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Abstract: A sustainable circular economy involves designing and promoting new products with the
least environmental impact through increasing efficiency. The emergence of autonomous vehicles
(AVs) has been a revolution in the automobile industry and a breakthrough opportunity to create
more sustainable transportation in the future. Autonomous vehicles are supposed to provide a safe,
easy-to-use and environmentally friendly means of transport. To this end, improving AVs’ safety
and energy efficiency by using advanced control and optimization algorithms has become an active
research topic to deliver on new commitments: carbon reduction and responsible innovation. The
focus of this study is to improve the energy consumption of an AV in a vehicle-following process
while safe driving is satisfied. We propose a cascade control system in which an autonomous
cruise controller (ACC) is integrated with an energy management system (EMS) to reduce energy
consumption. An adaptive model predictive control (AMPC) is proposed as the ACC to control the
acceleration of the ego vehicle (the following vehicle) in a vehicle-following scenario, such that it
can safely follow the lead vehicle in the same lane on a highway. The proposed ACC appropriately
switches between speed and distance control systems to follow the lead vehicle safely and precisely.
The computed acceleration is then used in the EMS component to find the optimal engine torque
that minimizes the fuel consumption of the ego vehicle. EMS is designed based on two methods:
type 1 fuzzy logic system (T1FLS) and interval type 2 fuzzy logic system (IT2FLS). Results show that
the combination of AMPC and IT2FLS significantly reduces fuel consumption while the ego vehicle
follows the lead vehicle safely and with a minimum spacing error. The proposed controller facilitates
smarter energy use in AVs and supports safer transportation.

Keywords: autonomous vehicle; cascade control; adaptive model predictive control; interval type 2
fuzzy logic; autonomous cruise control; sustainable circular economy; complex system

1. Introduction

Greenhouse gas emission is the greatest concern of our future life [1]. Despite social
and political movements towards electrification, transportation is still responsible for 24%
of CO2 emissions [2]. This means that we need a deep restructure in the transport sector
in order to achieve the goals of the Paris Climate Accords. To address these concerns,
some transportation researchers have begun to align their R&D efforts with the sustainable
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circular economy principles: reduce, reuse, recycle and replace (RRRR) [3,4]. In this context,
the autonomous vehicle (AV) is a promising technology [5].

Recently, autonomous vehicles (AVs) have been at the center of attention in automotive
engineering research [6]. The AV technology has equipped conventional vehicles with
the ability to move without a human driver, using only state-of-the-art image processing
and machine vision techniques which is a complex systems [7,8]. Despite exempting
humans from driving duties, which is indeed potentially dangerous, it can improve vehicle
safety and energy efficiency [6]. The AV technology is set to be life-changing since it can
lead to a reduction in the number of crashes, road congestion, energy consumption and
CO2 emissions of conventional vehicles. It is predicted that vehicle manufacturers will
have a USD 7 trillion annual revenue stream from the AV market by 2050 [9]. Previous
studies on user adoption of driverless vehicles have focused on safety [5]. However, energy
management in conventional autonomous vehicles is still challenging and demanding.
In addition to conventional AVs which are only based on Internal Combustion Engines
(ICE), hybrid AVs, in which ICE and an electric motor drive the vehicle jointly, have been
studied in [9]. Research activities successfully show that most vehicle crashes happen
during maneuver driving such as: accelerating, decelerating, changing lanes, merging and
overtaking [10]. These operations mainly form the objectives of autonomous cruise control
(ACC) – also known as adaptive cruise control or intelligent cruise control technology,
which is widely regarded as a crucial component of AVs and is an extension of conventional
cruise control. It is mainly responsible for controlling the speed of a vehicle and its relative
distance with the lead vehicle by using sensor data [11].

In a reasonable driving condition, a vehicle equipped with an ACC travels at a driver-
set velocity by controlling the throttle, exactly similar to conventional cruise controllers. In
the case of detecting a leading vehicle, the ACC system needs to determine whether the
vehicle is still able to safely travel at the set speed. If not, ACC sends signals to the engine
or braking system to decelerate the vehicle. Vehicle manufacturers have employed many
advanced algorithms, such as PID [12], fuzzy logic control [13], linear quadratic optimal
control [14], recurrent control [15] and model predictive control [16–18], to adaptively
control the throttle, brakes and gear shifting. Recently, with advancements in connected ve-
hicles, the concept of cooperative ACC is introduced which improves the ACC performance
through communications among vehicles [19,20].

Model predictive control (MPC) is an advanced process control technique based on
optimal control theory. It works based on running an optimization problem over a finite
time-horizon and applies the resulted optimal action only for the current timeslot. It then
repeats the same process for shifted time-horizons to the end of the process [11]. Using
this mechanism, MPC gains the ability to anticipate future events and act accordingly.
Constraints can also be plugged into the MPC optimization process to ensure that the
selected action remains valid in the problem context [13]. The MPC’s predictive capability
comes at a high computational cost since it requires solving one optimization problem at
each time step.

MPC algorithms have been successfully applied to cruise control (CC) and ACC sys-
tems. Kural et al. [21] used MPC for the ACC problem and tested their achievements using
a nonlinear vehicle model. They utilized MPC in a hierarchical architecture and applied
quadratic programming techniques for solving the real-time optimization problem. Angle
et al. [22] also used MPC for ACC where drivers’ decisions, expressed by mathematical
formulation, were considered as constraints. Designing energy-optimal ACC based on
MPC was studied in [23] where prior knowledge of the route was used to compute an
energy-optimal speed trajectory using dynamic programming. They utilized MPC to con-
trol the vehicle speed while ensuring constraints such as a safe distance to a preceding
vehicle. Miftakhudin et al. [24] proposed an ACC by solving a so-called “multistage MPC”,
where the square of errors between the anticipated values of the vehicle velocity and the
safe distance was minimized.
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Adaptive model predictive control (AMPC) is a type of MPC where the control
algorithm is re-tuned based on the behavior of the system, such as variation of the vehicle
model. This feature helps ACC designers to accommodate a vehicle lateral dynamics
model [25] or the road condition [26]. As the control system is adapted to current system
conditions, AMPC performance is robust against uncertainties.

Despite the aforementioned advances in ACC to improve safety, it is not the only
concern about AVs from a sustainability perspective. Transportation, as a complex system,
has challenges such as capacity, transfer, reliability, integration to reduce time and energy
consumption [27]. Energy management systems (EMSs) are control systems aiming for
energy efficiency in AVs. Numerous methods have been proposed to improve engine
efficiency, such as regenerative braking protocols [28], rule-based reduction of energy
consumption [29,30] and intelligent approaches [31–33]. Among these approaches, intel-
ligent control algorithms, such as fuzzy systems, show a great potential to deal with the
nonlinearities of this problem in vehicles [31]. Many of the existing fuzzy logic-based EMS
has been designed based on a type 1 fuzzy logic system (T1FLS) [29,34–36]. The set of
rules and membership functions of a T1FLS are formulated based on the knowledge of
human beings. However, the linguistic and numerical uncertainties, inherited from the
driving conditions, could not be solved and addressed comprehensively by using explicit
membership functions in a T1FLS [37–39]. To overcome these disadvantages, interval type
2 fuzzy logic systems (IT2FLS) have been introduced [40]. By offering fuzzy member-
ship functions (MFs), they can accommodate the insufficiency related to the changes of
the driving conditions. The MFs of IT2FLS are three-dimensional, in opposition to the
two-dimension MFs in T1FLS, and therefore offering one additional degree of freedom.
IT2FLS can precisely achieve membership grades in practical problems with high levels of
uncertainty [41]. Our recent research [42] showed that IT2FLS is more effective than T1FLS
in reducing energy consumption in an autonomous vehicle.

In this paper, we integrate an AMPC-based ACC with an IT2FLS fuzzy logic-based
EMS to achieve a cascade control system. It has two different objectives simultaneously:
obtaining a safe distance with the lead vehicle and reducing the energy consumption of
the ego vehicle. A lead-ego vehicle-following scenario (see Figure 1), which is when a lead
vehicle is being followed by an ego vehicle in the same lane, is considered. The ego vehicle
is appropriately equipped with a combining radar measurement using an extended object
tracker, and the LiDAR measurements using a joint probabilistic data association tracker
are used. Then these tracks are fused by using a track-level fusion algorithm to measure
the distance and velocity relative to the lead vehicle.

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 17 
 

 
Figure 1. The lead-ego scenario to keep a safe distance between the lead and ego vehicles. 

2. Vehicle Dynamics and Require Power 
In this article, a longitudinal model is considered for the ego vehicle as shown in 

Figure 2. Using Newton’s law, the total driving force of a vehicle is: 𝑚𝑎 = 𝐹 − 𝐹 − 𝐹 − 𝐹  (1)

where 𝐹 , 𝐹 , 𝐹  and 𝐹  are the total driving force, the rolling resistance force, the 
aerodynamic resistance force, and the component of gravity along the road surface, 
respectively, m is the mass of the vehicle and a shows its acceleration. Forces are calculated 
using the following formulas: 𝐹 = 𝜇 . 𝑚𝑔𝑐𝑜𝑠𝜃 (2)

𝐹 = 𝑐 . 12 𝜌. 𝐴. (𝑣 + 𝑣 )  (3)

𝐹 = 𝑚𝑔𝑠𝑖𝑛𝜃 (4)

where 𝜇  is the road friction coefficient, 𝜃 is the slope of the road, ca is the aerodynamic 
resistance coefficient, 𝜌 is the air density, A is the cross-sectional area, vt is the velocity of 
the vehicle, vw is the velocity of the wind, g is gravity, and a is the acceleration of the 
vehicle. By Substituting (2), (3) and (4) into (1), the total driving force is 𝐹 = 𝜇 𝑚𝑔 𝑐𝑜𝑠 𝜃 + 𝑐 . 12 𝜌. 𝐴. (𝑣 + 𝑣 )  + 𝑚𝑔 𝑠𝑖𝑛 𝜃 + 𝑚𝑎 (5)

Using 𝐹 , we can define the required power of the vehicle as, 𝑃 = 𝐹 . 𝑣 + 𝑃  (6)

where 𝑃  is the air conditioning (AC) power consumption. In this paper, the AC 
model, introduced in [43], is considered. As the vehicle travels along the road, the power 
consumption exploited by an AC system changes dynamically. It can increase the power 
usage of the vehicle by 12–17% [44]. Other supplementary powers are quite modest in 
comparison with the overall power consumption of the vehicle. Thus, in this work, only 
the AC’s power consumption is considered, and the rest are consolidated in the 
mechanical losses. For the AC power we have: 𝑃 = 𝑑𝑊𝑑𝑡 = 𝑀𝐶 𝑑𝑇𝑑𝑡  (7)

where M is the air mass in the cabin, Troom and Croom are the cabin temperature and the 
temperature constant. 

To achieve the vehicle power (𝑃) in Equation (6) and considering the power train 
model explained in [45], the following fuel consumption rate is required 𝑚 = 𝑃𝑞 . 𝜂 . 𝜂  (8)

where 𝑞  is the combustion energy, 𝜂  = 0.9 [46] is the mechanical 
efficiency and 𝜂  is the engine efficiency. The engine efficiency graph (see Figure 3) 
is normally illustrated by a contour plot as a function of torque [Nm] and the engine speed 
[rpm]. These contours are derived using the experimental characterization of the engine 

Figure 1. The lead-ego scenario to keep a safe distance between the lead and ego vehicles.

We show that by using this combination, the distance between two vehicles is kept safe
while energy consumption is reduced. The main contributions impact on implementation
of the technology of this study are useful for the future of transportation and can be
highlighted as follows:

An AMPC algorithm is applied as ACC to control the safe operation of the ego vehicle
under combined loads. In this algorithm, the objective function of the MPC algorithm is
adapted based on ego-lead distance.

Energy management of vehicles in cascade with the AMPC is established based on
the IT2FLS method which can handle the uncertainties of driving conditions.

Prediction safety control is used to control a vehicle while satisfying a set of vehicle
and road geometry constraints.
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The rest of the paper is organized as follows: Section 2 illustrates the vehicle dynamics
and power model required for the ego vehicle. Our integrated control system is presented
in Section 3. Section 4 illustrates simulation results, including a discussion. Finally, the
work is concluded in Section 5.

2. Vehicle Dynamics and Require Power

In this article, a longitudinal model is considered for the ego vehicle as shown in
Figure 2. Using Newton’s law, the total driving force of a vehicle is:

ma = Ft − Fr − Fw − Fg (1)

where Ft, Fr, Fw and Fg are the total driving force, the rolling resistance force, the aerody-
namic resistance force, and the component of gravity along the road surface, respectively,
m is the mass of the vehicle and a shows its acceleration. Forces are calculated using the
following formulas:

Fr = µr.mgcosθ (2)

Fw = ca.
1
2

ρ.A.(vt + vw)
2 (3)

Fg = mgsinθ (4)

where µr is the road friction coefficient, θ is the slope of the road, ca is the aerodynamic
resistance coefficient, ρ is the air density, A is the cross-sectional area, vt is the velocity
of the vehicle, vw is the velocity of the wind, g is gravity, and a is the acceleration of the
vehicle. By Substituting (2), (3) and (4) into (1), the total driving force is

Ft = µrmg cos θ + ca.
1
2

ρ.A.(vw + vt)
2 + mg sin θ + ma (5)
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Using Ft, we can define the required power of the vehicle as,

P = Ft.vt + Paccessory (6)

where Paccessory is the air conditioning (AC) power consumption. In this paper, the AC
model, introduced in [43], is considered. As the vehicle travels along the road, the power
consumption exploited by an AC system changes dynamically. It can increase the power
usage of the vehicle by 12–17% [44]. Other supplementary powers are quite modest in
comparison with the overall power consumption of the vehicle. Thus, in this work, only
the AC’s power consumption is considered, and the rest are consolidated in the mechanical
losses. For the AC power we have:

Paccessory =
dWac

dt
= MCroom

dTroom

dt
(7)

where M is the air mass in the cabin, Troom and Croom are the cabin temperature and the
temperature constant.
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To achieve the vehicle power (P) in Equation (6) and considering the power train
model explained in [45], the following fuel consumption rate is required

.
m f uel =

P
qcombustion.ηmechanical .ηengine

(8)

where qcombustion is the combustion energy, ηmechanical = 0.9 [46] is the mechanical efficiency
and ηengine is the engine efficiency. The engine efficiency graph (see Figure 3) is nor-
mally illustrated by a contour plot as a function of torque [Nm] and the engine speed
[rpm]. These contours are derived using the experimental characterization of the engine
in real performing conditions. The highest obtainable efficiency for an ICE is 34%, due to
thermodynamic limitations.
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3. Proposed Control System for the Ego Vehicle

The block diagram of the control system for the ego vehicle is shown in Figure 4.
This is a cascade control structure, including an ACC in series with an EMS. The control
objectives are as follows.
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• The spacing error between two vehicles, i.e., ∆d = d− dsa f e is always maintained
greater than zero, where d and dsafe are the actual and safe distances between the lead
and ego vehicles, respectively.

• The energy consumption for the ego vehicle is optimized using an EMS.
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3.1. Adaptive Cruise Control

Generally, an ACC controller has a hierarchical structure, including an upper-level
controller and a lower-level controller [47]. The upper-level controller typically determines
the desired acceleration for the ego vehicle based on the relative speed and the relative
distance from the lead vehicle. The lower-level controller determines the throttle and brake
actions to follow the acceleration/deceleration commands from the upper-level controller.
In this paper, by assuming that the lower-level controller is well-designed, our focus is
more on the design of the upper-level controller. The ACC model of the vehicle can be
defined as follows [16].

τ
d

..
x(t)
dt

+
..
x(t) = u(t) (9)

where τ refers to the time lag corresponding to the finite bandwidth of the lower-level
controller and u depicts the acceleration command applied by the upper-level controller. x,
.
x, a =

..
x are the position, speed and acceleration of the ego vehicle, respectively. Using a

first-order approximation, the discrete-time expression of (9) can be shown as,

a(k + 1) =
(

1− Ts

τ

)
a(k) +

Ts

τ
u(k) (10)

where Ts refers to the sampling period, a(k) is the acceleration of the ego vehicle at the
sampling time k. The safe distance between the lead vehicle and ego vehicle can be
calculated based on the velocity of the ego vehicle, shown below.

dsa f e = dde f ault + tgap.ve(k) (11)

where tgap is the constant time headway. dde f ault is a safe distance and is fixed when the
vehicle travels at a low speed or is completely stopped. In other words, dsa f e is adjusted
based on the speed of the ego vehicle ve(k). The relative speed between the lead and the
ego vehicle v is,

v(k) = vl(k)− ve(k) (12)

where vl(k) is the speed of the lead vehicle at sampling time k. Therefore, equations of
motion of the ego vehicle can be represented using the following state-space model:

x(k + 1) =

 1 Ts − 1
2 T2

s
0 1 −Ts
0 0 1− Ts

τ

x(k) +

 0
0
Ts
τ

u(k)

y =

 1 0 0
0 1 0
0 0 1

x(k) +

 −dde f ault
0
0

 (13)

where x = [∆d, v, a]T is the state vector of the system.
Despite these linear equations, ACC deals with the strongly nonlinear powertrain

system, for which equations will come later. The control objective for the ego vehicle
is to maintain its speed close to the lead vehicle while their relative distance is safe, i.e.,
∆d→ 0 and v(k)→ 0 as k reaches to infinity. To achieve this objective, an adaptive model
predictive control (AMPC) is used. Acceleration of the ego vehicle should be adaptively
changed in order to regulate ∆d. The acceleration command is calculated by solving the
following constrained optimization problem during each sampling period.

minJ
u

=
p

∑
k=1
{zT

t+kQtzt+k + ∆uT
t+kR∆u

t ∆ut+k + uT
t+kRu

t ut+k} (14)
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s.t.


∆d ≥ 0

vmin ≤ ve(k) ≤ vmax
amin ≤ a(k) ≤ amax
umin ≤ u(k) ≤ umax

(15)

where t is the current time, p is the prediction horizon and ∆u is the increment of the control
input. Qt, R∆u

t , and Ru
t refer to the weight matrices for the following error, change rate and

magnitude of the control input, respectively.
As a normal ACC, the MPC control objective should be distance control, i.e., z = ∆d

in Equation (15). However, we will show in simulations that the performance of such a
controller is poor when the ego vehicle falls behind for any reason. To solve this issue,
an AMPC is considered in which the control objective is adaptively changed based on
the distance ∆d between ego and lead vehicles. When ∆d is large, i.e., the ego vehicle is
far behind the lead one, AMPC switches to speed control system. Therefore, z = v in
the optimization problem (15) which results in accelerating the ego vehicle to fill its gap
with the lead. However, when ∆d becomes reasonably close to dde f ault, the control system
switches to distance control and z = ∆d. In this case, the ego vehicle follows the driving
profile of the lead by increasing and decreasing longitudinal acceleration such that ∆d→ 0 .
It is worth noting that if the relative speed between the lead and the ego vehicle is not
precisely measurable, the controller goes to the distance control mode to preserve safety.

This adaptive behavior makes the control algorithm robust against undesired distur-
bances. For example, if the ego vehicle fails in achieving ∆d→ 0 for any reason, such as
sudden action of the lead driver or loss of sensor signals, it will be easily compensated by
switching to the speed control mode for a while.

3.2. Energy Management System

In this work, an EMS is integrated with ACC to reduce fuel consumption while the
vehicle performance is kept satisfactory. The EMS system has two main components: A
fuzzy logic system (FLS) and a PID controller. FLS is employed to generate the optimal
torque by considering the required power for the vehicle. A PID controller is exploited to
govern the engine to follow the optimal torque created by FLS.

3.2.1. Fuzzy Logic System

The FLS uses the required power of the vehicle as input and generates the optimal
torque for the engine. To calculate the required power, described in Equation (6), all
data about the behavior of the driver (e.g., the speed of the vehicle using data fusion),
environmental conditions and vehicle specification are collected and passed through the
energy calculation unit (ECU) in Figure 4.

The environmental conditions, such as road and wind profiles, vary during the driving
process. Road profiles are generated with statistical characteristics of real roads using the
method presented in [48]. A Poisson distribution is used to create the number of road
segments. The length of each road segment is obtained by using an exponential distribution.
Rayleigh distribution is employed to model the height of up and down hills of the road.
The left and the right bend of the road are acquired using Gaussian distribution. A wind
profile is also obtained from the model in [48]. It is a collection of regions of different
lengths, the speed of the wind and its direction. The length, wind speed and direction are
modelled using the exponential, Weibull and uniform distributions, respectively. All the
parameters used to calculate the required power of the vehicle are shown in Table 1.
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Table 1. Inputs used to calculate the required power of the vehicle.

Description Symbol Value

Coefficient of road friction µr 0.015
Gravity acceleration g 9.81 [m/s2]

Velocity of the vehicle v ACC command
Mass (vehicle + equivalent rotating parts + passengers) m 1280 [kg]

Aerodynamic resistance coefficient ca 0.335
A cross-sectional area A 1.9 ∗ 1/ cos(φ)

Air density ρ 1.225 [kg/m3]
Combustion energy qcombustion 38,017 [kJ/kg]

After achieving the required power of the vehicle, FLS is used to produce the desired
engine torque. FLS is considered a reasoning method which resembles human reasoning.
FLS is designed based on two methods: T1FLS and IT2FLS.

Part I. Type 1 Fuzzy Logic System

The membership functions of T1FLS are designed based on our previous work [34].
Five membership functions for the input (the required power of the vehicle) are formulated,
including L, LN, N, NH, H (Figure 5). The membership function of the output (the engine
torque) is split into three groups: LO, O, RO (Figure 6). Fuzzy rules are constructed so
that the engine state is regulated to operate on its optimal area to elevate energy efficiency.
These rules cover five different conditions and are shown in Table 2. In summary, if the
required power is in L or H range of Figure 5, the T1FLS generates LO and RO signals
related to low and high torque values, respectively. Otherwise, it generates an O signal.
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Part II. Interval Type 2 Fuzzy Logic System

The IT2FLS is a new algorithm that accommodates unique characteristics to overcome
the limitations of T1FLS in coping with the uncertainties. An IT2FLS is represented in
Figure 7, including five components: fuzzifier, rule-based, fuzzy inference, type-reducer
and defuzzifier.
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The notable discrepancies between IT2FLS and the type 1 counterpart are that interval
type 2 fuzzy sets are exploited and used in IT2FLS. Therefore, the IT2FLS has an extra
process that is known as the type reduction [37,49,50]. An interval type 2 set (Ã) is
determined with a type 2 membership function µÃ(x, u) as below.

Ã =
∫

x∈DÃ

∫
u∈Jx

µÃ(x, u)
(x, u)

(16)

where Jx is the primary membership of x, while µÃ(x, u) is a type 1 fuzzy set known as the
secondary set [37,49,50].

µÃ

(
x = x′, u

)
≡ µÃ

(
x′
)
=
∫

u∈Jx′

fx′(u)
u

(17)

0 ≤ fx′(u) ≤ 1 (18)

A region called footprint of uncertainty (FOU) is formulated to evaluate the uncer-
tainty in the primary membership of an interval type 2 fuzzy set Ã, as depicted in Figure 8.
It can be defined as follows.

FOU
(

Ã
)
=
⋃

x∈X
Jx = {(x, u)| u ∈ Jx ⊆ [0, 1]} (19)

where Jx presents the primary membership of Ã.
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An upper membership function (UMF) and a lower membership function (LMF) are
also introduced to represent the FOU. They can be represented as below.

µ
Ã
(x) = LMF

(
Ã
)
= in f

{
u
∣∣ u ∈ [0, 1], µÃ (x, u)

〉
0
}

(20)

µÃ(x) = UMF
(

Ã
)
= sup

{
u
∣∣ u ∈ [0, 1], µÃ(x, u)

〉
0
}

(21)

The uncertainty of driving conditions is handled by the antecedents and consequents
interval type 2 fuzzy sets, which utilize FOUs to cover the linguistic and numerical uncer-
tainties associated with changing unstructured environments. The interval type 2 fuzzy sets
compound a huge amount of embedded type 1 fuzzy sets to solve the various uncertainties
as well [51].

In this study, the fuzzy MF in T1FLS is exploited as initial values to build the FOU
of the fuzzy MF of IT2FLS. In interval type 2 MFs, the FOU is achieved by defining the
bounding upper and lower type 1 MFs [49,52]. The resulting MFs for IT2FLS are illustrated
in Figure 9. The set of rules shown in Table 2 are also used for this case.
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3.2.2. PID Controller

A PID controller is used to control the operation of the engine to track the torque
generated by the FLS. The PID controller regulates the engine operation by adjusting the
air to fuel (A/F) ratio into the cylinder of the engine. The error between the generated
torque and actual torque is considered as the input of the PID controller. The output of the
PID controller is a function of the A/F ratio, which affects the engine actual torque directly.

The actual torque, provided by the internal combustion engine, can be derived using
the power train model explained in [45].

τ =
CT .AFI(λ).SPI(δ).Vdisp.Pm.ηvol

4π.R.T
(22)

where CT is the torque constant, AFI(λ) depicts a function of air to fuel ratio, SPI(δ)
represents the ignition time, Vdisp shows the engine volumetric displacement, ηvol is the
engine volumetric efficiency, Pm illustrates the manifold pressure. AFI(λ) can be adopted
as follows [45]:

AFI(λ) = cos(7.3834(A/F)− 13.5) (23)

where A/F is the air to fuel ratio.
The desired torque is achieved by adjusting the air mass entering the cylinder of the

engine to have an appropriate A/F ratio. The A/F ratio is managed using the proportional,
integral and derivative actions in PID controller. PID regulator is described as follows.

u(t) = kpe(t) + kI

∫
e(t)dt + kD

de(t)
dt

(24)

where kp, kD and kI are proportional, derivative and integral parameters, respectively.
These parameters are tuned manually in MATLAB Simulink to provide the best results,
i.e., the error between the generated torque by the FLS and the actual torque after the PID
controller converges to zero.
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4. Simulations and Discussion
4.1. Simulations

In this section, for the ego vehicle, we compare the performance of three different
alternatives for the control structure, mentioned in Table 3. The powertrain model which
has been introduced in [45], is summarized by Equations (23) and (24). This model is used
during all scenarios in these simulations. It assumes a continuously variable transmis-
sion (CVT) system as an automatic transmission that can change seamlessly through a
continuous range of gear ratios.

Table 3. Structures of the control system compared in this paper.

ACC EMS

Alternative 1 AMPC -
Alternative 2 AMPC T1FLS
Alternative 3 AMPC T2FLS

Alternative 1: For this structure, the EMS block in the model of Figure 4 is bypassed.
The ego vehicle follows the lead vehicle for a period of 766 s, equal to 16.5 km of travel
distance using an ACC. Through this journey, the lead vehicle follows a standard driving
cycle (HWFET). The ego vehicle, equipped with ACC based on AMPC, travels with the
initial velocity of 0 m/s. The relative distance between the two vehicles at the beginning
is 200 m. In the simulation, the controller’s sampling time is 0.1 s, the constant time
headway is 1.4 s, the prediction horizon p = 30 and the standstill default spacing is 10 m.
MATLAB Simulink and model predictive control toolbox [53] are used in the simulations.
The required power of the ego vehicle is produced by the energy calculation unit.

Alternative 2: This simulation is conducted under the same conditions as the Alter-
native 1. However, the EMS block is activated and works based on the T1FLS, which is
introduced in Section 3.2.1 Part I.

Alternative 3: This simulation is conducted under the same conditions as the Alter-
native 1. However, an EMS based on IT2FLS is considered. This allows to evaluate the
controller’s performance in handling enormous uncertainties of driving conditions, espe-
cially in the vehicle-following process. The IT2FLS MATLAB/Simulink toolbox designed
by [54] is applied to execute the third simulation.

4.2. Discussion
4.2.1. Safety

Figures 10 and 11 compare the performance of our proposed AMPC with the con-
ventional MPC which focuses only on the distance control, i.e., z = v in Equation (15).
Figure 10 shows how switching between speed and distance control mode happens based
on ∆d. When ∆d > 0, i.e., when the distance between the lead and ego cars is larger
than the safe threshold, the controller switches to speed control to compensate for the gap
between vehicles. However, it activates the distance control mode when ∆d < 0, i.e., when
the distance between vehicles is not safe. In Figure 11, it is assumed that the ego car starts
falling behind the lead vehicle at T = 200 s. It can be seen in Figure 11a that the normal
MPC algorithm fails to bring the distance between two vehicles in an acceptable region. It
means that, using this control technique, the gap between cars cannot be compensated if
∆d becomes too large for any reason. However, our proposed AMPC successfully controls
the distance and keeps it in a safe range (Figure 11b). In addition, our study shows that
the normal MPC consumes about 0.2 L/100 km more fuel than the proposed AMPC in
this maneuver. In other words, the AMPC works more robustly against any uncertainties
which results in increasing ∆d. Figure 11b also shows a smooth variation of the spacing
∆d during the whole scenario which means that excessive high braking and accelerating
are avoided. Consequently, not only the risk of crashes is reduced, but also the comfort of
driving is improved significantly.
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4.2.2. Fuel Economy

In this section, performances of three alternatives for the ACC+EMS control structure,
introduced in Table 3, are compared. Results of comparing A/F ratio, revolutions per
minute, torque of the engine, fuel efficiency and fuel consumption rate in these three control
structures are compared in Figures 12–16, respectively.
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Alternative 1: In this case, the engine operates in a region that has low energy ef-
ficiency as the engine torque is elevated and the RPM is low (compare blue lines in



Sustainability 2021, 13, 10113 14 of 17

Figures 13 and 14). The average proficiency of the engine in this control structure is 25.31%.
Therefore, the fuel usage of the vehicle can be estimated as 7.21 L/100 km.

Alternative 2: In this simulation, the EMS based on T1FLS is applied to save the fuel
consumed by the ego vehicle. Figure 14 shows that with the proposed system, the engine
is regulated to produce a torque within the range of 35–65 [Nm]. In this case, a suboptimal
range of engine torque is considered, referring to Figure 3. Thus, the efficiency of the
engine increases to 29% on average (see Figure 15). Consequently, the vehicle consumes
6.88 L/100 km which is less than Alternative 1.

Alternative 3: In this structure, the engine is controlled to supply the torque and the speed
within ranges 40–75 [Nm] and 1000–3800 [rpm], respectively, based on Figures 13 and 14.
Therefore, the working area of the engine shifts to a more optimal regime, referring to Figure 3.
The engine efficiency is escalated to 29.78% on average (see Figure 15), which is the result of
a reduction in fuel consumption to 6.68 L/100 km.

These results are also compared with the adaptive cruise control look ahead (ACC(LA))
system [13] in Table 4. The ACC(LA) was designed based on the adaptive neuro-fuzzy
inference system. The system calculated the fuel usage of the vehicle under combined
dynamic loads as well. A look-ahead approach was involved in the model to anticipate the
slope of the road in the future.

Table 4. Fuel consumption of different ACC system.

Model Average Efficiency mfuel (L/100 km)

ACC (LA) - 7.95
ACC (AMPC) 25.31% 7.21

ACC (AMPC) + EMS (T1FLS) 29.00% 6.88
ACC (AMPC) + EMS (T2FLS) 29.78% 6.68

A comparison of these three alternatives shows that the combination of AMPC as
ACC and T2FLS as EMS provide the best engine performance for the vehicles and results
in less fuel consumption. It also inherits robustness of MPC, which is a crucial requirement
in the uncertain environment of AVs. We see an example of this robustness in Figure 11
when uncertainty in ∆d happens.

5. Conclusions

Unlike previous research activities which were mainly focused on the autonomous
cruise control (ACC) – also known as adaptive cruise control or intelligent cruise control
of autonomous vehicles (AVs), this paper considered the joint ACC-energy management
systems (EMS) problem to address both safety and energy management simultaneously,
thus providing a sustainable solution for AVs. We proposed integrated adaptive model
predictive control (AMPC) and interval type 2 fuzzy logic systems (IT2FLS)-based EMS for
improving energy efficiency in conventional vehicles in a vehicle-following scenario while
a safe driving condition is achieved. To this end, we utilized a cascade control structure
with an ACC on the outer loop and an EMS on the inner one. An AMPC approach was
used to design ACC in which the control objective was appropriately switched between
speed and distance. This resulted in compensation for the gap between vehicles in a
reasonable amount of time if the ego vehicle fell behind for any reason. The AMPC is
accompanied by an IT2FLS-based EMS, which was originally proposed to manage model
uncertainties. The control system was conducted in a MATLAB/Simulink environment
to empirically test the performance in a lead-ego vehicle-following scenario. Simulation
results for an HWFET drive cycle showed safe driving in a vehicle-following process in all
scenarios. Meanwhile, the fuel consumption per hundred kilometres for the ego vehicle
was improved by 13.45% using the T1LFS-based system and by 15.97% using an IT2FLS
EMS. That means by applying advanced EMS algorithms, robust against nonlinearities of
the energy efficiency problem, and combining them with advanced ACC, can result in a
significant energy saving and emission reduction toward a sustainable circular economy.
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Moreover, the AMPC+IT2FLS method assists AVs to make a smarter use of energy and
support a safer transportation.

Author Contributions: Conceptualization, Ideas, Methodology, Management, Conducting, D.P. and
H.K.; Software and Development and Data Curation, A.M.A., M.M., A.A.R., M.F., M.J. and R.L.
Conducting a research and Investigation process supervision D.B.P.; Project administration H.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. The Sustainable Development Goals Report; United Nations: New York, NY, USA, 2019.
2. Tracking Transport 2020; International Energy Agency: Paris, France, 2020.
3. Khayyam, H.; Naebe, M.; Milani, A.S.; Fakhrhoseini, S.M.; Date, A.; Shabani, B.; Atkiss, S.; Ramakrishna, S.; Fox, B.; Jazar, R.N.

Improving energy efficiency of carbon fiber manufacturing through waste heat recovery: A circular economy approach with
machine learning. Energy 2021, 225, 120113. [CrossRef]

4. Cugurullo, F.; Acheampong, R.A.; Gueriau, M.; Dusparic, I. The transition to autonomous cars, the redesign of cities and the
future of urban sustainability. Urban Geogr. 2020, 1–27. [CrossRef]

5. Acheampong, R.A.; Cugurullo, F.; Gueriau, M.; Dusparic, I. Can autonomous vehicles enable sustainable mobility in future cities?
Insights and policy challenges from user preferences over different urban transport options. Cities 2021, 112, 103134. [CrossRef]

6. Xie, J.; Xu, X.; Wang, F.; Tang, Z.; Chen, L. Coordinated control based path following of distributed drive autonomous electric
vehicles with yaw-moment control. Control. Eng. Pract. 2021, 106, 104659. [CrossRef]

7. Khayyam, H.; Javadi, B.; Jalili, M.; Jazar, R.N. Artificial Intelligence and Internet of Things for Autonomous Vehicles. In Nonlinear
Approaches in Engineering Applications; Springer: Basingstoke, UK, 2020; pp. 39–68. [CrossRef]

8. Marzbani, H.; Khayyam, H.; To, C.N.; Quoc, D.V.; Jazar, R.N. Autonomous Vehicles: Autodriver Algorithm and Vehicle Dynamics.
IEEE Trans. Veh. Technol. 2019, 68, 3201–3211. [CrossRef]

9. Lanctot, R. Accelerating the future: The economic impact of the emerging passenger economy. Strategy Anal. 2017, 5.
10. Noh, S. Decision-Making Framework for Autonomous Driving at Road Intersections: Safeguarding Against Collision, Overly

Conservative Behavior, and Violation Vehicles. IEEE Trans. Ind. Electron. 2018, 66, 3275–3286. [CrossRef]
11. Duraisamy, B.; Schwarz, T.; Wöhler, C. Track level fusion algorithms for automotive safety applications. In Proceedings of

the 2013 International Conference on Signal Processing, Image Processing & Pattern Recognition, Innsbruck, Australia, 12–14
February 2013; pp. 179–184.

12. Milanes, V.; Villagra, J.; Godoy, J.; Gonzalez, C. Comparing Fuzzy and Intelligent PI Controllers in Stop-and-Go Manoeuvres.
IEEE Trans. Control. Syst. Technol. 2011, 20, 770–778. [CrossRef]

13. Khayyam, H.; Nahavandi, S.; Davis, S. Adaptive cruise control look-ahead system for energy management of vehicles. Expert
Syst. Appl. 2012, 39, 3874–3885. [CrossRef]

14. Liang, Z.; Ren, Z.; Shao, X. Decoupling trajectory tracking for gliding reentry vehicles. IEEE/CAA J. Autom. Sin. 2015, 2, 115–120.
[CrossRef]

15. Lin, C.-M.; Chen, C.-H. Car-Following Control Using Recurrent Cerebellar Model Articulation Controller. IEEE Trans. Veh. Technol.
2007, 56, 3660–3673. [CrossRef]

16. Bageshwar, V.; Garrard, W.; Rajamani, R. Model Predictive Control of Transitional Maneuvers for Adaptive Cruise Control
Vehicles. IEEE Trans. Veh. Technol. 2004, 53, 1573–1585. [CrossRef]

17. Magdici, S.; Althoff, M. Adaptive Cruise Control with Safety Guarantees for Autonomous Vehicles. IFAC-PapersOnLine 2017, 50,
5774–5781. [CrossRef]

18. Takahama, T.; Akasaka, D. Model Predictive Control Approach to Design Practical Adaptive Cruise Control for Traffic Jam. Int. J.
Automot. Eng. 2018, 9, 99–104. [CrossRef]

19. Mahdinia, I.; Arvin, R.; Khattak, A.J.; Ghiasi, A. Safety, Energy, and Emissions Impacts of Adaptive Cruise Control and
Cooperative Adaptive Cruise Control. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674, 253–267. [CrossRef]

20. Shladover, S.E.; Nowakowski, C.; Lu, X.-Y.; Ferlis, R. Cooperative adaptive cruise control: Definitions and operating concepts.
Transp. Res. Record 2015, 2489, 145–152. [CrossRef]

21. Kural, E.; Güvenç, B.A. Model Predictive Adaptive Cruise Control. In Proceedings of the 2010 IEEE International Conference on
Systems, Man and Cybernetics, Cordoba, Spain, 1–4 June 2010; pp. 1455–1461.

22. De Madrid, A.P.; Mañoso, C.; Romero, M. Fundamentals of the MPC approach to stop-and-go Adaptive Cruise Control. In
Proceedings of the 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore, Singapore,
10–12 December 2014; pp. 175–180.

http://doi.org/10.1016/j.energy.2021.120113
http://doi.org/10.1080/02723638.2020.1746096
http://doi.org/10.1016/j.cities.2021.103134
http://doi.org/10.1016/j.conengprac.2020.104659
http://doi.org/10.1007/978-3-030-18963-1_2
http://doi.org/10.1109/TVT.2019.2895297
http://doi.org/10.1109/TIE.2018.2840530
http://doi.org/10.1109/TCST.2011.2135859
http://doi.org/10.1016/j.eswa.2011.08.169
http://doi.org/10.1109/jas.2015.7032913
http://doi.org/10.1109/TVT.2007.901057
http://doi.org/10.1109/TVT.2004.833625
http://doi.org/10.1016/j.ifacol.2017.08.418
http://doi.org/10.20485/jsaeijae.9.3_99
http://doi.org/10.1177/0361198120918572
http://doi.org/10.3141/2489-17


Sustainability 2021, 13, 10113 16 of 17

23. Weißmann, A.; Görges, D.; Lin, X. Energy-Optimal Adaptive Cruise Control based on Model Predictive Control. IFAC-
PapersOnLine 2017, 50, 12563–12568. [CrossRef]

24. Miftakhudin, M.I.; Subiantoro, A.; Yusivar, F. Adaptive Cruise Control by Considering Control Decision as Multistage MPC
Constraints. In Proceedings of the 2019 IEEE Conference on Energy Conversion (CENCON), Yogyakarta, Indonesia, 16–17
December 2019; pp. 171–176.

25. Bujarbaruah, M.; Zhang, X.; Borrelli, F. Adaptive MPC for Autonomous Lane Keeping. In Proceedings of the 14th International
Symposium on Advanced Vehicle Control (AVEC), Beijing, China, 16–20 July 2018.

26. Wang, X.; Guo, L.; Jia, Y. Road Condition Based Adaptive Model Predictive Control for Autonomous Vehicles. In Proceedings of
the Dynamic Systems and Control Conference (DSCC), Atlanta, GA, USA, 30 September–3 October 2018.

27. Khayyam, H. Automation, Control and Energy Efficiency in Complex Systems; MDPI Books: Belgrade, Switzerland, 2020; p. 245.
28. Koot, M.; Kessels, J.J.; De Jager, A.B.; Bosch, P.P.V.D. Fuel reduction potential of energy management for vehicular electric power

systems. Int. J. Altern. Propuls. 2006, 1, 112. [CrossRef]
29. Khayyam, H.; Kouzani, A.Z.; Khoshmanesh, K.; Hu, E.J. A.Z.; Khoshmanesh, K.; Hu, E.J. A rule-based intelligent energy

management system for an internal combustion engine vehicle. In TENCON 2008-2008 IEEE Region 10 Conference; Institute of
Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2008; pp. 1–5.

30. Khayyam, H.; Kouzani, A.Z.; Hu, E.J.; Nahavandi, S. Coordinated energy management of vehicle air conditioning system. Appl.
Therm. Eng. 2011, 31, 750–764. [CrossRef]

31. Phan, D.; Bab-Hadiashar, A.; Lai, C.Y.; Crawford, B.; Hoseinnezhad, R.; Jazar, R.N.; Khayyam, H. Intelligent energy management
system for conventional autonomous vehicles. Energy 2020, 191, 116476. [CrossRef]

32. Won, J.-S.; Langari, R. Intelligent Energy Management Agent for a Parallel Hybrid Vehicle—Part II: Torque Distribution, Charge
Sustenance Strategies, and Performance Results. IEEE Trans. Veh. Technol. 2005, 54, 935–953. [CrossRef]

33. Khayyam, H.; Nahavandi, S.; Hu, E.; Kouzani, A.; Chonka, A.; Abawajy, J.; Marano, V.; Davis, S. Intelligent energy management
control of vehicle air conditioning via look-ahead system. Appl. Therm. Eng. 2011, 31, 3147–3160. [CrossRef]

34. Marano, V.; Rizzoni, G.; Tulpule, P.; Gong, Q.; Khayyam, H. Intelligent energy management for plug-in hybrid electric vehicles:
The role of ITS infrastructure in vehicle electrification. Oil Gas Sci. Technol. Rev. d’IFP Energies Nouv. 2012, 67, 575–587. [CrossRef]

35. Phan, D.; Bab-Hadiashar, A.; Hoseinnezhad, R.; Jazar, R.N.; Date, A.; Jamali, A.; Pham, D.B.; Khayyam, H. Neuro-Fuzzy System
for Energy Management of Conventional Autonomous Vehicles. Energies 2020, 13, 1745. [CrossRef]

36. Naranjo, J.E.; Sotelo, M.A.; Gonzalez, C.; Garcia, R.; De Pedro, T. Using Fuzzy Logic in Automated Vehicle Control. IEEE Intell.
Syst. 2007, 22, 36–45. [CrossRef]

37. Tan, W.W.; Chua, T.W. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. IEEE Comput. Intell. Mag.
2007, 2, 72–73. [CrossRef]

38. John, R. Type 2 Fuzzy Sets: An Appraisal of Theory and Applications. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 1998, 6,
563–576. [CrossRef]

39. Bi, Y.; Lu, X.; Sun, Z.; Srinivasan, D.; Sun, Z. Optimal Type-2 Fuzzy System for Arterial Traffic Signal Control. IEEE Trans. Intell.
Transp. Syst. 2017, 19, 3009–3027. [CrossRef]

40. Vaezipour, A.; Rakotonirainy, A.; Haworth, N. Reviewing In-vehicle Systems to Improve Fuel Efficiency and Road Safety. Procedia
Manuf. 2015, 3, 3192–3199. [CrossRef]

41. Khooban, M.-H.; Gheisarnejad, M.; Vafamand, N.; Boudjadar, J. Electric Vehicle Power Propulsion System Control Based
on Time-Varying Fractional Calculus: Implementation and Experimental Results. IEEE Trans. Intell. Veh. 2019, 4, 255–264.
[CrossRef]

42. Phan, D.; Bab-Hadiashar, A.; Fayyazi, M.; Hoseinnezhad, R.; Jazar, R.N.; Khayyam, H. Interval Type 2 Fuzzy Logic Control for
Energy Management of Hybrid Electric Autonomous Vehicles. IEEE Trans. Intell. Veh. 2021, 6, 210–220. [CrossRef]

43. Khayyam, H. Adaptive intelligent control of vehicle air conditioning system. Appl. Therm. Eng. 2013, 51, 1154–1161. [CrossRef]
44. A Lambert, M.; Jones, B.J. Automotive Adsorption Air Conditioner Powered by Exhaust Heat. Part 1: Conceptual and

Embodiment Design. Proc. Inst. Mech. Eng. Part D 2006, 220, 959–972. [CrossRef]
45. Cho, D.-I.; Hedrick, J.K. Automotive Powertrain Modeling for Control. J. Dyn. Syst. Meas. Control. 1989, 111, 568–576.

[CrossRef]
46. Michael, P.; Anthony, M. Engine Testing Theory and Practice; SAE International: Warrendale, PA, USA, 1999.
47. Rajamani, R.; Zhu, C. Semi-autonomous adaptive cruise control systems. IEEE Trans. Veh. Technol. 2002, 51, 1186–1192.

[CrossRef]
48. Khayyam, H. Stochastic Models of Road Geometry and Wind Condition for Vehicle Energy Management and Control. IEEE

Trans. Veh. Technol. 2012, 62, 61–68. [CrossRef]
49. Liang, Q.; Mendel, J.M. Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 2000, 8, 535–550.

[CrossRef]
50. Mendel, J.M.; Liu, X. Simplified Interval Type-2 Fuzzy Logic Systems. IEEE Trans. Fuzzy Syst. 2013, 21, 1056–1069. [CrossRef]
51. Karnik, N.N.; Mendel, J.M.; Liang, Q. Type-2 Fuzzy Logic Systems. IEEE Trans. Fuzzy Syst. 1999, 7, 643–658. [CrossRef]
52. Mendel, J.; Karnik, N.; Liang, Q. Connection admission control in ATM networks using survey-based type-2 fuzzy logic systems.

IEEE Trans. Syst. Man Cybern. Part C 2000, 30, 329–339. [CrossRef]

http://doi.org/10.1016/j.ifacol.2017.08.2196
http://doi.org/10.1504/IJAP.2006.010761
http://doi.org/10.1016/j.applthermaleng.2010.10.022
http://doi.org/10.1016/j.energy.2019.116476
http://doi.org/10.1109/TVT.2005.844683
http://doi.org/10.1016/j.applthermaleng.2011.05.023
http://doi.org/10.2516/ogst/2012019
http://doi.org/10.3390/en13071745
http://doi.org/10.1109/MIS.2007.18
http://doi.org/10.1109/MCI.2007.357196
http://doi.org/10.1142/S0218488598000434
http://doi.org/10.1109/TITS.2017.2762085
http://doi.org/10.1016/j.promfg.2015.07.869
http://doi.org/10.1109/TIV.2019.2904415
http://doi.org/10.1109/TIV.2020.3011954
http://doi.org/10.1016/j.applthermaleng.2012.10.028
http://doi.org/10.1243/09544070JAUTO221
http://doi.org/10.1115/1.3153093
http://doi.org/10.1109/TVT.2002.800617
http://doi.org/10.1109/TVT.2012.2218137
http://doi.org/10.1109/91.873577
http://doi.org/10.1109/TFUZZ.2013.2241771
http://doi.org/10.1109/91.811231
http://doi.org/10.1109/5326.885114


Sustainability 2021, 13, 10113 17 of 17

53. Bemporad, A.; Morari, M.; Ricker, N.L. Model Predictive Control Toolbox User’s Guide; The Mathworks: Portola Valley, CA,
USA, 2010.

54. Taskin, A.; Kumbasar, T. An open source Matlab/Simulink toolbox for interval type-2 fuzzy logic systems. In Proceedings of the
2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 8–10 December 2015; pp. 1561–1568.


	Introduction 
	Vehicle Dynamics and Require Power 
	Proposed Control System for the Ego Vehicle 
	Adaptive Cruise Control 
	Energy Management System 
	Fuzzy Logic System 
	PID Controller 


	Simulations and Discussion 
	Simulations 
	Discussion 
	Safety 
	Fuel Economy 


	Conclusions 
	References

