
wheat, the time-series index curve was constructed from January 2019 to October 2019.
More than ten winter wheat plots were uniformly selected as samples, and the vegetation
index of samples at each time point was calculated to construct the reference time-series
vegetation index. NDVI average values of each time-series for each object were calculated
for the segmented time series vegetation index image, and the time-series vegetation index
curves were proposed to match with the reference time-series vegetation index curve to be
classified (Figure 3).
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3.2. Evapotranspiration Inversion

According to the principle of the SEBS model, evapotranspiration is derived from
surface net radiant fluxes, soil heat flux, and sensible heat flux. The evaporation ratio can
be calculated under two extreme conditions of “extremely dry” and “extremely wet” to
analyze the daily evapotranspiration. Comparing the remote sensing inversion results of
the SEBS model with the reference crop evapotranspiration based on the PM formula, it
was found that the results from the SEBS model were in a greater agreement with the PM
model. Root mean square errors were 0.5366 on 13 May and 0.5433 on 23 May.

Compared with the Sentinel-2 data, Landsat 8 data have theoretical advantages in
calculating single-day evapotranspiration and can directly obtain the surface temperature
of the corresponding time of the image. However, Landsat 8 does not have advantages in
revisit period resolution, so Landsat 8 data are used as a time sequence supplement and a
source of surface temperature images. At the same time, in order to explore the impact of
indirect surface temperature on the inversion of evapotranspiration through Sentinel-2 data,
a comparative experiment was conducted to study the effects of asynchronous parameters.
The result showed a very small difference between the results of Sentinel-2 and Landsat 8.

The area that Landsat 8 and Sentinel-2 passed at the same time on 13 May was selected,
and the Landsat 8 and Sentinel-2 data were separately used to invert surface parameters
including surface emissivity and albedo. Common meteorological parameters and surface
parameters were used to retrieve evapotranspiration.

In general, the evapotranspiration retrieved by Sentinel-2 and Landsat 8 on 13 May
were completely consistent in spatial distribution. High evapotranspiration areas all
appeared in Beijing’s main town area and lakes, and the low evapotranspiration areas all
appeared at the northwest border, and the overall distribution was completely consistent,
as shown in Figure 4. There were 91% and 91.8% of the results from Sentinel-2 and Landsat
8 with a distributed interval value of [3, 4.2], respectively.

In addition, 89,172-pixel pairs in the range were uniformly selected to further explore
the relationship between the results from Sentinel-2 and Landsat 8 inversion. The results
show that the root mean square error between Sentinel-2 and Landsat 8 inversion was
0.1193. The linear regression result R2 was 0.8934, and the linear regression coefficient was
0.9575 (Figure 5).

Through the comparison between the Sentinel-2 inversion results and Landsat 8
inversion results, the evapotranspiration from Sentinel-2 inversion is feasible. The results
from Sentinel-2 and Landsat 8 inversion were highly consistent in numerical distribution
and spatial distribution. There were some outliers in the low-value area. A total of
45 outliers were deviated more than 1 mm, which was negligible compared to the total
number of samples of 89,172.

In order to specifically analyze the change law of evapotranspiration of winter wheat
and fallow land, the superposition analysis of daily evapotranspiration and the range of
fallow land was carried out to obtain the variation curve of evapotranspiration of winter
wheat and fallow land over time to explore the change trend in evapotranspiration.
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Figure 5. Scatter plot of inversion results of Sentinel-2 and Landsat 8.
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3.3. Effect of Winter Wheat Fallow Land on Evapotranspiration

The evapotranspiration of winter wheat and fallow land during the remote sensing
monitoring dates showed an increasing trend with the passage of time, but some of the
days indicated a slight decrease. In addition, winter wheat and fallow land had similar
trends. When the evapotranspiration of winter wheat decreased, the evapotranspiration
of fallow land presented a corresponding decrease. Similar trends were related to the
meteorological and atmospheric conditions on that day.

We compared the evapotranspiration under five scenarios in Table 2. The total evapo-
transpiration of winter wheat during the remote sensing monitoring dates was 117.69 mm,
and the evapotranspiration before the harvest date (June 9) was 62.01 mm. In fallow
land, the evapotranspiration of spring corn, summer corn, and abandoned farmland were
57.50 mm, 56.67 mm, and 57.97 mm, respectively, while as a reference, the town evapotran-
spiration was 58.22 mm. The evapotranspiration of fallow winter wheat was reduced by
about 8%.

Table 2. Statistics of evapotranspiration in Hengshui.

Date Range Town Spring Corn Winter Wheat Summer Corn Abandoned

3 January 2019–9 June 2019 1 58.22 57.50 62.01 56.67 57.97
9 June 2019–27 July 2019 56.99 58.50 55.68 55.93 54.92
3 January 2019–27 July 2019 115.21 115.85 117.69 112.60 112.89

1 9 June 2019 was the day closest to the harvest date in Hengshui.

The evapotranspiration of summer corn in fallow land was lower than that in winter
wheat planting areas from January to May. Compared with winter wheat, the evapotranspi-
ration of summer corn was similar in January, and slightly higher in May. From mid-April
to mid-June, the evapotranspiration of winter wheat was significantly higher than that of
summer corn in fallow land. Winter wheat grew vigorously, and the evapotranspiration
increased obviously during the period (Figure 6).
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Figure 6. Difference in evapotranspiration between winter wheat and summer corn.

Moreover, the summer corn area was in a fallow state for planting during this period,
and the surface evapotranspiration was small. After June 9, winter wheat began to mature
and harvest, and the evapotranspiration was substantially reduced.

In contrast, the difference in evapotranspiration between winter wheat and spring
corn in fallow land was relatively small. An abnormal point appeared in mid-March. On
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that date, the image was incomplete and the spring corn area was small, which led to sharp
fluctuations in the difference. The fluctuations in mid-April were normal fluctuations that
were caused by the difference in evapotranspiration growth rates between winter wheat
and spring corn. During this period, winter wheat grew vigorously and evapotranspiration
rose, and the evapotranspiration of spring corn had not increased yet. Then, spring corn
entered the rapid growth period, the evapotranspiration gap narrowed, and the time span
was large, resulting in a sharp decline in the image. The evapotranspiration trend in winter
wheat after mid-June was consistent with that of summer corn (Figure 7).
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Figure 7. Difference in evapotranspiration between winter wheat and spring corn.

4. Conclusions

In this study, the time-series vegetation index method and the multi-source data SEBS
model based on Sentinel-2 and Landsat 8 data were applied to analyze the impact of fallow
land on the sustainable use of water resources systematically. The study indicates that the
time-series vegetation index method can extract fallow land and its type effectively and
provide a basis for the detailed study of evapotranspiration; the multi-source data from
the SEBS model can provide multi-temporal, high-resolution evapotranspiration of fallow
land and its change trends, which offer data support for policy formulation and affects the
evaluation of the sustainable development of water resources.

The period when the dramatic evapotranspiration difference exhibited between winter
wheat and fallow land was from mid-April to pre-harvest time. Winter wheat evapotran-
spiration was high during this period, and the evapotranspiration of winter wheat was
not very different from fallow land between winter wheat harvest and the emergence of
new crops during the period from the harvest of winter wheat to the emergence of new
crops. In winter wheat fallow land, the evapotranspiration of cultivated land without crops
during the winter wheat growing season was the lowest, but the evapotranspiration of
abandoned land was higher than that of cultivated land with crops during the period from
the harvest of winter wheat to the emergence of new crops.
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