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Abstract: The impacts of future climate changes on watershed hydrochemical processes were as-

sessed based on the newest Shared Socioeconomic Pathways (SSP) scenarios in Coupled Model 

Intercomparison Project Phase 6 (CMIP6) in the Tianhe River in the middle area of China. The 

monthly spatial downscaled outputs of General Circulation Models (GCMs) were used, and a new 

Python procedure was developed to batch pick up site-scale climate change information. A com-

bined modeling approach was proposed to estimate the responses of the streamflow and Total 

Dissolved Nitrogen (TDN) fluxes to four climate change scenarios during four future periods. The 

Long Ashton Research Station Weather Generator (LARS-WG) was used to generate synthetic daily 

weather series, which were further used in the Regional Nutrient Management (ReNuMa) model 

for scenario analyses of watershed hydrochemical process responses. The results showed that there 

would be 2–3% decreases in annual streamflow by the end of this century for most scenarios ex-

cept SSP 1–26. More streamflow is expected in the summer months, responding to most climate 

change scenarios. The annual TDN fluxes would continue to increase in the future under the un-

controlled climate scenarios, with more non-point source contributions during the high-flow pe-

riods in the summer. The intensities of the TDN flux increasing under the emission-controlled 

climate scenarios would be relatively moderate, with a turning point around the 2070s, indicating 

that positive climate policies could be effective for mitigating the impacts of future climate changes 

on watershed hydrochemical processes.  
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1. Introduction 

Global climate change has affected the Earth system [1–3], and it will continue to do 

so, judging from current trends [4,5]. Among its significant impacts are those on water-

shed hydrochemical processes [6–8]. The expected temperature changes are likely to alter 

the water cycle across global to regional scales and modify watershed hydrology by in-

creasing evapotranspiration [9] and evaporation [10], lowering soil moisture [11], re-

ducing snow cover and generating earlier snowmelt [12]. In addition, watershed hy-

drochemical processes could also be altered by changes in precipitation, both in terms of 

absolute yields and temporal and spatial distributions, which are directly related to 

streamflow and non-point source flux [13,14]. Understanding the response of watershed 

streamflow and pollution load to climate change has important implications for the local 

management of water security, water quality, and ecosystem sustainability [15,16]. A 

modeling approach is often considered to be a useful tool to quantitatively estimate the 

impacts of projected climate changes on watershed hydrochemical processes based on 

scenario analyses [17,18]. The main subject of the article is to apply a multi-model ap-
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proach to estimate the impacts of climate changes on watershed streamflow and 

non-point source flux. 

Downscaled outputs of General Circulation Models (GCMs) have been widely used 

to drive watershed models to estimate the responses of watershed hydrological or hy-

drochemical processes to projections of climate change [19,20]. The Coupled Model In-

tercomparison Project (CMIP) was organized by the Working Group on Coupled Mod-

eling (WGCM) in 1995 and developed in phases with numerous collaborations. The most 

important of these collaborations was with the US Department of Energy (DOE) Pro-

gram for Climate Model Diagnosis and Intercomparison (PCMDI). The CMIP is a col-

laborative framework to make the model intercomparison data available to other scien-

tists as the standard experimental protocol of climate change scenarios for international 

scientists to analyze different GCMs in an equivalent way and facilitate further applica-

tions. Since 2016, a new set of emissions scenarios driven by different socioeconomic as-

sumptions, called Shared Socioeconomic Pathways (SSPs), has been developed by the 

energy modeling community and selected as new scenarios in CMIP6 to drive GCMs for 

further analysis [21,22], such as the upcoming 2021 Intergovernmental Panel on Climate 

Change (IPCC) sixth assessment report (AR6). Datasets from the new generation of 

GCMs based on CMIP6 scenarios are gradually being released [23], representing new 

characteristics in the frequency and intensity of climate change [24–26]. It is of great in-

terest to both researchers and decision makers to estimate how the watershed streamflow 

and water quality will change under the new emission scenarios in the future. However, 

previous studies were mainly carried out based on CMIP5 scenarios [27,28], and studies 

based on the state-of-the-art scenarios of CMIP6 are pending [29,30]. In this subject, we 

hope to establish a feasible technical framework to provide insight into climate change 

impacts on the watershed hydrochemical processes under CMIP6 scenarios with a mul-

ti-model approach. 

The resolutions of global raster maps from GCM outputs are generally too low to be 

directly used in watershed models, which often require at least daily weather data at the 

site-scale resolution. However, as a critical issue for CMIP6 scenario application [31], 

reanalysis of the original GCM outputs for resolution refinement is pending and still not 

available for most GCMs’ daily outputs in the most areas due to its high computational 

complexity. It is a great challenge to bridge the gap between GCM outputs and water-

shed model demands [32,33], and practical downscaling analysis is an effective technical 

approach to address this issue [34,35]. There are generally two technical paths to 

downscale the GCM outputs: dynamic downscaling and statistical downscaling. The 

dynamic downscaling methods mainly use Regional Climate Models (RCMs) driven 

based on GCM outputs for detailed re-analyses [36,37], which need remarkable compu-

tational resources. Statistical downscaling methods mainly use various Markov chains, 

spatial interpolation, and machine learning methods, such as Convolutional Neural 

Networks (CNNs) for spatial downscaling and the Weather Generator (WG) model for 

time downscaling [38–40]. The WG model has relatively simple operation and low 

computational cost to generate site scale synthetic daily weather series suitable for wa-

tershed model applications. It has been widely used in estimating the responses of wa-

tershed hydrological or hydrochemical processes to various climate changes of CMIP5 

scenarios by estimating watershed-scale climate variables consistent with the GCM 

outputs [41–43]. It is a feasible approach to estimate watershed responses to CMIP6 sce-

narios by developing a framework based on a suitable WG model combined with a wa-

tershed hydrology model. 

In this study, we propose a combined modeling approach to estimate climate change 

impacts on a watershed under CMIP6 scenarios. As a tributary of the Hanjiang River in 

China, the Tianhe River was used as a study case. The changes of streamflow and total 

dissolved nitrogen (TDN) fluxes at the estuary of the Tianhe River as the watershed out-

let were estimated. The results show that both watershed hydrological and hydrochem-

ical processes would be changed under SSP scenarios in the future, including more TDN 
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yields, different monthly load distributions and source apportionment, and increasing 

risks of extreme events. More response estimations based on SSP scenarios of CMIP6 in 

other watersheds with different weather conditions are expected, and the modeling ap-

proach proposed in this study can be adopted as an alternative. 

2. Materials and Methods 

2.1. Study Area and Data Source 

This study was conducted in the Tianhe River watershed, located in the middle area 

of China (Figure 1). The Tianhe River originates from the eastern side of Taiping Moun-

tain in Shaanxi Province and drains into the Hanjiang River in Hubei Province. The 

Hanjiang River is the main water source of Danjiangkou Reservoir. Danjiangkou Reser-

voir is the source of water for extraction by China’s South-to-North Water Diversion 

Project. It has a 290.5 × 108 m3 maximum storage capacity and 394.8 × 108 m3 mean annu-

al inflow, indicating great socioeconomic value. The Tianhe River is the last large tribu-

tary of the Hanjiang River before being injected into the Danjiangkou Reservoir. Due to 

the active agricultural planting behavior in the upstream and the septic system dis-

charge from residents in the downstream town, the TDN concentration of the Tianhe 

River is generally at a relatively high level, leading to the risk of eutrophication in the 

Danjiangkou Reservoir. In addition, residents living in the downstream town face the 

risk of flooding during the summer. Thus, it is of significance to estimate the possible 

changes of the streamflow and TDN fluxes in the Tianhe River caused by climate change 

in the future. 

 

Figure 1. Location of the study area. 

The watershed area located above the estuary of the Tianhe River was set as the 

study area, approximately 1702 km2. It is dominated by natural land with 63.4% forest 

and 24.3% grassland cover, mainly distributed in the upstream area. There is considera-

ble cultivated land in the downstream area, accounting for 11.2% of the total watershed 

area. Elevations range from 147 m to 1590 m, and the average annual precipitation and 

temperature of this area are 810.2 mm and 12.5 °C, respectively (Figure 2). Yunxi town is 

located in the downstream area of the study’s watershed, with a population of about 

505,000. There is one water quality monitoring station, one hydrological station, and one 

meteorological station lying in the study’s watershed. The historical data from the mete-

orological station provide weather data for GCM downscaling and watershed hydro-

chemical modeling. The historical data from the hydrological station provide streamflow 
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data for transport parameter estimation of the ReNuMa model. The historical data from 

the water quality monitoring station provide TDN data for nutrient parameter estima-

tion of the ReNuMa model. The sources of the original data used in this study are sum-

marized in Table 1. 

 

Figure 2. Spatial attributes of the study area (statistics since 1980). (a) The spatial distribution of elevation. (b) The spatial 

distribution of temperature. (c) The spatial distribution of precipitation. 

Table 1. Summary of the original input data source. 

Name Source and Description Resolution Remark 

Digital Elevation 

Model 

Geospatial Data Cloud site, Computer Network 

Information Center, Chinese Academy of Sciences 

(http://www.gscloud.cn, 1 July 2021) 

30 m × 30 m raster ASTER GDEM V2 

Land Use Maps 

Data Center for Resources and Environmental 

Sciences, Chinese Academy of Sciences (RESDC) 

(http://www.resdc.cn, 1 July 2021) 

30 m × 30 m raster Period of 2015 

Pollution Emission 

Data 

The Second State Pollution Source Survey of China 

(http://www.mee.gov.cn, 1 July 2021) 
City and Town Base Year of 2017 

Population Data 

Kilometer Grid Dataset of Chinese Population 

Spatial Distribution (https://www.resdc.cn, 1 July 

2021; doi:10.12078/2017121101) 

1 km × 1 km Period of 2015 

Historical Weather 

Records 

Climatic Data Center, National Meteorological In-

formation Center, China Meteorological Admin-

istration (http://data.cma.cn, 1 July 2021) 

Daily 1957–2019 

Historical Hydro-

logical Data 

Annual Hydrological Report P. R. China, Volume 

6(15), borrowed from National Library of China 
Monthly 2009–2015 

Historical Water 

Quality Data 

National surface water quality report of China and 

Local Environmental Monitoring Station 

(http://106.37.208.243:8068/GJZ/Business/Publish/

Main.html, 1 July 2021) 

Monthly 2009–2016, 2018 

Future Climate Data 

Global Historical and Future Climate Grid Dataset 

Downscaled Based on GCM Outputs 

(www.worldclim.org, 1 July 2021) 

2.5 min 4.65 km × 4.65 km 
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2.2. Overview of Methodology 

In this study, we propose a combined modeling approach to estimate climate change 

impacts on a watershed under CMIP6 scenarios. The WG model of the Long Ashton Re-

search Station Weather Generator (LARS-WG) was employed to provide site-scale daily 

temperatures and precipitations suitable for watershed model application. LARS-WG is 

an effective time downscaling tool that can generate synthetic daily weather series based 

on monthly climate change estimations. This means that just monthly downscaling 

analysis of the original GCM outputs can satisfy the modeling demand of LARS-WG to 

address the time disaster caused by complex computation. The monthly downscaled 

dataset is already available in some public databases. Global monthly 2.5-min raster 

maps, downscaled with WorldClim v2.1 based on the original GCM outputs, were used 

to provide high-resolution future climate data under various SSP-CMIP6 scenarios in 

different periods [44]. A Python procedure was developed to extract site-specific climate 

variables for the target watershed in batch mode for four future periods under four dif-

ferent SSP scenarios from seven available GCMs. An ensemble approach was adopted by 

averaging the values of the estimated climate variables from multi-GCM outputs to avoid 

uncertainty from one single GCM. The changes in the monthly climate variables in dif-

ferent SSP scenarios and future periods were calculated to build several user-defined 

scenario files, which were used to update the parameters of LARS-WG to generate syn-

thetic daily weather data representing various scenarios and periods for further applica-

tion in the watershed model. Regional Nutrient Management (ReNuMa) was employed 

as a watershed model tool to estimate the watershed hydrological and hydrochemical 

processes, including the current status and various possible responses to climate changes 

by using LARS-WG outputs. The general methodology diagram is shown in Figure 3. 

 

Figure 3. The general flow chart of the methodology. The abbreviation ReNuMa stands for the Regional Nutrient Man-

agement model. The abbreviation LARS-WG 6 means the Long Ashton Research Station Weather Generator Version 6. 
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2.3. Watershed Hydrochemical Modeling 

Regional Nutrient Management (ReNuMa) was used to model the watershed hy-

drochemical process for streamflow and TDN flux estimations. ReNuMa is a 

semi-distributed watershed model as a derivative of the Generalized Watershed Loading 

Function (GWLF) [45] with the Net Anthropogenic Nitrogen Inputs (NANI) framework, 

which is an accounting methodology for calculating the nitrogen concentrations of the 

discharge from different land use areas based on the estimations of the net anthropogenic 

nitrogen inputs across watershed boundaries [46]. It has been widely applied to estimate 

the yields and source apportionments of watershed streamflows and pollution fluxes 

[47], as well as for various scenario analyses of watershed responses to a changed envi-

ronment, such as best management practice implementation [48,49] and climate or land 

use cover changes [18,50]. The ReNuMa model can provide reliable monthly to annual 

estimations in several hundred to a thousand square kilometer watersheds with moder-

ate data requirements, which is suitable for the modeling demands of this study. 

ReNuMa applications generally include parameter estimation and scenario analysis. 

Due to the limitations of available historical data, the periods of observed data of 

streamflow and water quality for parameter estimation do not overlap. It conforms to 

the model application specifications, as the transport parameters and nutrient parame-

ters were estimated sequentially. The nutrient-related parameters of ReNuMa are esti-

mated only after the hydrological parameters are established by calibration. The histori-

cal hydrological data of the observed monthly streamflow at the Jia-Jia-Fang Hydrolog-

ical Station from 2009 to 2012 were used to calibrate the transport parameters for 

streamflow estimation, and historical data from 2013 to 2015 were reserved for testing the 

validity of the model with the calibrated parameters. The nutrient parameters for TDN 

estimation were calibrated based on the historical monthly water quality data at Tian-

he-Estuary Monitoring Point from 2012 to 2015 and validated with observed data in 2016 

and 2018. The Nash–Sutcliff coefficient (R2NS) and coefficient of determination (r2) are 

used as statistics to measure the model’s accuracy. The nonlinear least square method 

was used for model calibration with the Solver macro add-in procedure embedded in 

ReNuMa’s Excel platform [51]. Two additional algorithms of the segment function and 

leakage transport approach based on the previous study [52] were used. The former used 

variable recession and seepage coefficients based on saturated zone soil moistures in-

stead of the original fixed coefficients for better specification of the proportions of 

groundwater added to the stream and lost to the deep aquifer. The latter establishes an 

additional pathway for water infiltration from an unsaturated zone to a saturated zone, 

regardless of whether the unsaturated zone soil moistures exceed the moisture storage 

capacity or not. These new algorithms could refine the model groundwater framework 

and achieve better estimations of groundwater yields during low-flow periods. The cali-

brated ReNuMa was then used to estimate the watershed responses to alternative climate 

scenarios by updating the weather input data with downscaled synthetic daily series, as 

described below. 

2.4. Downscaling Analysis 

The Long Ashton Research Station Weather Generator (LARS-WG) was used as the 

time-downscaling tool for future climate changes in this study. It is a stochastic weather 

generator that can generate synthetic daily weather data based on the lengths of wet and 

dry day series and the semi-empirical distributions of weather factor values to represent 

current and various projected future climate statuses [53]. The LARS-WG has been 

widely used for watershed response estimations to climate changes by linking its output 

to various watershed hydrochemical models [54,55]. 

In this study, the newest version of LARS-WG6 was used, and 63 years of observed 

daily weather data from 1957 to 2019 from the Meteorological Station of Xun-Xi were 

analyzed to assess the statistical characteristics of critical weather factors in the study 
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area in order to calibrate the model parameters. Then, 63 years of synthetic daily weather 

data were generated based on the calibrated parameters and compared with the observed 

data to validate the parameters. Three statistical tests were conducted to test the con-

sistencies between the modeled and observed data for different weather factors. The 

Kolmogorov–Smirnov (K–S) test was performed for the significance test of the daily 

minimum temperature distributions, daily maximum temperature distributions, seasonal 

wet/dry series distributions, and daily precipitation distributions. In addition, the con-

sistencies of the monthly mean of precipitation, monthly mean of the daily maximum 

temperature, and monthly mean of the daily minimum temperature were tested by the 

t-test, and the monthly variances of precipitation were tested by the F-test. After the 

model performance has been approved, synthetic daily weather data that represent var-

ious changed climatic statues can be generated by updating the calibrated and validated 

model parameters based on scenario files. However, the scenario analysis module in the 

current LARS-WG6 was developed based on CMIP5 so that it does not reflect changes in 

the statistical characteristics of weather factors under CMIP6 SSP scenarios to update the 

model parameters. Thus, a series of user-defined scenario files for LARS-WG6 were built 

to update the model parameters to reflect the responses of critical weather factors to 

climate changes in different future periods under different CMIP6 SSP scenarios. 

The global 2.5-min raster maps in the WorldClim dataset were used as climatic input 

data to build the LARS-WG6 scenario files, which were downscaled from the original 

GCM outputs to present averages of the monthly temperature and precipitation values 

over 20-year periods for various CMIP6 SSP scenarios. Seven available GCM outputs 

were considered, including BCC-CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1, CanESM5, 

IPSL-CM6A-LR, MIROC-ES2L, and MIROC6. A Python batch procedure was developed 

to select the raster values of the study area for each of the GCMs included. An ensemble 

approach was achieved based on the averages of multiple GCM outputs to account for 

the scenario files [56]. More details about the GCMs and ensembles are provided in the 

Supplementary Materials. Based on these scenario files, various synthetic daily weather 

series were generated by using LARS-WG6 for further applications in ReNuMa to esti-

mate the impacts of future climate changes on watershed hydrochemical processes, as 

described below. 

2.5. Scenario Descriptions 

The impacts of future climate changes under four climate change scenarios in four 

future periods were estimated. The state-of-the-art climate change scenarios of the 

Shared Socioeconomic Pathways (SSPs) proposed by the energy modeling community 

for CMIP6 [22] have been used by many modeling groups to drive different climate 

models to estimate how the global climate may change under various future emission 

scenarios. Four SSP scenarios available in the WorldClim dataset were considered in this 

subject, including SSP1-26, SSP 2-45, SSP 3-70, and SSP 5-85. The scenarios of SSP1-26, 

SSP 2-45, and SSP 5-85 can be seen as new versions of the scenarios of RCP26, RCP45, and 

RCP85 in AR5/CMIP5, which have similar end-of-century radiative forcing levels but 

different emissions pathways and mixes of CO2 and non-CO2 emissions. SSP 3-70 is a 

new scenario added in CMIP6. It lies in the middle of the range of baseline outcomes 

produced by energy system models. Generally speaking, SSP1-26 and SSP 2-45 represent 

a controlled world that rapidly reduces emissions for the situations of limited warming to 

below 2 °C and around 3 °C by 2100, respectively. SSP5-8.5 and SSP3-7.0 represent a 

world that fails to enact any climate policies for the situations of the worst case and the 

middle of the road, respectively. 

The possible climate changes in four future periods were considered, including the 

2030s (2021–2040), 2050s (2041–2060), 2070s (2061–2080), and 2090s (2081–2100). Each 

future period climate raster dataset was based on the time averages of 20 years of 

downscaled GCM outputs. For each month in each future period under each SSP sce-

nario, the changes in monthly temperature and precipitation in the study area from each 
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GCM output were averaged and used to update the model parameters to construct the 

respective scenario files for LARS-WG6 to generate 20 years of synthetic daily weather 

data, which were further used in ReNuMa for scenario analyses of the watershed hy-

drochemical process. All the parameters of ReNuMa are constant, based on the assump-

tion that there is no change in the inputs of pollution to the watershed resulting from 

local human activities so that only the impacts of climate changes are estimated. The 

annual and monthly streamflow and TDN fluxes at the watershed outlet were estimated 

for each scenario and future period, which were further compared with the results in the 

current status for response estimation. The impacts of climate changes on the watershed 

hydrochemical processes were discussed for local decision-making support, including 

possible water source yields, extreme event probabilities of flood and eutrophication 

risks, and changes in pollution source apportionment, as described in Section 3 below. 

3. Results and Discussion 

3.1. Results of the LARS-WG 

The outputs of the LARS-WG compared with the observed values are shown in 

Figure 4. There was generally great similarity between the observed and modeled values 

of the monthly means of the daily maximum and minimum temperatures and monthly 

precipitation totals. The results were much better for temperature than precipitation, 

which is consistent with the results of other similar studies [57,58]. The temperature was 

more regularity affected by the season, but the occurrence of precipitation behavior was 

more uncertain and hard to be totally simulated. The results of the K-S tests show that 

there was no significant difference between the distributions of the daily observed and 

modeled series for all weather factors. The t-test and F-test results show that the means 

and variances of the monthly observed series and synthetic series were in good agree-

ment, if a little poorer than the corresponding daily outputs, and comparable with the 

level of agreement in other model applications [56,59,60]. Most monthly results had no 

significant differences between the observed and modeled values at the 5% significance 

level, except the F-test of monthly precipitation variance in September. The modeling 

performance file and parameter file of the LARS-WG are provided in the Supplementary 

Materials. The calibrated and validated LARS-WG model was thus judged to be ac-

ceptable to generate synthetic weather series based on projected climate scenarios. 

 

Figure 4. Comparisons of observed and modeled values of precipitation and temperature from the 

Long Ashton Research Station Weather Generator (LARS-WG). (a) The mean daily maximum 
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temperature for each month. (b) The mean daily minimum temperature for each month. (c) The 

monthly precipitation for each month. (d) The deviation of monthly precipitation for each month. 

The scenario files of the LARS-WG contained a series of user-defined parameters 

based on the ensembles of downscaled GCM outputs. For each SSP scenario in each fu-

ture period, the changes in precipitation and maximum and minimum temperatures in 

each month were summarized with the Python batch procedure to create the corre-

sponding scenario file of the LARS-WG. For each scenario file, 20 years of daily synthetic 

weather series of the precipitation, maximum temperature, and minimum temperature 

were generated by the LARS-WG model. All the scenario files and corresponding syn-

thetic weather data can be found in the Supplementary Materials. These synthetic daily 

series were used as the input weather data of the ReNuMa model for scenario analyses. 

The average of the daily maximum and minimum temperatures was used as the input of 

the daily temperature data for ReNuMa. 

3.2. Results of ReNuMa for Streamflow and TDN Flux: Calibration and Validation 

The time series of the monthly modeling streamflow and TDN compared with the 

observed data are shown in Figures 5 and 6. The results showed relatively good agree-

ment, based on the goodness of fit of the observed and modeled streamflow and TDN 

flux in this study area. The observed TDN in 2017 is missing due to available data limi-

tations. However, benefiting from the flexible data demands of ReNuMa, it was feasible 

to use discontinuous observation for calibration and verification. The R2NS and r2 of the 

streamflow estimation were 0.800 and 0.828 in the calibration period and 0.753 and 0.796 

in the validation period, respectively. The modeling accuracy for TDN flux was some-

what lower than that for the streamflow, which is consistent with previous studies 

[48,49]; the R2NS and r2 values for TDN flux estimation for the calibration period were 

0.748 and 0.751, respectively. For the validation period, the R2NS was 0.716, and the r2 was 

0.735. These statistics are in the same range as other watershed model applications for 

monthly hydrochemical process estimations [47,61], indicating that the calibrated Re-

NuMa model is acceptable for further scenario analysis of climate change impacts. De-

tails of the main calibrated ReNuMa transport and nutrient parameters are summarized 

in the Supplementary Materials. A series of scenario analyses were achieved by using the 

ReNuMa model based on the synthetic daily series generated by the LARS-WG to esti-

mate the impacts of climate changes on the watershed streamflow and TDN, which were 

discussed in Sections 3.3–3.5. 

 

Figure 5. Comparisons of monthly observed and modeling streamflows of Regional Nutrient 

Management (ReNuMa). 
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Figure 6. Comparisons of monthly observed and modeling total dissolved nitrogen of Regional 

Nutrient Management (ReNuMa). 

3.3. Changes of Streamflow 

The estimates of the annual streamflow under various SSP scenarios in different 

future periods are illustrated in Figure 7. There were generally decreasing trends in the 

annual streamflow yields for most scenarios except SSP 1-26. For the two emis-

sion-controlled scenarios of SSP 1-26 and SSP 2-45, the annual streamflow initially de-

creased around the 2030s and then increased with a peak around the 2070s. The annual 

streamflow increased 7.83% in the 2070s under the strictly controlled scenario of SSP 1-26. 

For the two uncontrolled scenarios of SSP3-7.0 and SSP5-8.5, there was a relative peak in 

annual streamflow around the 2050s and then a decrease to a minimum around the 

2070s. The annual streamflow decreased 3.27% in the 2070s under the moderate uncon-

trolled scenario of SSP 3-70. It was expected that there would be 2–3% decreases in an-

nual streamflow by the end of this century for most scenarios except SSP 1-26, which 

assumed a strict limitation of warming below 2 °C. These results indicate that the 

warming trends of climate changes would result in lower water flows in the river chan-

nel, which probably result from the severe evapotranspiration that offsets the additional 

precipitation. Positive climate policies in controlling greenhouse gas emissions to miti-

gate global warming trends are effective in stabilizing the changes of watershed annual 

streamflow and benefit local water resource security. 

 

Figure 7. Annual streamflow under various climate change scenarios in the future. 
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Another perspective on the changes in the monthly streamflows under various cli-

mate change scenarios in different future periods is shown in Figure 8, together with the 

changes in monthly temperatures and precipitation. General decreases in the streamflow 

were seen in most months, but remarkable increases of the monthly streamflow were 

observed during the summer for most scenarios in the future. The streamflow in July and 

August would increase for most SSP scenarios, and significant increases could be found 

in July. The expected monthly streamflow in July would increase 20.65% (10.11 mm) in 

the 2070s for the emission-controlled scenario of SSP 1-26 and 22.65% (11.08 mm) in the 

2090s for the uncontrolled scenario of SSP 5-85, which integrated a great flood risk. In 

addition, there were significant decreases in the streamflow at the beginning and end of 

the winter in the future, especially for the uncontrolled scenarios. The expected monthly 

streamflow in December and February would decrease 18.86% (2.59 mm) and 18.64% 

(1.15 mm), respectively, in the 2090s under the SSP 5-85 scenario. In general, under the 

background of annual streamflow reduction, there would be significant changes in the 

time distribution characteristics of the water resources, with intensive humid trends in 

the summer months during the high-flow period but overall arid trends in other months, 

particularly during the low-flow period in winter. These changes should be of great 

concern for local water management to design effective projects for better water alloca-

tions to ensure the safety of residents’ lives from flood threats and to satisfy production 

needs, such as industrial consumption and agricultural irrigation. 

 

Figure 8. Changes in monthly streamflow, temperature, and precipitation relative to current average monthly values 

under various climate change scenarios in the future. (a) The changing rates of the streamflow. (b) The amounts of 

change in temperature. (c) The changing rates of precipitation. 

3.4. Changes of Dissolved Nitrogen Fluxes 

The annual TDN fluxes in the future under different SSP scenarios are shown in 

Figure 9. It is evident that for all climate change scenarios in CMIP6, the annual TDN flux 

increased in the future. Continuous increases of the annual TDN flux were observed for 

the two uncontrolled scenarios of SSP3-7.0 and SSP5-8.5, which led to increases of 5.56% 

and 7.96% of the annual TDN flux in the study area around the 2090s. The changes in the 

annual TDN flux under the two emission-controlled scenarios of SSP 1-26 and SSP 2-45 

gradually rose first and then fell, with peaks appearing around 2070s. The annual TDN 

flux in the 2070s increased 7.31% under the strictly controlled scenario of SSP 1-26 and 
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3.93% under the moderately controlled scenario of SSP 2-45. The annual TDN flux in the 

2090s under SSP 1-26 and SSP 2-45 would decrease from the values around the 2070s, 

indicating positive effects of emission management on TDN flux control. The increased 

TDN fluxes mainly resulted from the additional non-point source pollution due to the 

increased transport of TDN associated with increases in the streamflow. More detailed 

measures concerning non-point pollution control are needed for local environmental 

management. 

 

Figure 9. Annual total dissolved nitrogen fluxes under various climate change scenarios in the fu-

ture. 

The changes in the monthly TDN fluxes in the future were similar to the changes in 

the monthly streamflow, which are illustrated in Figure 10. Against the increasing back-

ground of annual TDN fluxes, most changes in the monthly TDN fluxes were negative 

during the low-flow period in the winter. The increases in the monthly TDN fluxes in the 

summer were remarkable in the future. The peak of monthly TDN flux for the emis-

sion-controlled scenario of SSP 1-26 would occur in July around the 2070s, with an in-

crease of 17.13% related to the current level. For the worst uncontrolled scenario of SSP 

5-85, the peak of the monthly TDN fluxes during the research period could be found in 

July at the end of this century around the 2090s, with continuously increasing trends 

implying a worse situation in the next century. In general, the critical issues of TDN flux 

control in the summer were related to high summertime flows. The main pollution 

source under the changed climate status should be identified, and efficient measures 

should be projected to implement the best management practice, as discussed below in 

Section 3.5. 
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Figure 10. Changes in monthly total dissolved nitrogen fluxes relative to current average monthly 

values under various climate change scenarios in the future. 

3.5. Changes in Pollution Source Apportionments 

The current source apportionments of TDN in the study’s watershed estimated by 

ReNuMa are illustrated in Figure 11. There are generally four main routes for TDN 

loading: surface runoff, groundwater, septic system discharges, and point source dis-

charges. The contributions of the point sources, which are discharged from the municipal 

sewage treatment plant of Yunxi town in the downstream area, comprised 24.6% of the 

total. The point source loads mainly include the domestic sewage of urban residents and 

industrial waste of the factories in Yunxi town. In addition, 21.2% TDN flux came from 

the septic systems of rural residents distributed in the upstream area. In addition, 8.0% of 

the TDN flux was contributed from groundwater, mainly resulting from the infiltration 

of polluted water and dissolutions of soil organic matter. Surface runoff contributed 

46.2% of the TDN fluxes, mainly resulting from agricultural activities; 56.8% of the TDN 

in the runoff was from paddy fields, and 33.7% came from cultivated land, which mainly 

resulted from fertilizer and manure N in the runoff. A total of 9.5% of the TDN in the 

runoff came from forested land, grassland, water surfaces, and urban areas, which 

mainly resulted from atmospheric nitrogen deposition. Generally speaking, it is a mixed 

polluted watershed with significant non-point sources that may be sensitive to changes in 

the regional weather features. 
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Figure 11. Source apportionments of total dissolved nitrogen in the study area. 

The changes in the source apportionments of TDN under various SSP scenarios in 

different future periods are shown in Figure 12. The proportions of the TDN loads con-

tributed from natural land would increase, including those of paddy fields, cultivated 

land, forest land, and grassland. The relative contribution of TDN from the septic system 

(rural resident livings), point source, and groundwater would decrease. Because the ab-

solute amounts of the point source contributions were assumed to be constant, decreases 

in their proportional contribution resulted from the increases in the total fluxes of TDN in 

the future. The impacts of climate changes on the TDN proportions due to groundwater 

and septic systems were negative. The absolute TDN yields from the septic system were 

generally steady, and the absolute TDN yields from groundwater were decreasing, 

which was more remarkable under the uncontrolled scenarios of SSP 3-70 and SSP 5-85 at 

the end of the 21st century. The changes in the contributing ratios of TDN from other 

land use areas in the future were negligible. 

 

Figure 12. The changes in pollution source apportionments of the total dissolved nitrogen fluxes 

relative to the current levels under various climate change scenarios in the future. 
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The critical changes in the source apportionments of the TDN under various climate 

change scenarios in the future focused on the natural land. There were generally in-

creasing trends in the relative contributions of the TDN from the paddy fields, cultivated 

land, forest land, and grassland, implying significant increases in non-point source con-

tributions in the future. The pollution contributed from the agricultural land use area of 

the paddy fields and cultivated lands were the main source of TDN loads in the study 

area in the future. The increases in relative contributions from agricultural land use area 

under the emission-controlled scenarios of SSP 1-26 and SSP 2-45 were smaller than those 

under the uncontrolled scenarios of SSP 3-70 and SSP 5-85. Both the absolute amounts 

and relative ratios would continue to grow under the two uncontrolled scenarios, with 

peaks at the end of the 21st century under the scenario of SSP 5-85. The changes in source 

contributions from the agricultural land use area were similar, with the changes in 

streamflow under the two emission-controlled scenarios, representing rising at first and 

then falling tends with peaks around the 2070s. It is obvious that the increasing TDN 

loads from the agricultural land use area mostly resulted from the more non-point source 

contributions due to the increases in streamflow in the future. These indicate that more 

non-point source control practices should be implemented by local watershed manage-

ment in the future. To sum up, positive climate policies to address greenhouse gas emis-

sion controls are important to mitigate increases in TDN fluxes in the future, and more 

strict management of agricultural land for non-point source control will likely be needed, 

particularly during the high-flow periods in the summer, to avoid extreme events. It is 

necessary to project flexible strategies facing the changing climate status in the future to 

realize a dynamic best management practice including integrated measures [62,63], such 

as limits on crop fertilization, matching of the timing of fertilizer-to-crop demand, con-

servation tillage, terraces, and diversions to reduce soil and organic N loss, plant buffer 

structures, constructed wetlands, and so on. 

3.6. Limitations 

The first limitation of this combined modeling approach is the potential uncertainty 

in synthetic weather series generation. The local weather model is based on more than 60 

years of historical data. These data are not nearly long enough, and potentially extreme 

weather conditions may be ignored. In addition, the LARS-WG model assumes that the 

site-scale climate feature is stable. However, in fact, climate change has been and is oc-

curring, which will introduce some uncertainty in the parameter estimations of the 

weather generator. 

The second limitation is the limited GCM outputs. As an ongoing project, the global 

GCMs experiment based on CMIP6 has not yet been completed. Many GCM outputs are 

not complete yet, with limited scenarios or periods which are difficult to use for the en-

semble. In addition, the estimations of these GCM outputs are still in progress, and some 

outputs may have potential uncertainties in some areas. 

The third limitation is the relatively long time step of ReNuMa, which led us to only 

get monthly streamflow and TDN results at most. We can estimate that there will be ex-

treme situations in a certain month. However, it is difficult to judge whether these 

changes occur concentrated in a few days and what the state of the extreme day is, 

which is more important for risk management. 

The existing assessment results provided in this article can provide us a perspective 

on the impacts of future climate change on the watershed. It can help us to understand 

the changes of future streamflow and the TDN in different situations and periods and to 

prove the rationality of proactive environmental policies. Future research is expected to 

focus on more refined simulations and detailed management suggestions. More detailed 

watershed scale downscaling with selected GCM outputs based on a complete dataset of 

CMIP 6 GCM experiments would greatly reduce the uncertainty caused by the data fac-

tors. More detailed modeling for the watershed hydrochemical processes would provide 

short-term extreme status estimations and more accurately reflect the effects of man-
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agement measures and carry out scenario analysis for Best Management Practices 

(BMPs). 

4. Conclusions 

The changes in the watershed streamflow and TDN in the Tianhe River in China 

were estimated based on CMIP6-SSP scenarios. Four main conclusions can be drawn 

from the results of the present study: 

1. Based on the agreement between the observations and modeling results, the pro-

posed approach of the combined application of the LARS-WG and ReNuMa model 

appears to be a valid approach to estimate climate change impacts on a watershed 

hydrochemical process using CMIP6-SSP scenarios. It can be used as an alternative 

approach in other similar areas for climate change impact estimations. 

2. There were generally decreasing trends for the annual streamflow responding to the 

climate changes in the future. However, monthly distributions of the annual 

streamflow will change from the historical patterns in the study area, with large in-

creases in streamflow occurring in the summer months, resulting in flood risk. 

Generally, decreases in streamflow occurred during the low-flow periods, resulting 

in drought risk. Climate policies to control greenhouse gas emissions will be needed 

to mitigate the impacts of climate changes on the watershed’s hydrological charac-

teristics. 

3. Increasing trends in annual TDN fluxes occurred in response to the climate changes 

in the future. The increases in monthly TDN fluxes mainly focused on the summer 

during the high-flow periods due to the additional non-point source contributions 

from agricultural lands. Policies to control the impact of human activities on climate 

changes would also mitigate predicted changes in the TDN fluxes, and more strict 

measures concerning non-point source control should be implemented in the sum-

mer for local water management in the future. 

4. The main limitation of this study is the uncertainty caused by the limited data and 

modeling tools. The GCM experiments based on CMIP 6 are ongoing, with limited 

outputs published. Site-scale weather downscaling is limited in presenting water-

shed spatial variation. The monthly watershed hydrological modeling is limited in 

providing detailed short-term extreme information. Future research is expected to 

provide more detailed estimations and focus on more practical uses in management 

for the BMPs. 
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