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Abstract: This study investigates the application of a smart manufacturing execution system (SMES)
based on the current controlling structure in a medium-sized company in the Czech Republic. Based
on existing approaches on the architecture of SMESs, this paper develops a sample architecture
grounded in the current controlling structure of small and medium-sized enterprises (SMEs). While
only a few papers on approaches to the given topic exist, this approach makes use of operative
production controlling data and uses a standardisation module to provide standardised data. The
sample architecture was validated with a case study on a Czech SME. This case study was conducted
on two different entities of one production company suggesting differences in the entities due to the
nature of production. The research showed that simple tasks with intelligent welding equipment
allow for a working SMES architecture, while complex assembly works with a high extent of human
labour, and a high number of components still remain an obstacle. This research contributes to
gathering more understanding of SMES architectures in SMEs by making use of a standardisation
module.

Keywords: production controlling; Industry 4.0; OPC 4.0; machine learning; computer-aided
standardisation; smart manufacturing; smart manufacturing execution system; sustainability

1. Introduction

Industry 4.0 and the Internet of things (IoT) have been popular and widely discussed
topics in recent years. Expecting substantial changes to happen to companies of all kinds in
the upcoming years [1,2], these trends will have a persistent effect on companies, the way
of work, and society as a whole [3]. Since the introduction of the term in 2011 [4], various
research has been conducted on Industry 4.0 [5,6], as its introduction will have an impact on
management and operations in companies. Industry 4.0 is described as a new paradigm [7]
of changes in organization and technical aspects throughout the value chain leading to new
business models [8], whereas IoT describes technologies for network-connected machines
and devices that are expected to enable companies to introduce Industry 4.0 principles [9].
IoT enables the horizontal and vertical integration of tasks, information systems and their
data, and decision making, leading to higher requirements for the supporting systems [10].
The application of new, smart technologies based on the IoT [11] allows companies to
make use of data in a far wider range than before [12]. To introduce Industry 4.0, further
approaches, technologies, and methodologies are discussed, such as artificial intelligence
(AI) [13], multi-agent systems (MAS) [14,15], cloud-based manufacturing [16,17], and
blockchain technologies [18].

Using data through interconnected IoT services and devices provides companies
with the opportunity to further automate and to facilitate communication within the IT
networks [19]. These IT networks belong to the internal company network, as well as
to supply chains where data have to be exchanged with suppliers and customers [20].
Assuming the potential of computers and devices in the future, in 2004, White already
expected information systems to be able to provide and exchange data in almost real time
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(referred to as “right time”) [21]. Interconnected IT networks exchanging data form a
cyber-physical network (CPN) [22,23]. Based on the integration of heterogeneous multi-
source data and the integration of knowledge into production processes, CPNs allow for
integrated and interoperable manufacturing processes [20].

Allowing for an interoperable manufacturing process, Industry 4.0 may also be un-
derstood as an intelligent production flow from machine to machine based on data [24].
Equipping manufacturing with IoT devices leads to data-driven smart manufacturing ca-
pable of adapting fast to changes and triggers [25]. According to Kusiak, the core of smart
manufacturing is material handling, including logistics and supply chain management
(SCM), being integrated into the operations of the company [26]. A further embedding
of smart manufacturing into a whole company network working on smart principles re-
sults in the concept of a smart factory [27]. Smart factories are based on the use of the
most recent information technologies in order to provide further integration of company
processes [11,28].

Expecting a purely data-driven factory requires the collection, storing, and distri-
bution of data [29] from sensors and devices paired with a boost in data analysis and
the development of predictive engineering [26]. According to [30], this calls for smart
production control, being able to monitor and assess flows and requirements. Furthermore,
smart production control has to be able to make decisions [31]. The issue of requiring the
most exact scheduling and controlling of smart production for decision-making processes
persists up to today [32]. Smart production control and management is one of the central
topics of smart factories, as realization is progressing slowly [33]. Treating the data as
a digital twin of smart manufacturing devices, products, and components, the physical
circumstances are digitally resembled to facilitate distribution, processing, and assessment
of data [34].

While ideas have been produced in the last decades, the fundamental issues of smart
production control have not yet been solved [33,35]. Moreover, small and medium-sized
enterprises (SMEs) struggle with lacking technology, knowledge, and finances to support
their transition towards Industry 4.0. Existing theoretical frameworks lack practical ap-
plications due to the missing technical means [32]. While smart devices are evolving and
approaches are created [36], this paper looks at how SMEs might set up their production
control and management for the transition that has begun towards Industry 4.0 [37] while
making use of existing systems. While LEs are assumed to use technology, knowledge, and
resources to invest in new technologies, such as IoT, SMEs are believed to require other
downsized frameworks with regard to their resource situation and with regard to their
capabilities [38]. It is the aim of this paper to propose a framework based on today’s exist-
ing components, taking into account the principles of Industry 4.0. This is done through
qualitative research as a multiple case study on two production sites of one single Czech
production company.

2. Materials and Methods
2.1. Literature Review
2.1.1. Smart Manufacturing

Smart manufacturing assumes the principles of manufacturing under Industry 4.0.
Developed as the manufacturing framework within a smart factory (also a digital fac-
tory, digital manufacturing, a smart factory, an interconnected factory, integrated indus-
try, or Industry 4.0 [39]), it represents an alternative framework to multi-agent systems
(MAS) [14,15] and cloud-based manufacturing [16,17].

Smart factories and smart manufacturing rely on the combination of smart objects
and big data analytics [15]. Big data includes technologies and analytical approaches for
extracting value from information through a transformation being characterised by high
volume, velocity, and variety [40]. The concept of big data provides the potential to collect,
process, and distribute a vast amount of data. Industrial big data analysis makes use of
these data for diagnostics, optimization, and reconfiguration of the whole system [41].
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Data for big data technology may be collected from the CPN within the company or from
external online resources [42]. Big data is therefore seen as an important component for
data-driven manufacturing approaches, such as smart factories, to achieve higher effectivity
and productivity [43].

Smart manufacturing should provide cost-effective, sustainable, and safe manufactur-
ing. In these measures, it is estimated to be far more capable than usual manufacturing
processes [44]. Industry 4.0 gives a boost to computer-integrated manufacturing (CIM), al-
lowing for a more decentralized architecture based on CPN [45]. IoT allows for integrating
devices and equipment into the company’s information system infrastructure [46]. While
Industry 4.0 is based on M2M communication [47], CIM was initially developed with a fo-
cus on human employees [48]. This includes self-organized diagnostics and repair requests
communicated to machine and equipment suppliers and allowing for smart and intelli-
gent predictive maintenance (SIPM) [49]. Components within the Industry 4.0-framework
act as autonomous agents [44]. The transition from usual manufacturing towards smart
manufacturing usually passes through the stages of connected (computerization and con-
nectivity), transparent (visibility and transparency), and intelligent (predictive capacity
and adaptability) [50].

Rising manufacturing complexity requires information-based technologies working
in real time [51]. Concern not only focuses on one department but has to be raised with
regard to the whole supply chain and all further processes in the company. Combined with
smart logistics that focus on managing and controlling supply chains [52], this leads to
smart manufacturing supply chains (SMSCs). SMSCs determine and coordinate production
and transportation features, such as quantities and timing, based on real-time data [53].
To resemble the actual state of products and devices, the system applies digital twins [54].

Relying on M2M communication makes data quality and data quantity critical factors
for the implementation of smart manufacturing [55]. Big data technologies act as a feeding
technology for data-driven analytics in smart manufacturing [56].

The features of big data technologies can be characterized by the features volume,
velocity, variety, veracity (data quality), and value [57]. While some sources name only
volume, variety, and velocity [58], other sources use value, veracity, and visualization [59].
Anticipating a higher data quantity (volume) and a higher resolution of data (veracity)
requires further development in big data technologies [60]. In order to be able to apply
big data for manufacturing purposes, data have to be transmitted with a subject-related
context for correct interpretation [55]. A study from Günther et al. showed that a continuous
restructuring and realignment of processes, data handling, and big data is also required
in smart environments [61]. However, today’s manufacturing still relies on independent
systems connected through various physical and data interfaces [60].

Smart manufacturing reference architectures have been proposed by various au-
thors. Papazoglou et al. developed a reference architecture for automotive industries
with a specific automotive sector extension [62]. As manufacturing knowledge is process-
bound and product-related, today’s settings lack the interrelation of special manufac-
turing knowledge [63]. A pre-determined interface and query language should respect
these interrelations during the retrieval, processing, and distribution of data, information,
and knowledge [62]. Another approach is the smart manufacturing systems (SMS) architec-
ture developed for service environments, where components, such as enterprise resource
planning (ERP) and supply chain management, are understood as services. Interactions
between smart manufacturing and other parts of the company or the supply chain are
handled through a business intelligence (BI) tool [64]. For separated company-internal
activities, another approach is the integrated CAS system based on standardised data [65].

Other approaches are represented by the smart manufacturing execution system
(SMES), focusing on the elimination of machine-to-human and human-to-machine inter-
faces to retain the existing manufacturing execution system (MES) resources [66]. The MES
acts as a centre point for data collection in order to keep the existing structures of the
company intact (see Figure 1). A message broker element ensures both-sided communi-



Sustainability 2021, 13, 10181 4 of 24

cation between the components [67]. A further difference between MESs and SMESs is
that MESs focus mostly on management support, while SMESs work in a broader range in
supply chains [68]. A service-based SMES approach has been proposed for SMEs using
an Android-based interface in order to reduce the widely existing paperwork in these
companies [69].

Figure 1. Sample SMES architecture (adapted from [67]).

2.1.2. Smart Production Control

Handling a vast amount of data in smart factories and SMESs requires a control
system. It is assumed that previously perceived issues, such as the dilemma of the job shop
scheduling problem (JSP), may be solved with the help of new technologies and MAS [70].
Due to the various influences of factors, the JSP is impervious [71]. MAS approaches
are able to trigger production and control in a decentralized way, where each agent acts
autonomously [72]. Research has been conducted with MAS systems using MES and ERP
systems as data hubs [73]. This implies that agents may be found on various levels, such as
order fulfilment agents, product agents, machine agents, supervisor agents, coordinator
agents, and AI agents [74].

The reference service-oriented architecture (SOA) proposed by Papazoglou et al.
places the production scheduling into its centrepoint, as the production schedule contains
information on all crucial variables for the company network [62]. All approaches have
in common that they work based on real-time data gathered through sensors from the
CPN [75]. Auto-identification (Auto-ID) and radio frequency identification (RFID) are
expected to allow for complete in-process tracking [76]. The application of these sensors
can be applied within the company, as well as in supply chains [50].

While data and prediction models are missing for many situations, AI is applied
through machine learning. Research conducted with machine learning approaches for
planning and control enabled companies to predict disruptions in supply chains [77]. Deep
learning approaches have been found to learn 57 Atari games without prior knowledge of
the games [78]. Even though the best results were achieved in model-free environments,
real-time scheduling was tested with a reinforcement learning approach [79]. Research
studies have been conducted in logistics [80] and in the chemical industry [81].

However, these approaches relied on full information with model-free learning with
uncertainty [82]. Management decision support was explored in model-free case studies
in investment applications [83]. Due to the complexity of its learning, the application is
limited to laboratory case studies [84]. Case studies applying machine learning conducted
on the smart production planning and control (smart PPC) model of Oluyisola et al. showed
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ERP systems to be the centre of smart manufacturing [50], matching with findings from
previous research [85].

Chinese research proposed a self-adaptive collaborative control (SCC) mechanism as
part of a smart production logistics system [86]. This integrated approach of production
and logistics assesses the acquired data with data from the knowledge base in order to
retrieve deviations and learning triggers [87]. The control model is applied vertically
through the three layers of the smart production, while monitoring is set horizontally.
Manufacturing process information is processed by the collaborative control [86].

While large companies tend towards a smart process design, smaller companies may
focus more on smart products [50]. An issue for the transition towards smart manufacturing
is the existing implication of human resources, which will slowly progress through further-
advanced companies [88,89]. Hence, it is questionable whether smart production control
approaches are feasible for SMEs.

2.2. Small and Medium-Sized Enterprises (SMEs)

According to the European Commission, small and medium-sized enterprises are
defined as companies with a maximum of 250 employees and with a maximum revenue
of EUR 50 million. Above these numbers, companies are considered to be large enter-
prises [90]. While small in number of employees, SMEs account for the vast majority of
companies globally in various economies. In Germany, SMEs represent more than 90% of
registered companies [91], which is in line with the percentage for the whole European
Union. Furthermore, this matches with the structure of Asian economies [92]. Due to the
number of enterprises, SMEs employ 60% of all employees in Germany [91].

SMEs are known to face several constraints in human, financial, and technical re-
sources [93]. Due to financial limitations, a South Korean study comes to the conclusion
that financial government incentives will help to defeat the lack of finances, as this hin-
ders SMEs in their innovation and development of forces [94], and SMEs seem unable to
generate the required financial funds themselves and struggle in acquiring funds from
banks [95]. Besides the mentioned constraints, the Organisation for Economic Co-operation
and Development (OECD) identified missing managerial capabilities and low productivity
as reasons for lacking competitive ability [96]. SMEs therefore seem unable to leverage
their smaller size and lower transaction cost to gain competitive advantages [94].

With regard to digital factories and smart manufacturing, research also identified
constraints for SMEs in IT [97]. With the integration of various IT systems, IT security is also
coming into focus [98], being added into supply chain risk management (SCRM) [99]. Even
though LEs are usually well equipped in IT security, SMEs in supply chains represent a
threat [100] by opening a backdoor for intruders and malware searching for the knowledge
of LEs [101]. Although IT security is considered to have a deciding role for enterprises in
the future [102], SMEs seem to hesitate to invest in IT security. This might also explain
why SMEs in the logistics industry were found to lack skills in IT competence [52]. A Ger-
man study found that while LEs are looking for long-term strategies to secure benefits
when implementing production planning and control, SMEs are focusing on short-term
benefits [103].

While SMEs are struggling with their constraints, research approaches have tried
to develop downsized small-scale strategical frameworks, adapted to the reality of these
companies [38]. While Mittal et al. found 15 articles on smart manufacturing paradigms in
SMEs [93], these approaches lacked taking the reality of SMEs into account. As a result,
SMEs do not feel fit for adopting smart manufacturing [104], and managers and owners
do not see the benefit for their companies [105]. Hence, Mittal et al.’s own approach is the
smart manufacturing adoption framework (Figure 2), based on five stages: (i) identifying
already available manufacturing data in the SME, (ii) assessing readiness of the SME, (iii)
winning over SME management and staff for smart manufacturing, (iv) developing an
individual smart manufacturing vision, and (v) identifying tools and practices needed
for realization [106]. SMEs need to develop their own individual tool kit in order to be
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able to conquer their individual challenges [93]. However, it seems that SMEs lack an
understanding of the importance of data [107].

Figure 2. Smart manufacturing adoption framework for SMEs (adapted from [106]).

Publications listed different stages of maturity for smart manufacturing in SMEs.
A five-stage model was proposed by Qin et al. (1. single-station automated cells, 2.
automated assembly system, 3. flexible manufacturing system, 4. computer-integrated
manufacturing (CIM) system, and 5. reconfigurable manufacturing system) [108] and
Mittal et al. [109] to assess the development of SMEs towards smart manufacturing. Schu-
macher et al. instead proposed a maturity index [105]. Another approach suitable for
SMEs proposed a three-stage model (1. initial, 2.managed, and 3. defined) [110]. Further
approaches have applied up to nine stages of maturity but lack applicability with regard
to SMEs [109]. In order to pay attention to SMEs’ realities, Weyer et al. suggest adopt-
ing a standardized and modular approach to implement only the required components
tailor-made for the given company [22].

As SMEs will have to deal with Industry 4.0 and smart manufacturing in the future
to stay competitive in the market [111], this paper attempts to develop a downsized and
small-scale SMES framework for SME manufacturing companies. This SMES framework
will be verified by a case study on a Czech production company.

2.3. Development of the Standardized SMES Framework

According to previous research, the requirements of a particular SME in smart man-
ufacturing may be identified by the smart manufacturing adoption framework for SMEs
proposed by Mittal et al. This framework assesses the readiness and requirements of SMEs
in five steps: (i) identifying already available manufacturing data in the SME, (ii) assessing
readiness of the SME, (iii) winning over SME management and staff for smart manufactur-
ing, (iv) developing an individual smart manufacturing vision, and (v) identifying tools
and practices needed for realization [106,109].

Step 1: Identifying already available manufacturing data in the SME.

Smart manufacturing attempts to gather data of a product from all phases of produc-
tion in order to improve manufacturing processes and products [56]. While smart
manufacturing works on an in-depth analysis of the acquired data [112], the results
are used for company decision-making processes. Furthermore, data from manu-
facturing may be used not only within the company but also at the interface of the
company with other entities in supply chains [25]. In order to build a system for
the data provided by the particular SME, the individual reality, ability, and needs
of the SME have to be taken into account. Small-sized companies were found to
primarily store their data on local PCs rather than in systems, while in medium-sized
companies, a trend towards centralization was observed [113]. These data may be
related to the organizational dimensions of (a) finance, (b) people, (c) strategy, (d)
process, and (e) product [106].

Step 2: Assessment of readiness of the SME.

According to an Irish study, the format of the gathered data tends to be stable over
time and does not depend on the age of the company [113]. With SMEs being known
for having individual financial, human, and technical resource constraints [93,96],
the level of readiness of the company should be assessed before action [109]. The level
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of readiness in Industry 4.0 may be assessed by various maturity models and indices
(Lin, Wang, and Sheng, 2019a). For SMEs, the assessment of maturity level may be
done by the Singapore smart industry readiness index, initially assessing 16 dimen-
sions in the 3 dimensions of process, technology, and organisation [114]. Mittal et al.
extended the application to the mentioned five dimensions [106].

Step 3: Winning over SME management and staff for smart manufacturing.

Human resource constraints have been identified as a characteristics of SMEs [93].
This also includes the management skills of these enterprises [96] that have a crucial
impact on their sustainability and long-term performance [115]. Future job profiles
are believed to differ widely in their requirements from what workers have to provide
today. It is on the managers to already be involved during the design-stage of pro-
cesses, which has shown to have a positive outcome on the long-term development
of the SME, creating a clear job profile for human resources [116]. The transition to-
wards smart manufacturing therefore requires the involvement of SME management
and the adoption of a new corporate culture [117] striving for overcoming human
resource constraints.

Step 4: Developing an individual smart manufacturing vision.

Due to the realities of SMEs, researchers have come to the conclusion that SMEs
are working in a small-scale and downsized environment [38]. Due to the broad
bandwidth of these companies and their specialization, the approaches in smart
manufacturing should also be tailor-made around a standardized core [22]. Being
closely related to the companies’ strategic setup, the aim of this step is to boost the
level of data from a mere data acquisition to a data distribution, allowing for data-
based decision making [106]. Industry 4.0 and smart factories as an approach are
striving for making use of a broad base of data gathered, processed, and distributed
in order to allow for fast decision making [118].

Step 5: Identifying tools and practices needed for realization.

As with the previous steps, the identification of appropriate tools for the realization
of a smart manufacturing and SMES approach is also tailor-made for SMEs accord-
ing to the given company. A toolkit for smart manufacturing was developed by
Kaartinen et al. in [119] and has been adapted for the reality of SMEs by applying a
toolkit for transition (Table 1) [93]. The developed toolboxes in the toolkit provide
an overview of maturity levels, usually using five maturity levels to characterize the
transition status of the SME towards smart manufacturing. Some researchers propose
level 0 as the starting point for companies towards smart manufacturing, representing
a fully analogue company. The jump from level 0 to level 1 is considered the hardest
to overcome for these SMEs [103]. Concerning the step of data processing in the
process, the toolbox may be characterized according to Mittal et al., 2019 (Table 1).

Table 1. Smart manufacturing toolboxes corresponding to the data hierarchy steps (adapted from [106]).

Data Hierarchy Steps

Smart Manufacturing Toolboxes Data Generation Data Transmission Data Storage Data Analysis

Fabrication/Manufacturing toolbox (FMT) YES
Design and simulation toolbox (DST) YES YES YES YES
Robotics and automation toolbox (RAT) YES YES YES YES
Sensors and connectivity toolbox (SCT) YES
Cloud/Storage toolbox (CST) YES YES
Data analytics toolbox (DAT) YES
Business management tools (BMT) YES YES YES YES
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3. Methodology

The research methodology can be found in Figure 3. The research will be carried out
in three steps according to Figure 3 by (a) developing an SMES model architecture for
SMEs, (b) carrying out a case study with the proposed model architecture, and (c) applying
the results from the case study to adapt the proposed model.

Figure 3. Research methodology.

3.1. Development of SMES Model Framework

SMES models try to make use of ERP systems and the existing components of the
information system architecture. The information system architecture components are
linked through M2M communication. Industry 4.0 and smart concepts are assumed to
depend on the quality and quantity of data in the company [55]. While Industry 4.0
approaches suggest big data to deal with a higher amount of data in a higher resolution,
data today are still retrieved from various interdependent systems [60]. As companies
make use of various systems today, high-level data for management decisions may be
found in the ERP and MES system [73], while operative data may be handled in lower-level
information systems for operative controlling. In production companies, this refers to
the production organization and planning and requires production indicators for input
(resource usage) and output (productivity, quality) [120].

Operative controlling is a discipline of controlling that may go into the daily ongoing
operations. It has the task of supporting the operative management decisions. These
decisions are done quickly with a limited range [121]. The production controlling does
not go beyond the production. It is part of the logistic controlling and has interfaces with
the procurement controlling and the sales controlling [122]. According to Oluyisola et al.,
SMEs may be able to focus on smart products to monitor production [50]. Smart products
may be equipped with auto-ID or RFID sensors [76].

The required technologies for an operative production controlling architecture were
defined by Heimel and Müller [123]. The system requires big data technology, as there are
data warehouses or BIs. These systems should be able to provide planned and required data
on request within almost real time [124]. Another way to provide these data is the usage
of standardisation technologies, such as computer-aided standardisation (CAS). In order
to unify and in order to simplify processes on the operative level, the CAS may take over
the role of a data warehouse for a specific line. In this case, all required information on
standardized technological steps, times, consumptions, etc., is available for the controlling
system [125].

Operative production controlling relies on actual values from production. To a certain
extent, today, such processes also already exist in production companies. The difference
in Industry 4.0 is the quantity of data that has to be retrieved and processed, while SMEs
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should be able to work with a downsized architecture and downsized data management.
While LEs might think about decentralized approaches with immediate correction through
agents, SMEs may struggle to make use of the generated data. The whole system works
on an actual basis, providing all functions of operative production controlling. As these
data are directly consumed for the operative production management, the circle is closed,
providing data and feedback.

Making use of the controlling structure of a company, the operative production con-
trolling will be able to process and assess the status of production. The information of
planned parameter values may be fed from a standardisation module or system, such
as the integrated CAS system [65]. It may contain standardized and thus planned data
on any process, such as on time parameters and consumptions and further requirements,
including drawings and tool information. By integrating the CAS system into the control-
ling structure (see Figure 4), the author derived a controlling architecture and named it
Operative Production Controlling 4.0 (OPC 4.0). This controlling structure was assumed to
work in a particular production line, being fed by big data or CAS and by the APS. The big
data or CAS contains the database of existing standards and planned values with which
production data are assessed in right time.

Figure 4. General OPC 4.0 architecture (own processing).

Integrating the OPC 4.0 architecture into SMES allows for the usage of standardized
data within the whole framework. According to other SMES frameworks, this framework
also makes use of the MES system in its centre. The major difference with regard to
proposed SMES frameworks is the additional standardisation module with standardised
data feeding the MES and indirectly feeding the advanced planning module. Instead of
big data technologies, it makes use of standardised company internal data. The required
components already exist. A major difference in this is the elimination of human–machine
interfaces for data acquisition, processing, and distribution. The whole architecture consists
of M2M interfaces only, allowing for faster retrieval, processing, and full control.

OPC 4.0 works in a closed system within the production line. This system requires
several interfaces with other systems and subsystems. These systems include BI, CAS,
advanced planning systems (APS), and ERP systems, which are able to provide required
data for processing. Depending on the concrete application, these systems may differ.
However, the basic logic of the system remains the same.

Such an architecture relying on CAS, APS, and ERP systems is shown in (Figure 5).
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Figure 5. Example of SMES framework based on OPC 4.0 architecture (own processing).

As OPC 4.0 is only the operative part of the controlling structure, higher-level con-
trolling functions have to be covered additionally for LEs. Heimel and Müller assume the
big data technologies to be a vital part of the strategic controlling [123]. Big data has the
ability to consider not only internal standardized information but also information from
external sources. Technologies such as text mining retrieve their data from any text found
providing information, e.g., for marketing purposes that are required to be timely [126].
However, for an SME, the downsized framework for SMEs will work with a CAS instead
of a BI and further big data technologies due to its limited complexity. The CAS contains
standard process information for production, maintenance, and further processes. Such
downsized architectures are represented by SMES frameworks. For the case study in this
paper on a medium-sized company, the OPC 4.0-based SMES architecture, as developed in
Figure 5, is used.

3.2. Validation of the Proposed Framework

This paper makes use of a multiple case study design. There is no agreement on
the number of required cases for a case study. Some researchers argue with reference
to quantitative methods that there should be a large quantity of data available in order
to eliminate interdependencies and the overevaluation of one random parameter. Other
researchers argue that even one case study should be valid and enough [127], as long as it is
able to go into crucial details [128]. Case studies therefore have the advantage of comparing
not only number-based data but also qualitative data with a textual relation [129]. As SMES
frameworks are believed to be specific and should even be tailor-made [22], the validation
in two different entities, welding and assembly, of one company may provide vital insight
into whether complexity and production technology have to be taken into consideration
for the proposed SMES framework.

While this case study has been conducted on one company, methods and architectures
have been applied to two different organizational entities. These two different entities both
underwent a case study based on the developed framework. Hence, while one company is
targeted, due to the two entities used, a multiple case study design is applied. The case
study is constructed to confirm the validity of a theory, as the theory was built prior to the
analysis [130]. Furthermore, the paper makes use of the comparative advantage of case
studies within the paper itself [131].

The multiple case study framework should secure the same results from multiple
sources [132]. It allows for assessing data from different viewpoints [133] and has been used
in research papers of a similar kind recently [106,134,135]. As research of SMEs with respect
to smart manufacturing execution systems has been scarce, case studies allow for acquiring
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knowledge on SMEs in particular fields. As SMEs represent more than 90% of European
companies in total, these companies represent a vital component of the Czech economy and
the economies of other European countries. With the challenge of the transition towards
Industry 4.0 ongoing, these companies are required, due to their limited opportunities
resource-wise, to find other ways to survive by staying competitive. This multiple case
study should provide an insight into the potential of SMEs to conquer smart manufacturing
with a downsized environment.

In order to evaluate and assess the case study, the research has features from the
embedded case study framework, such as analysing sub-units [136]. In this case, the paper
makes use of two sub-units, one assembly shop and one welding area. However, making
use of an application for only a short time period, a multiple case study approach was
applied. These approaches were found to have a higher transferability of results to reality
than embedded case study approaches [137]. Due to their flexible and tailored nature,
case studies may combine qualitative and quantitative methods in design, realisation, and
validation [138]. Additionally, in the case presented in this paper, the validation of the case
study was done by a set of key performance indicators (KPIs). These KPIs were chosen by
the company management based on the current controlling and reporting structure. Thus,
while part of the case study is based on qualitative information, such as project phases
and amended components, the evaluation of success was done through an approach of a
quantitative evaluation of the production KPIs for one week of monitoring. For the further
proposal process, qualitative data from expert interviews were gathered.

3.2.1. Acquired Data

The case study acquired data from two entities of a manufacturing and assembly
company with regard to the subject of the case study. With the proposed case study
SMES architecture on hand, this architecture was realized in the company’s welding shop
and in the company’s assembly line. The selection of tools and practices was left to the
company, while the tools were pre-defined due to the existing company information system
architecture. The proposed case study SMES architecture was applied in a one-month
trial. A step-wise plan was established to understand the stage in which the company
understands itself to be in. After the trial, the participants were asked for their impression
of the results, where a group of experts decided on the status of the project and its further
ongoing development. Hence, the prior plan and the subsequent results were compared,
providing the result of the case study and being a trigger for further amendments.

3.2.2. Case Study Description

The company of concern belongs to the Czech manufacturing industry as a machine
builder. In this function, it belongs to class 28 of the NACE rev. 2 classification. During the
time of monitoring, the company comprised a headcount of 219 to 236 in the organisation
scheme. This includes employees of all areas and of all hierarchical levels in six departments.
The organisation had a maximum of four hierarchical levels. The shop floor included a
machining shop with CNC machines (milling, drilling, lathes), a cutting shop for raw
material, a welding area for manual welding, and a paint shop for wet and powder paints.
All materials produced in this shop floor go to the assembly shop that works with external
and internal material.

With just under 250 employees, the company may be still counted as an SME according
to the definition of the European Commission [90]. The company has decided to go into
a restructuralisation concerning its information system infrastructure. Furthermore, it
assumed that additional changes would happen in the organisation, such as production,
logistics, and controlling. With this understanding, it decided to make use of the before-
mentioned OPC 4.0-based SMES architecture.

Concerning the technology level of the company, mostly in production, the shop floor
uses mainly craftsmanship from human beings (electricians, assembly workers, welders).
Machines are only used in the machining shop. In addition, the paint shop relies solely on
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the skills of the workers. For the restructuralisation, this was not planned to be changed,
as the company management had the perception of still not belonging to the big players in
the field, focusing on investment and low labour cost much more than on transaction cost.

The initial IT system consisted of an ERP from Sweden, called IFS, that also includes
the MES. This system was implemented in the company in the early 2000s. While being
modular, it was not able to keep up with the growth of the company in the following
years. Despite the global economic crisis in 2009, the company faced steady growth of
organisation size and related requirements. This led to the company deciding on a newer
version of the existing ERP system, with the target of implementing even further modules.
An important part was the automatic booking of shop floor orders, linking them to a
workflow in the system.

According to the booked and finished shop floor orders, other activities should be
coordinated, establishing a pull system for leaner production. The module that should help
to coordinate and overcome the previous shortcomings was an advanced planning and
scheduling (APS) module. This module was meant to substitute excel planning habits with
a data-based approach. The result should be a fine planning that directly assesses available
capacities, materials, and workplaces. A short overview of the two case study objects is
given in Table 2, where 100% of the employees directly dedicated to the given production
area were taken into account.

Table 2. Cases in the case study.

Dimension Case A Case B

General company information

Industry Machine builder
Ownership Private

Number of employees 239
Manufacturing location Czech Republic

Customer location Europe, mainly Czech Republic
Yearly turnover EUR 18 million

Production step Welding Final Assembly

Number of workplaces 5 20
Number of employees 11 23
Average hourly output 28 parts 0.4 machines

Average no. of components for one unit of output 3.2 267
Number of workplaces a unit of product goes through 1.2 4.7

3.2.3. Conducted Case Study

While the aforementioned approach of an OPC 4.0-based SMES architecture seemed
to be designable, this SME required a downsizing of the approach. This downsizing
mostly focused on areas where it assumed transaction cost to be lower than the cost for
the system. Having 16 computerized numerical control (CNC) machines on the shop floor,
it was decided to not equip these with any additional sensors for tracking the process.
Furthermore, these CNC machines were not connected to the company network in the
first step. The booking of orders was done on a separate terminal as a workaround.
A cyber-physical system was not considered.

As the ERP system ought to be the heart of the architecture, the system requires exact
data on a frequent basis. While real-time data in the required volume could not yet be
realized, all data have to be stored in a tailor-made CAS system. This system should be
filled with all standardized data available: manufacturing data for each machine, required
tools, maintenance data and tools, and the required process times had to be entered
and used carefully. An issue found in this area was the case of insufficient knowledge,
standardisation, and standardized data, mostly for auxiliary processes.
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In order to meet the financial and organisational possibilities of the SME, the project
had to be downsized, meeting the reality of the company. The five steps identified for a
downsized and amended environment may be found in Table 3.

Table 3. Overview of project phases in the case study.

# Item Actual Status

1 ERP system upgrade
Upgrade to current actual version from same
supplier
Clean-up of database entries
Migration of database

2 Shop floor terminals
Purchase of shop floor terminals for
confirmation of production order finishing
Training of personnel

3 Standardisation of activities
Standardisation of main process activities
Standardisation of auxiliary and service activities
Establishing of database for migration

4 Implementation of CAS module
Definition of tailor-made CAS module
Implementation of CAS module into ERP system
Interface with ERP system

5 Implementation of autonomous
controlling structure

Assessment of plan versus actual
Alert to shop floor leader, in case of deviation

6 Filling of CAS database with further
shop floor data

New data from production
New data from maintenance
New data from internal logistics

7 Connecting of machines and devices
into network

New data from production
New data from maintenance
New data from internal logistics

The ERP system incorporated data from several years and from different processes,
as well as from outdated and already eliminated processes. While the new system had
already been implemented, in trying to copy the structure of the previous version, data
was only copied. Thus, before adding shop floor terminals for the production booking
and the further tracking of production, all data that were corrupt and not needed had to
be removed.

The standardisation of activities was done with the help of work sampling. With the
work sampling, the general characteristics of a given process or activity may be mon-
itored [139]. During this, the activities were monitored in two independent areas: (a)
for the welding line and (b) for the assembly line. The major output characteristic dur-
ing standardisation for the company was understood to be the time standard. However,
the standardisation of activities may also provide data on further required inputs for the
given processes, such as tools and materials [125]. The gathered data were used as input
for the CAS. With the implementation of the CAS module, the module was then filled with
the gathered data from the work sampling. The data of the work sampling were taken
as input.

The fifth step was to implement the autonomous controlling structure for the two
analysed cases. The new controlling module had to have logic relations with the APS
module for advanced planning and with the execution module. Based on the individual
requirements of the company, managers of different levels then determined performance
indicators to be tracked in the case study. These performance indicators were the same
as the KPIs already reported to management prior to the case study. For the case study,
the company management decided to have a maximum of 10 indicators to be tracked and
compared for evaluation, such as the inventory level, station idle time, and efficiency.

While the provided case study steps are the same for welding workplaces and for
the assembly line, these two areas also have similarities in their characteristics. Data-wise,
both lines transfer a set of inputs (usually at least two parts) into one product. However,
the difference is in mostly in the number of inputs that have to be processed to meet one
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product. Furthermore, the number of workplaces that one product goes through in a
production line is higher than for a component in the production line.

3.2.4. Case Study Analysis

Trying to implement the proposed framework, the company had to downsize several
components of the original OPC 4.0-based SMES architecture (Figure 5) in order to make it
compatible. In a gradual approach, the company conquered the first six steps. A difference
was found between the assembly line and the welding line as far as step 7 is concerned. Due
to the assembly of several parts into one machine by more than one worker, the smallest
details of the process cannot yet be tracked cost-efficiently. As this production line differs
significantly from the production line in LEs with a short production tact, the steps are huge.
A digital twin would have to copy this complexity. The amount of data that is assessed by
the system is still date limited. The welding line had automatic welding equipment that
was, by default, able to provide data on the welding process that can be stored in databases.

The system retrieves information on the production times and the production lots
reacting flexibly to the current logistic and production settings. The cyber-physical network
including sensors was only done in (a) a test on two machines and (b) a simulation. The test
(a) was conducted with one CNC machine that had an additional testing set of vibration
sensors. Furthermore, the welding equipment was directly connected to the company
network, being able to give direct information on the parameters. As, for the moment,
the welding process is still manual, the feedback data were used for assessing the quality of
the process. Deviations in the feedback parameters led to a direct exclusion of the product
from the further production flow. The products were re-checked manually in order to
obtain knowledge on what these parameters may indicate. This evaluation is an ongoing
process of production fine-tuning.

The mentioned simulation of the production equipment was limited to artificially
created signals that the system interpreted as coming from the production equipment in
the moment of checking. The control mechanisms were checked for a potential future
development. While the simulation of the sensors and the operation of the system were
successful, the automatic circle of the OPC 4.0-based SMES architecture worked as required.
The amendments and tests conducted may be found in Table 4.

Due to the possibilities of the IoT and the current situation of the company, the com-
pany allowed itself to take a first test for future development. With the assumed future
development of IoT, the company seemed to be able to include the cyber-physical network
into their system. Whether the preparations and tests done in this study would still be
valid in the future depends on the development of these technologies.

The element implemented from the last stage of the project is the welding area.
The welding devices were able to monitor parameters and to compare them to the optimal
parameters by default. Hence, the welding equipment was able to send a feedback signal
on whether the aggregated sensor states were as planned or not. For CNC machines,
the process should be implementable, as a short simulation showed. The simulation was
needed, as the CNC machines are usually not equipped with sensors and able to track all
required parameters.

As Table 5 shows, the assembly line still remains an issue for the company, while the
welding line made up for a lot as far as rework, scrap rate, and efficiency are concerned.
With the help of parameter-based standardisation of the welding equipment, the company
was able to reduce rework and to increase the output of the welding line, while maintenance
indicators did not show any relevant changes during the case study. Further indicators,
such as worker idle times and efficiency, show positive tendencies. In an interview, the
shop floor leader proposed that the increased efficiency should come mainly from the
reduction in rework.
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Table 4. Amended components due to the case study SME framework.

# Item Actual Status

1 ERP system upgrade Upgrade
Remaining system supplier

2 Shop floor terminals
A few shop floor terminals instead of machine
terminals
No connection to machines

3 Standardisation of activities
Standardisation of main process activities
Standardisation of auxiliary and
service activities to be added during operation
Database prepared for CAS module

4 Implementation of CAS module
CAS module starting only with
standard work times
Standard procedures, process, and drawings
to be implemented at later stage

5 Implementation of autonomous
controlling structure

Actual: Not all data assessed, prioritisation
by shop floor or area leader
Test-run and dry test with automatic sensor
feedback realized

6 Filling of CAS database with further
shop floor data

Ongoing
Only time-data filled
Further process data neglected

7 Connecting of machines and devices
into cyber-physical network

Test-run conducted
Dry-test run conducted, basic routines
implemented, amendable
Used in welding device
Too expensive for CNC devices at the moment
Assembly process too complex
to be tracked with smart devices
or with smart products

Table 5. Overview of key performance indicators—values in percent.

# KPI Before Value After Value Percentage of Fulfilment

Welding Line

1 Number of produced pieces (per hour) 28 33 118%
2 Equipment availability 88% 103% 118%
3 Efficiency 1.22 1.43 118%
4 Downtime 17% 15% 88%
5 Worker idle time 3% 3% 100%
6 Rework rate 15% 8% 53%
7 Scrap rate 9% 7% 78%
8 Equipment maintenance and repair time 4% 3% 75%
9 Number of equipment breakdowns 4 4 100%

Assembly line

1 Number of produced pieces (per hour) 0.4 0.6 150%
2 Equipment availability 80% 120% 150%
3 Efficiency 3.2 4.8 150%
4 Downtime 9% 5% 56%
5 Worker idle time 13% 11% 85%
6 Rework rate 87% 32% 36%
7 Scrap rate 0 0 N/A
8 Equipment maintenance time 1% 2% 200%
9 Number of equipment breakdowns 3 4 133%

The assembly line shows more difficulties. Due to its higher quantity of components
and its higher complexity, the assembly process lagged behind the improvements mon-
itored in the welding line. The assembly line showed only a moderate increase in the
produced pieces, while the number of machines to be reworked decreased by 64%. How-
ever, during the case study, the company was not able to rapidly increase the efficiency of
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the assembly line. Thus, it seemed that the assembly line lagged behind in performance
compared to the welding line in the company. However, the numbers also suggested a
positive trend for the assembly line.

3.3. Improvement of the Proposed Framework

According to the findings of the case study, SME frameworks will require a substitution
of big data software. The company should focus on a standardisation system, either
independently or as an ERP module. This system provides the database for comparison
with the actual state. The architecture amended for the SME in the current time may be
found in Figure 6.

Figure 6. Case study architecture, including OPC 4.0 module.

At the moment, the analysed SME does not have a viable database and needs to focus
on vaster data-acquisition activity for a further implementation of an SMES approach
with an OPC 4.0 framework. While the underlying basics of the OPC 4.0 architecture
were implemented, the downsizing of the architecture implemented CAS and OPC 4.0 as
modules into the ERP system. The ERP system itself remained the core of the architecture.
The basic thought of a direct feedback and controlling loop was only implemented for the
welding equipment, as it was an internal default function of the equipment that could
be activated.

3.4. Results and Discussion

The architecture and components for OPC 4.0 already exist today. The investment
into a fully autonomous production line that is self-learning and self-correcting is cost-
intensive. SMEs, with their financial constraints, are usually not able to invest into such
an environment. This is why ERP-based SMES approaches were invented. The presented
approach is based on the existing controlling structure of the SME. According to Abée et
al., Controlling 4.0 is a process of trial-and-error where immediate positive results should
not be expected [140].

Results show that equipment able to provide viable data on a manufacturing process
may boost quality and reduce manufacturing and logistic cost by an early detection of
errors. With a working APS, the system can adapt quickly to the errors and to the new
circumstances. While research on the applicability of smart manufacturing approaches in
SMEs is rare, the authors realized the importance of separating approaches for LEs and
SMEs, also requiring an individual toolkit [93]. SMES approaches have shown the potential
to work in SME environments [106]. Other approaches in the literature have only come to
a simulation stage or to a case study of a prototype manufacturing environment [67].
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According to the findings of previous research, SMEs are focusing on fast benefits
and returns on investment [103]. In addition, the managers of the herein-mentioned
case study company seemed to have a different understanding of the needs than their
experts in production. While the initial framework was developed based on managerial
input, the second, improved framework allowed for expert input in order to eliminate
the shortcoming of the first version. The ex-post evaluation found a certain management
myopia by focusing mostly on finances and reporting. Long-term strategies, such as
the transition of a company towards smart principles, can therefore only be met with
downsized frameworks [38]. In order to stay on the market, SMEs will also have to deal
with smart approaches and principles [111]. While the proposed approach does not meet
all principles yet, it fit the actual reality of the company in the case study. Approaches on
MAS are far-fetched for SMEs, and the JSP is an apparent conflict in SMEs. As in previous
research studies [50,85], the ERP with the included MES may be assumed to play a crucial
role as the centre of the SMES architecture.

The proposed approach was built on the company’s current controlling structure.
While research was done on smart production control in the past, the human interaction
was seen as a conflicting element that should be eliminated [88,89]. SMEs show a currently
high extent of human participation in processes, such as in the assembly area in the case
study. In the case study company, this could not be overcome easily by smart products,
as Oluyisola et al. suggested [50], due to the high number of components contributing to
one assembly step. The complexity of these steps combined with manual work provides
obstacles for an introduction of smart principles. Less complex assembly steps, such as
the welding process, show that the fundamentals may be implemented and work in SME
assembly as well.

4. Conclusions

This research paper attempts to propose a smart manufacturing architecture for
SMEs. There are only a few papers dealing with this topic to date. Building on previous
SMES approaches that put the MES system at the centre of the architecture, the proposed
architecture showed its feasibility for SMEs with the ERP including the MES. However,
it also showed shortcomings in cases of increased complexity, standing in conflict with
the persistent financial constraints that SMEs have to deal with. As components such as
the ERP, MES, and APS are available and also used in SMEs today, the financial burden
may not be as high as a completely new investment. Making use of already existing or
easily retrievable data within the company should be secured by a system or module that
substitutes a BI. These data might be stored in a CAS or in a similar system. The case study
suggests that obstacles may be found in activities with a high degree of manual work and
human implication.

While the provided OPC 4.0-based SMES architecture is the framework outcome in this
case study done in one SME with two production entities, the framework should be further
validated and researched in other SMEs. As there are only a few papers available on this
topic, also usually in the form of case studies on production companies, e.g., [106,134,135],
the proposed SMES frameworks have only been applied and scientifically monitored in
a small number of cases. Qualitative research through case studies goes into detail more
than striving for generalizability based on quantitative data [128,129]. However, the case
study shows that SMEs have issues in the full monitoring and tracking of production in
the assembly area, due to its increased complexity and human work. An area for future
research is the applicability of the OPC 4.0-based SMES architecture to different production
areas and to different industries. While the OPC 4.0-based SMES architecture is assumed
to be suitable for the production area, it is a question of whether there will be further
application in other areas and industries.

Future research should further investigate whether the proposed approach in particu-
lar and SMES frameworks in general are suitable for all subcategories of SMEs. These three
subcategories according to the European Commission (micro, small, medium-sized) [90]
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might show differences in their behaviour, in their organization, in their complexity, and in
their way of approaching SMESs. While assuming the further development of cyber-
physical network technology and the IoT in the coming years, the exact outlines of the
architecture in SMEs and LEs have to be further monitored in practice. It is a question of
whether the described OPC 4.0-based SMES architecture would also be able to suite LEs.

It remains to be seen in future research and development whether SMEs will be able to
survive with SMES architectures by avoiding cyber-physical networks and more sophisti-
cated IoT technologies. While Kotler assumes SMEs to have a wider range of opportunities
in Industry 4.0 by eliminating their disadvantages in comparison with LEs [141], current
established SMEs are assumed to take small steps. Research suggests that companies will
have to move to new technologies to stay competitive on the market. However, it remains
unclear how SMEs will conquer this challenge. The presented approach in this paper
may provide an SME architecture for a transition towards smart manufacturing based
on production controlling. However, it is questionable whether this approach will secure
long-term competitive abilities and how SMEs will climb the next maturity levels towards
smart manufacturing.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
APS Advanced planning and scheduling
Auto-ID Auto-identification
BI Business intelligence
BMT Business management tools
CAS Computer-aided standardisation
CIM Computer-integrated manufacturing
CNC Computerized numerical control
CPN Cyber-physical network
CST Cloud/Storage toolbox
DAT Data analytics toolbox
DST Design and simulation toolbox
ERP Enterprise resource planning
FMT Fabrication/Manufacturing toolbox
IoT Internet of things
IT Information technology
JSP Job shop scheduling problem
KPI Key performance indicator
LE Large enterprises
M2M Machine-to-machine
MAS Multi-agent system
MES Manufacturing execution system
OECD Organisation for Economic Co-operation and Development
OPC Operational production controlling
RAT Robotics and automation toolbox
RFID Radio frequency identification
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SCC Self-adaptive collaborative control
SCM Supply chain management
SCRM Supply chain risk management
SCT Sensors and connectivity toolbox
SIPM Smart and intelligent predictive maintenance
smart PPC Smart production planning and control
SME Small and medium-sized enterprises
SMES Smart manufacturing execution system
SMS Smart manufacturing systems
SMSC Smart manufacturing supply chains
SOA Service-oriented architecture
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