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Abstract: Sustainability has become one of the most important goals when optimizing traffic signals.
This goal is achieved through utilizing various objective functions to reduce sustainability metrics
(e.g., fuel consumption and emissions). However, most available objective functions do not distin-
guish between the reduction mechanism of various types of emissions. Further, such functions do not
consider the compound impact of multiple operational conditions (e.g., road gradient) influencing
emissions on the optimized signal plans. This study derives a new Environmental Performance Index
representing a surrogate measure for emission estimates that can be used as an objective function
in signal timings optimization to reduce emissions under various operational conditions. The En-
vironmental Performance Index is a linear combination of delays and stops. The key factor of the
Environmental Performance Index is the emissions-based stop penalty, which represents an emission
stop equivalency measured in seconds of delay. This study also uses traffic simulation and emission
models to investigate the compound impact of several operational conditions on the stop penalty.
Results show that the stop penalty varies significantly with all the investigated conditions and that
the stop penalty is unique for different types of emissions. These findings may have significant
implications on the current practice of sustainable signal timing optimization.

Keywords: emissions; signalized intersections; performance index; stop penalty; operating condi-
tions; stops; sustainable signal control; signal timings optimization

1. Introduction

Various emission types are determinantal to public health and the environment of
the Earth as a whole. On the one hand, some pollutants (e.g., carbon monoxide) cause
various health issues (e.g., severe respiratory and cardiovascular problems) [1,2], whereas
on the other hand, other gases (e.g., carbon dioxide) cause damage to the environment
(e.g., climate change) [3]. The industrial and population growth, coupled with rapid
urbanization, has led to a drastic increase in automobiles and roadways. Consequently,
fuel consumption from the transportation sector contributes to almost 55% of the total
health-harmful emissions inventory in the U.S. and 28% of total U.S. greenhouse gas
emissions [4,5].

Alleviating emissions burden through traffic signal control has been of interest because
of its cost-effectiveness and non-reliance on encouraging motorists to adjust their driving
habits (e.g., driving at lower speeds) [6,7]. Former studies [6,8] stated that extra emissions
and fuel consumption at signalized intersections are intimately associated with unneces-
sary stop-events and extra seconds of delay while idling. However, the general practice
of optimizing signals to minimize delay does not necessarily minimize extra stops; hence
emissions could increase [6–8]. Thereby, several studies [9–11] have been conducted to find
a Pareto-optimal signal timings solution to balance delay and stops. Over time, in some
studies, the balancing between delay and stops has shifted gradually to a tradeoff process
between delay and sustainable metrics (e.g., fuel consumption and emissions) [6,7,9–13].
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However, most current literature does not differentiate between reducing fuel consumption
and emissions [6,7,9–13]. Thus, a question that needs to be raised is whether minimizing
fuel consumption truly minimizes a few, some, or all emission types? Results from earlier
studies indicate that one or more emission types do not linearly correlate with fuel con-
sumption [14,15]. Hence, we can infer that signal plans, which minimize fuel consumption,
might reduce emissions but do not necessarily minimize various emission types.

The emergence of modern technologies to retrieve high-resolution (e.g., 10 Hz) signal
performance measures (mobility and environmental) led to several objective functions
being used to characterize vehicular emissions in the signal optimization process. Although
introduced several decades ago, the Performance Index (PI), developed by Robertson in
1969 [16], is undoubtedly still one of the most widely used objective functions in the
current signal timing optimization practice [17]. The PI, shown in Equation (1), is a linear
combination of delays and stops with a K-factor that assigns a weight for each stop in
seconds of delay.

PI = D + K × S (1)

where: PI—performance index (second), D—link delay (second), K—stop penalty (second),
and S—number of stops on the link (second).

A few earlier studies on signal optimization [13,15,18] used the PI to find a balance
between delay and fuel consumption because of their (somewhat) contradicting nature.
Robertson et al. [18] confirmed that assigning more weight to each stop by increasing the
K value reduces fuel consumption. Subsequent studies on the topic, summarized in [15],
showed that the K value ranges from 26 to 228 s. Recent studies [19,20] showed that the
K-factor is a function of various operating conditions that impact the fuel consumption
estimates during a stop-event. The same recent studies also indicated that the K value
derived for fuel consumption is not equal or linearly correlated with the K values derived
for various vehicular emissions. Thus far, the K-factor has not been considered nor inves-
tigated from an emission point of view. This study attempts to fill this gap by achieving
two primary objectives: 1—Deriving a universal environmental objective function using
an emissions-based stop penalty as a tradeoff between vehicular delay and individual
emission types, and 2—Investigating the impact of various vehicular, topological, opera-
tional, and external conditions on the proposed objective function. According to Banister’s
sustainable paradigm [21], the first objective of this study requires promoting the public
acceptability of reasonable delay at signalized intersections instead of a minimum delay
that is usually used as the main objective function to retime traffic signals. Consequently,
this study contributes significantly to the research on sustainable signal timing optimization
by introducing a family of implementable objective functions to minimize emissions. The
derived objective function can be easily integrated into signal timing optimization practice
to address environmentally driven signal retiming policies.

The structure of the study takes the form of seven sections, including this introductory
section. The second part reviews the most notable studies concerning vehicular emissions
and the optimization of traffic signals to minimize emissions and fuel consumption. Section
three lays out the theoretical dimensions of the derived objective function. The methods
used to investigate the impact of various conditions on the emissions-based stop penalty
are provided in section four. The fifth section introduces and examines the findings of
the research. Discussion of the findings is given in section six. Finally, the conclusions
summarize the study, mention its limitations, and provide insights for future research.

2. Literature Review

Emission is a general term used to describe various gases and particles emitted into the
air by multiple sources [22]. Such gases and particles can be detrimental solely or combined
when two or more pollutants react to a harmful chemical compound. As mentioned
previously, the transportation sector contributes significantly to harmful emissions. Hence,
many studies have been conducted, on several aspects of transportation, to create a more
sustainable transportation atmosphere. Some of these aspects are freight mobility [23,24],
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bikes [25,26], and intelligent transportation systems [27–29]. Regarding the traffic signal
control aspect, the past fifty years have seen increasingly accelerated progress in improving
traffic signal timings to reduce emissions to help save people’s lives and the habitability
of our planet [6,7,9–15,30,31]. This section briefly reviews the literature from two critical
aspects for this study: 1—Primary vehicular emission types, and 2—The most remarkable
objective functions to decrease emissions and fuel consumption through signal timing
optimization.

2.1. Major Vehicular Emissions

Vehicles do not always need to be moving to release emissions [32,33]; thus, vehicular
emissions can be classified according to the vehicle operating mode in which emissions are
emitted into three categories: 1—Evaporative “non-tailpipe” emissions are mainly driven
by diurnal fuel evaporation, residual engine heat following vehicle operation inducing
hot soak emissions, and running evaporative loss emissions that occur while vehicles
are running [32]; 2—Refueling emission are volatile organic compound (VOC) vapor
and entrained droplets displaced from the fuel tank ullage [33]; 3—Tailpipe “exhaust”
emissions are the most evident because they are emitted while running the vehicle [34].
The focus of this study was on tailpipe emissions because they are profoundly emitted
at road intersections constituting the most significant percentage of all types of vehicular
emissions. Table 1 summarizes the primary tailpipe emissions and their impact on public
health and the environment.

Table 1. Impact of primary vehicular emissions on public health and environment.

Emission Type Emission Category Effect

Carbon Monoxide (CO) Tailpipe

Reduces the amount of oxygen
transported in the bloodstream to critical
organs such as the heart and brain [35]. It

can also cause dizziness, confusion,
unconsciousness, and death at high

concentrations [35].

Carbon dioxide (CO2) Tailpipe

Increases the Earth’s temperature (global
warming), causing climate change [36].

We note here that CO2 is not an air
pollutant, but it is one of the major

greenhouse emissions emitted
by vehicles.

Nitrogen oxides (NO and NO2, together
called NOx) Tailpipe

Contributes to global warming [3], acid
rain [37], and depletion of the ozone

layer [38]. It also damages the human
respiratory tract and increases a person’s
vulnerability to respiratory infections and

asthma [39].

Hydrocarbons (HC), also known as
volatile organic compounds (VOCs) or

non-methane hydrocarbons (NMHC) [23]

Evaporative,
refueling, and

tailpipe

Reacts with nitrogen oxides in the
presence of sunlight to form ground-level
ozone, which can trigger various health

problems, including chest pain, coughing,
throat irritation, and congestion [40].

Particulate matter of size < 10 microns
(PM10) and <2.5 microns (PM2.5)

including black carbon (BC)
Tailpipe

PM caused several health issues,
including cardiovascular effects, such as

cardiac arrhythmias and heart attacks,
and respiratory effects, such as asthma

attacks and bronchitis [2].
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Despite the importance of particulate matter (PMs) as harmful pollutants, the PMs
were not considered in this study because most commercially available emissions models
do not provide PM estimates for vehicles powered by gasoline. Despite the primary
source of PMs generation being diesel-powered vehicles [41], most available emissions
models do not estimate high-resolution (second-by-second) PMs measures for such vehicles.
Although a few models (e.g., VT-Micro [42]) can estimate second-by-second PMs measures
for HDDVs, the publicly available versions of such models are not suitable to conduct the
large number of scenarios performed in this study (discussed later).

One way to classify road intersections is based on the type of traffic control devices.
That involves two types of intersections: 1—Unsignalized intersections, where the right
of the way is defined using the traffic control signs (e.g., stop or yield), and 2—Signalized
intersections, where traffic lights are used to spatially and temporally allocate conflicting
traffic streams [43]. The design of both intersection types does not follow an exact rule.
Still, it considers the effect of multiple factors (e.g., physical space and signal timings)
simultaneously to provide safe and efficient mobility [43]. This study focuses on the
excess tailpipe emissions induced by non-optimal signal timings at signalized intersections.
Moreover, the proposed methodology applies to various signalized intersections’ designs.

2.2. Relevant Objective Functions

A large and expanding body of literature has investigated reducing vehicular emis-
sions through the retiming of traffic signals. This subsection summarizes the objective
functions used in the most notable signal optimization studies endeavoring to reduce fuel
consumption and emissions. The studies reviewed here have used a common approach in
their models by integrating a traffic model, fuel consumption and emissions model, and an
optimization method to improve an objective function. Table 2 summarizes the reviewed
studies according to those integrated elements.
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Table 2. Most notable objective functions used in signal timings optimization to reduce fuel consumption and emissions.

Study Traffic Model Emissions Model Optimization Technique Optimized Parameter(s) Objective Function Nomenclature

Li et al. [9] Analytical Analytical Calculus-based Delay, fuel consumption,
and emissions PI = α D

Di + β F
Fi + γ E

Ei

D: delay, F: fuel consumption, E: emissions, α, β, and γ:
relative significance weights, Di, Fi and Ei: values of D,

F and E
for the initial signal-timing scenario

Oda et al. [44] AVENUE Analytical Calculus-based Delay, stops, and CO2 PI = ∑ (α·d + β·S) D: delay, S: stops, α and β: weight coefficients

Stevanovic et al. [6] VISSIM CMEM Genetic algorithm Fuel consumption and
CO2

FR(t) = ∅·(K·N·V + P
µ )·

1
44

CO2 = a ·FR + r

FR(t): fuel rate, ∅: stoichiometric fuel/air equivalence
ratio, K: the engine friction factor, N: engine speed, V:

engine displacement, P: engine power output, µ: a
measure of indicated efficiency, and 44—the lower

heating value of typical gasoline.
a and r are the CO2 index coefficients

Park et al. [7] CORSIM VT-Micro Genetic algorithm Fuel consumption and
emissions (as a posteriori) ln (FC) =

{
3
∑

i=0

3
∑

j=0
Le

i,j ·si ·aj

Le
i,j : represent model regression coefficients for fuel

consumption (FC) at speed (s) exponent i and
acceleration (a) exponent j

Ma and Nakamura [14] Analytical Analytical Calculus-based NOx
NOx =(

dNOxi
dt
·

n
∑

i=1
Ds

)
+ (NOxd + NOxa)

dNOxi
dt

: emission rate of idle mode for vehicle i, Ds :
stopped delay, n: stops, d: deceleration phase, a:

acceleration phase.

Kwak et al. [11] TRANSIMS VT-Micro Genetic algorithm Fuel consumption ln (FC) =

{
3
∑

i=0

3
∑

j=0
Le

i,j ·si ·aj Same as Park et al. [7]

Zhang et al. [45] Cell Transmissions
model (CTM) Analytical Genetic algorithm Emissions as bulk Ej,k f

=
I

∑
i=1

{
ti,j,k f
Tj,k f

·ERi

} Ej,k f
: average emission rate on link j for speed range k

on facility f, ERi : VSP modal average emission rate for
VSP Mode i, VSP: vehicle specific power, t: time spent

in VSP mode, T: total travel time on link

Lv et al. [46] Analytical MOVES and Analytical Genetic algorithm CO CO =

 1791.49 ·D0.04153, v = 45
1331.28 ·D0.03099, v = 40
883.5 ·D0.02133, v = 35

D: delay, v: speed

Khalighi and
Christofa [47] Analytical and AIMUSN Analytical Mixed-integer nonlinear

program Emissions as bulk Ej,k f
=

I
∑

i=1

{
ti,j,k f
Tj,k f

·ERi

}
Same as Zhang et al. [38]

Osorio and Nanduri [48] Analytical and AIMUSN Analytical Metamodel simulation-based Travel time and emissions
(as bulk)

f = f t wt

nt + f CO2 wCO2

nCO2 +

f NOx wNOx

nNOx + f VOC wVOC

nVOC + f PM wPM

nPM

fT, f CO2, f NOx, fVOC, fPM: expected travel time and
various emission types, wT, wCO2, wNOx, wVOC, wPM:

economic weighting parameters, nT, nCO2, nNOx, nVOC,
nPM: normalization constants for travel time and

emission types

Han et al. [49]
Lighthill-Whitham-

Richards (LWR)
model

Analytical Mixed-integer linear
program

Throughputs and
emissions (as a posteriori) f = max

m
∑

k=1

1
k+1 ∑

Ii ∈τ
qk

i

M: total number of time intervals, τ: prescribed set of
links, qi : the flow at which vehicles exit link Ii
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There are two types of traffic models used in the reviewed studies, which are deter-
ministic (also known as analytical or macroscopic) models (e.g., [50,51]) and stochastic
(also known as microscopic) simulation models of more realistic real-world traffic through
the application of computer programs (e.g., [52]). Similarly, analytical (with pre-computed
fuel consumption and emissions factors) (e.g., [53]) and microscopic (second-by-second)
(e.g., [54]) fuel consumption and emissions models were utilized to estimate the objec-
tive function and measure the improvement in emission savings. Although utilizing
macroscopic models is computationally efficient, approaches of this kind carry various
well-known limitations, such as the inability to capture the individual characteristics of
drivers; hence, they generate less accurate emissions estimates. Therefore, studies that used
high-resolution models seem to be more reliable than those that utilized analytical models.
The optimization methods used by research presented here can be broadly classified into
three techniques: 1—Calculus-based using the first derivative, 2—Guided random search
utilizing the Genetic Algorithm (GA) approach, and 3—The enumerative technique as a
common way to solve mixed-integer mathematical programs.

Several objective functions were developed and optimized using one of the opti-
mization techniques mentioned above. Those objective functions represent either fuel
consumption and emissions directly (e.g., [6,7]), performance indexes (PIs) associated
directly with fuel consumption emissions (e.g., [9,44]), or a combination of both (e.g., [48]).
A major criticism of using fuel consumption and emissions directly as an objective func-
tion is that it fails to recognize the difficulties that arise when attempting to estimate fuel
consumption and emissions in a specific site in the field. Another problem with this ap-
proach is that it might reduce emissions at the expense of worsening mobility metrics (e.g.,
delay). The former issue also applies to the objective functions where direct mobility and
emissions measures are combined. Moreover, regardless of their objective function, most of
the literature lacks accuracy because they do not consider various operational conditions
(e.g., vehicle type and road gradient) that impact the emissions estimates at signalized
intersections. Therefore, this study derived an environmental objective function that can
be tailored to a specific emission type and considers various operational conditions.

The critical element of the derived objective function is the emissions-based stop
penalty. Furthermore, the study investigates the combined impact of various operational
conditions: vehicle type, the proportion of heavy vehicles in the fleet, driving behavior,
road gradient, cruising speed, and wind effect on the emissions-based stop penalty. The
investigation was done using a full-factorial experimental design representing different
operational conditions. The traffic simulation Vissim [52] was employed to perform the
dynamics part of the experiments and generate vehicles’ trajectories (also known as floating
car data) for numerous scenarios. Those trajectories were then used to estimate emissions
(HC, CO, NOx, and CO2) from the Comprehensive Modal Emission Model (CMEM) [54].
Finally, the emissions-based stop penalty was computed for each tested emission type
under all investigated scenarios.

3. Environmental Objective Function

This section presents the derivation of the proposed objective function. For the reader’s
convenience, Table 3 summarizes the notation used in this section.

The original definition of the K-factor referred to the number of seconds of delay that
is equivalent to a single stopping maneuver [16]. A few studies [15,19,20] redefined the
K-factor as the number of seconds of idling delay (referred to as stopped delay hereafter)
that consume the same amount of fuel consumed during a stop. This research defines the
stop penalty as the number of seconds of stopped delay equivalent to excess emissions
caused by the action of stopping (deceleration and acceleration phases, referred to as a
stop hereafter), and we call this stop penalty KE. Consequently, the KE value required to
reduce a specific emission type was derived based on the amount of a specific gas emitted
during the three driving modes of a complete stop. These modes are deceleration, idling,
and acceleration, and they all form what is known as the vehicular stop profile shown
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in Figure 1. The total amount of a particular gas emitted during a stop is expressed in
Equation (2), where all units are identical and can be expressed in gallons, liters, or grams:

Ei = EDi + EIi + EAi (2)
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Table 3. Nomenclature.

Variable Description

Ei Total amount of emission type i emitted during an entire stop (gallons, liters, or grams)
EDi Total amount of emission type i emitted during deceleration mode (gallons, liters, or grams)
EIi Total amount of emission type i emitted during idling mode (gallons, liters, or grams)
EAi Total amount of emission type i emitted during acceleration mode (gallons, liters, or grams)

i Emission type
KEe Ratio between the amount of emission induced by stop and one caused by stopped delay
EDA Emissions during deceleration and acceleration modes (gallons, liters, or grams)
KE Emissions-based stop penalty (seconds)
TI Idling phase duration (seconds)

t1 and t2 Any two-time points where: t1 < t2 (seconds)
E General term for emission despite of the emission type (gallons, liters, or grams)
Er Emission rate (gallons, liters, or grams per unit time)
t Any point of time (seconds)

∆t Time interval between any two-time points (seconds)
a, b, c, and d Time points of starts and ends of various driving phases, as characterized in Figure 1 (seconds)

Env− PI Environmental Performance Index (seconds)
j Link
n Total number of links

CO− PI Carbon monoxide Performance Index (seconds)
Dj Stopped delay on link j (seconds)
Sj Total stops on link j (seconds)
ei Amount of emission type i estimated by CMEM (grams)

ai and ri Index coefficients of emission type i
FR Fuel rate (grams/sec)
∅(t) Stoichiometric fuel/air equivalence ratio
K(t) Engine friction factor
N(t) Engine speed (revolutions/seconds)

V Engine displacement (liters)
P(t) Engine power output (kW)

µ Indicated efficiency (default value is 0.4)
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To compute how many seconds of delay emit the same amount of a particular emission
type caused by a stop, we need to find the ratio (KEe) between the amount of that emission
type induced by the stop and the one caused by the stopped delay (Figure 1). Thus,
it is essential to separately identify extra emissions caused by the stop, represented as
EDA (ED + EA), from those emitted during the stopped delay, represented as EI. As all
ratios, the KEe expressed in Equation (3) is unitless. Hence, when the EI is divided by
the idling phase duration (TI), which varies based on the duration of the red interval, the
result gives the number of seconds of stopped delay that emit the same excess emissions
equivalent to a stopping event. That is what we define as the emissions-based stop penalty
(KE) (given in Equation (4)).

KEe =
EDA
EI

(3)

KE =
EDA

EI
TI

=
EDA · TI

EI
(4)

Figure 2 shows instantaneous (second-by-second) emitting rates of four emission
criteria (HC, CO, NOx, and CO2) during a complete simulated stop from 20 mph and
back. We note here that Figure 2 is from a single simulated trajectory in Vissim, where
emission estimates were estimated by using the CMEM software for the same simulated
trajectory. Area 1, Area 2, and Area 3 represent the emissions during the deceleration,
idling, and acceleration phases, respectively. The sum of those three areas under each
emission criterion’s curve is the total amount of that criterion emitted during a stop for a
particular vehicle under specific operational conditions (e.g., cruising speed, road gradient).
Areas 1–3 under any curve can be found by doing a definite integral of the time-dependent
variable emission rate (Er) curve between any two-time points t1 and t2:

E =
∫ t2

t1
Er(t).dt (5)

With the availability of second-by-second emission estimates, the amount of emissions
caused by a stop (Equation (3)) can be computed as the sum of the emissions in every time
interval (∆t) of driving (Equation (6)), where points a, b, c, and d are the starts and ends of
various driving phases as characterized in Figure 1.

Ei =
b

∑
t=a

EDi (t)·∆t +
c

∑
t=b

EIi (t)·∆t +
d

∑
t=c

EAi (t)·∆t (6)

The KE can then be calculated by substituting the values of EDA and EI with their
values from Equation (6), as follows:

KE =
(∑b

t=a EDi (t)·∆t + ∑d
t=c EAi (t)·∆t)· ∑c

i=b ∆t
∑c

t=b EIi (t)·∆t
(7)

It is apparent from Equation (7) that the KE varies based on the amount of emission
during each of the deceleration, idling, and acceleration modes. Furthermore, Figure 2
shows that various emission criteria are emitted at different rates during each driving
mode. Thus, it is anticipated that KE would vary for different emission types. For that
reason, we define an Environmental Performance Index (Env-PI) as a generic objective
function that can be derived to reduce a particular emission criterion (E) (e.g., HC, CO,
NOx, and CO2) caused by stopping at traffic signals. The Env-PI for a network can be
computed by summing the Env-PIs for all movements in the network as follows:

Env− PI =
n

∑
j=1

Dj +
(∑b

t=a EDi (t)·∆t + ∑d
t=c EAi (t)·∆t)j

(
∑c

t=b EIi
(t)·∆t

∑c
t=b ∆t )j

·Sj (8)
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Figure 2. Various emission type footprints caused by a single stop (20-mph—zero—20-mph).

Consequently, the Env-PI for a particular emission type can be defined as one of
a family of similar Env-PIs. For example, HC-PI, CO-PI, NOx-PI, and CO2-PI are all
members of the Env-PI family that are explicitly derived to reduce HC, CO, NOx, and
CO2, respectively. For the sake of giving an example that Env-PI could be derived for any
emission criterion, Equation (9) shows a CO-PI. That suggests that the CO-PI may result in
different signal timings for a particular network than those derived for any other Env-PIs.
Therefore, the relevant Env-PI should be used when optimizing signals to reduce a specific
emission criterion.

CO− PI =
n

∑
j=1

Dj +
(∑b

t=a CODi (t)·∆t + ∑d
t=c COAi (t)·∆t)j

(
∑c

t=b EIi
(t)·∆t

∑c
t=b ∆t )j

·Sj (9)

Our current study uses the microscopic power demand emissions model CMEM
to estimate second-by-second emissions [54]. CMEM estimates various emissions as a
function of the fuel rate, which depends on the air-fuel ratios occurring during internal
fuel combustion. Equation (10) shows the general form of the equation used to estimate a
particulate emission criterion Ei [54].

ei = ai ·FR + ri (10)

FR(t) = ∅(t)· (K(t)· N(t)· V +
P(t)

µ
)· 1

44
(11)

The following section presents the data and methods used to investigate the impact of
six major factors influencing the KE. Those factors are 1—Vehicular type, 2—Proportion of
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heavy vehicles in fleet distribution, 3—Driver’s behavior, 4—Road gradient, 5—Cruising
speed, and 6—Wind effect. We note here that the factors investigated in this study are not
exclusive. They were primarily selected because they can be feasibly modeled in relevant
simulation models (e.g., Vissim and CMEM), as explained in the following section.

4. Data and Methods

This study adopts a four-step sequential method that starts with designing a full-
factorial experiment to generate all possible scenarios for the combined impact of all
studied factors on the KE. The next step was to model a test-bed intersection in Vissim.
Subsequently, a Vissim-Python-CMEM interface was developed to ensure proper represen-
tation of both the dynamics and kinematics elements of the designed scenarios. Finally, the
KE was computed for each investigated emission criterion and all performed scenarios.

4.1. Full-Factorial Experiment Design

We designed a full-factorial experiment [55] to create scenarios for various operating
conditions and studied their combined effect on the KE. The levels of the various investi-
gated factors were chosen in such a way to ensure the diversity of the operating conditions,
such as vehicle type, road gradient, speed limit, etc., as detailed in Table 4. Regarding
vehicle types, we included 12 Light-duty vehicles (LDVs) and 3 Heavy-duty diesel vehicles
(HDDVs) in the experiments. Those 15 vehicle types are out of 31 types available in CMEM
and were chosen because they form the largest percentage of the entire vehicle fleet used
to develop the CMEM. The first column in Table 4 shows the category number of the
selected vehicle groups as they have been named in CMEM (and in this study). It is worth
mentioning that the CMEM was developed using vehicles made in the years 1990–2000.
CMEM developers have chosen the vehicle/technology categories based on a vehicle’s
emissions contribution. The emissions standards used to categorize the tested vehicles are
the “California Vehicle Emissions Standards” [56]. We note here that LDV1-LDV11 are
powered by gasoline, whereas LDV12 and HDDV1–HDDV3 are powered by diesel.

Percentages range between 0% and 10%, with an increment of 1% of heavy vehicles
in the fleet, were considered. Following the general recommendations for maximum
grades [57], we adopted a road gradient range between −7% and 7%. Cruising speeds (rep-
resented by speed limits) usually range from 20 to 65 mph, depending on the geometrical
and traffic conditions. Thus, 10 speed limits, with an increment of 5 mph, were chosen
to cover all possible speed limits between 20 and 65 mph. The aerodynamic effects were
represented by various wind speeds and directions (headwind (HW) and tailwind (TW)).
The wind speeds range from zero-wind to a wind of 50 mph, with an increment of 10 mph,
for both HWs and TWs. This study only considers the impact of wind on KE of HDDVs
because the wind effect is most profound for trucks, and CMEM does not model the wind
effect for LDVs. Finally, the impact of the driver’s aggressiveness on KE is investigated
by analyzing four acceleration–deceleration functions, where each function represents a
single unique driving behavior. More details about the tested driving-behavior functions
are provided later.

A total of 27,000 scenarios have been generated representing all possible combina-
tions of the independent factors impacting KE for the range of values of each factor given
in Table 4. The exception is the fleet distribution, which was investigated by utilizing
Equation (12) that computes the KE for a movement as the sum of the percentage (p) of each
vehicle type (i) multiplied by its relevant average stop penalty (KEi) for all vehicles of type
n. It is worth noting that investigating the impact of multiple vehicle types from the same
class is out of this study’s scope. Thus, LDV1 and HDDV1 are selected to investigate the
impact of fleet distribution on the KE. For LDVs, a total of 7200 experiments were designed
(12 (vehicle types) × 4 (driving behaviors) × 15 (grades) × 10 (cruising speeds)). For HD-
DVs, a total of 19,800 experiments were designed (3 (vehicle types)× 4 (driving behaviors)×
15 (grades) × 10 (cruising speeds) × 11 (wind effects)). Lastly, using the results of the 13,200
experiments, Equation (12) was applied to investigate the impact of fleet distribution on the
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KE. Those 13,200 experiments represent the impact of 11 fleet distributions times (1 (LDV)
× 4 (driving behaviors) × 15 (grades) × 10 (cruising speeds) + 1 (HDDV) × 4 (driving
behaviors) × 15 (grades) × 10 (cruising speeds)).

KE =
n

∑
i=1

pi· KEi (12)

Table 4. Levels for various operational conditions impacting KE.

Vehicle Type Fleet
Distribution Driver Behavior Road

Gradient
Cruising

Speed Wind Effect

CMEM This study LDV:HDDV Acceleration
functions (%) (mph) (mph direction)

Car, Category 1 LDV1 100:0 Function 1 −7 20 50 tailwind
Car, Category 2 LDV2 99:1 Function 2 −6 25 40 tailwind
Car, Category 3 LDV3 98:2 Function 3 −5 30 30 tailwind
Car, Category 4 LDV4 97:3 Function 4 −4 35 20 tailwind
Car, Category 5 LDV5 96:4 −3 40 10 tailwind
Car, Category 6 LDV6 95:5 −2 45 No wind
Car, Category 7 LDV7 94:6 −1 50 10 headwind
Car, Category 8 LDV8 93:7 0 55 20 headwind
Car, Category 9 LDV9 92:8 1 60 30 headwind

Car, Category 10 LDV10 91:9 2 65 40 headwind
Car, Category 11 LDV11 90:10 3 50 headwind
Car, Category 12 LDV12 4
Truck, Category 5 HDDV1 5
Truck, Category 6 HDDV2 6
Truck, Category 7 HDDV3 7

4.2. Traffic and Emissions Models

Certainly, the best way to measure the impact of various operating conditions on the
KE is through field experimentation and data collection. However, collecting real-world
emissions data across all ranges of factors is a challenging and very costly task. A massive
dataset is needed to include all possible combinations of factors affecting stop-related
emissions and their relevant stop penalties. Therefore, our study is primarily based on
simulation experiments, aiming to mimic the real-world vehicular stopping mechanisms
under all the possible scenarios, as explained in the following sections.

4.2.1. Traffic Simulation Program

PTV Vissim [52] is a microscopic model developed to simulate urban traffic and
public transport operations. Vissim is a popular tool in the traffic community because it
is easy to use and can simulate and test almost any traffic-related scenario before being
implemented in the field. In addition to the previous advantages, we selected Vissim in
this study for the following reasons: 1—Its ability to accurately model traffic signals and
other operations (e.g., speed and acceleration) at a resolution of 1 s, 2—It provides the
possibilities to model all of the investigated factors in this study (e.g., road gradient per
link and driving behavior), 3—Vissim can be easily interfaced with relevant programming
languages (e.g., Python), allowing the user to manipulate the investigated factors’ attributes
and perform many experiments efficiently, and 4—Vissim outputs vehicle trajectory (also
known as floating car data) files (FZP), which are well fitted for modeling in CMEM to
obtain second-by-second emission estimates.

4.2.2. Modal Emission Model

CMEM [54] is a power-demand emissions model that estimates second-by-second
fuel consumption and emissions (HC, CO, NOx, and CO2) based on vehicular speed and
acceleration traces. The developers of CMEM used more than 300 tested vehicles to develop
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the model. CMEM has one estimation module for LDVs and another for HDDVs; thus, a
user needs to separate vehicles in the fleet before processing their trajectories in CMEM
into LDVs and HDDVs. A second-by-second speed trace is required at minimum as an
input for CMEM to estimate various emissions, where those inputs can be acquired from
Vissim. CMEM was selected for this study for three reasons: 1—CMEM can estimate
emissions for various vehicle types, 2—It allows users to include the influence of road
gradient (for all vehicle classes) and wind effect (for HDDVs only) on emissions estimates,
and 3—CMEM has already been calibrated and validated using data from the National
Cooperative Highway Research Program [58]. Moreover, a few studies have already
validated estimates from CMEM, and they concluded that CMEM is a generally accepted
model that can generate verifiable emissions estimates [59,60]. Therefore, no calibration or
validation efforts were needed to perform this study.

4.3. Modeling of a Test-Bed Intersection

We selected a four-leg intersection, IL-21 in Washington Street in Lake County, Chicago,
IL, to apply our modeling scenarios for the sake of this study. The intersection has four
traffic lanes (two through and one exclusive for each of the right and left turns) at each
approach. The Division of Traffic at Lake County, in the Chicago metro area, provided the
directional volumes and turning movement counts for the modeled intersection (Figure 3).
An eight-phase fixed-time signal timing plan was operated on the simulated intersection.
A cycle length of 140 s was modeled, as shown in the Ring-Barrier Diagram in Figure 3.
The simulation time was 1100 s, including 200 s for warmup time. This simulation time
is long enough to gather relevant results for a minimum of 400 stopped vehicles at the
intersection in each performed scenario, representing a sufficient statistical sample size.
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4.4. Modeling of Various Operating Conditions

All the investigated factors, except the impact of wind, were modeled in Vissim and
CMEM, whereas the wind effect was modeled only in CMEM. For the vehicle type, two-
vehicle classes were modeled in Vissim; cars and heavy goods vehicles (HGVs), which were
modeled as LDVs and HDDVs in CMEM. The percentages of cars and HGVs in Vissim
were modeled by changing the relative flow value of each vehicle class in the vehicle
compositions defined for each intersection approach.
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Vissim models cruising speeds by using stochastic desired speed distributions, which
assigns the proportion of the vehicles in the fleet that drive higher, lower, and in between the
defined minimum and maximum speeds. However, the goal of modeling cruising speeds
in this study was to ensure that all stopped vehicles decelerate from a particular speed and
then accelerate back to the same original speed. Thus, we defined ten deterministic speed
distributions in Vissim for the speeds from 20 to 65 mph with 5-mph steps. Deterministic
speed distributions were modeled by setting relative values to each distribution’s minimum
and maximum speeds. For example, minimum and maximum speeds of 24.99 mph and
25 mph are set to obtain a 25-mph cruising speed before and after stopping for all stopped
vehicles. CMEM then uses second-by-second speeds from trajectories to estimate emissions.

Modeling road gradient was done in Vissim to cover the impact on the acceleration
and then in CMEM to consider the influence of increased power demand on the emissions
estimates. Investigated grades were defined as percentages (e.g.,−2% and 2%) for each link
in Vissim, starting from the stop line to the point where vehicles reach their original cruising
speeds. Afterward, the road gradients (expressed in degrees and radians, respectively, for
LDVs and HDDVs) were added to the trajectories from Vissim before further processing in
CMEM.

CMEM supports defining headwind and tailwind directions for various speeds on the
trajectories processed in the HDDVs module only. Thus, the obtained HGV stop profiles
from Vissim were assigned a wind direction and speed according to the performed scenario.
Finally, the driving behaviors investigated in this study were represented by various desired
deceleration–accelerations functions, as explained in the following subsection.

4.5. Modeling of Driving Behaviors

The desired acceleration or deceleration value assigned to vehicles at each time step
in the simulation is one of the most critical and relevant elements to determine driver
behavior in Vissim [52]. Vissim defines acceleration and deceleration values (referred to
as acceleration–deceleration functions hereafter) as functions of the current speed. Both
acceleration–deceleration functions consist of three curves representing the minimum,
median, and maximum possible acceleration–deceleration values at different speeds [52].
Although Vissim provides default acceleration–deceleration functions for various vehi-
cle classes, utilizing those functions is problematic from two aspects. First, the default
acceleration–deceleration functions in VISSIM are based on an older dataset from Eu-
rope [52]. Consequently, a few studies [61,62] indicated that such functions do not apply
to current fleets in the US. Second, the acceleration–deceleration functions in Vissim are
stochastic because the acceleration or deceleration value, at a certain speed, lies within a
specific range between the minimum and maximum values. That means that each stopped
vehicle in the simulation can have a unique driving behavior, making it impossible to
capture the impact of deceleration–acceleration functions (driving behaviors) on the KE.
Moreover, using stochastic functions adds noise to the results of the impact of the other
factors.

Two actions were taken to overcome the issues emerging from using Vissim’s de-
fault acceleration–deceleration functions. First, we used a vehicular trajectories dataset of
177 vehicles, including 1850 h of driving and more than 40,000 traveled miles, to develop a
set of acceleration–deceleration functions representative of the US fleet. Second, we utilized
the Dynamic Time Warping (DTW) [63] and k-means clustering [64] algorithms to classify
the newly developed stochastic acceleration–deceleration functions into four deterministic
functions utilizing a relatively large sample of stopped vehicles. Such deterministic func-
tions enable fully controllable experiments, which guarantee accurate quantifying of the
impact of various driving behaviors and other factors (e.g., cruising speed) on the KE factor.

4.5.1. Developing Field-Based Acceleration–Deceleration Functions

The dataset used to develop the acceleration–deceleration functions was collected by
the Idaho National Lab [65] for the Department of Energy [66]. The dataset was retrieved
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from field driving runs conducted on various urban arterials in Michigan under different
operating conditions. This study used the high-resolution (up to 0.1 s) speed data recorded
in the dataset to compute second-by-second acceleration–deceleration values at different
speeds. The computed acceleration–deceleration values were distributed to a speed range
from 0 to 140 mph with an increment of 10 mph, as shown in Figure 4. When developing the
curves in Figure 4, we noticed that the maximum and minimum acceleration–deceleration
values at different speeds are extreme values and rarely occurred on few occasions. Hence,
such extreme values cannot be generalized and used for an entire simulated fleet. Thus,
the maximum and minimum curves are not the ultimate maximum and minimum; instead,
we prepared the curves by computing the averages of the maximum and minimum 20%
of the acceleration–deceleration values at various speeds. The next step was to use such
stochastic functions retrieved from the field data to generate deterministic driving behavior
functions.
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4.5.2. Generating Deterministic Driving Behaviors

As mentioned previously, using stochastic acceleration–deceleration functions create
many driving behaviors within a single tested scenario, defeating the purpose of the study’s
investigation. This issue was alleviated by conducting a simulation run on the modeled test-
bed intersection to obtain a large sample of deterministic acceleration–deceleration func-
tions for individual stopped vehicles in the simulation. Then, the acceleration–deceleration
functions of those stopped vehicles were extracted from Vissim and compared internally
by using the DTW algorithm. This algorithm provided a dissimilarity score between every
acceleration–deceleration function and all the other functions. Finally, such dissimilarity
scores were fed into the k-means clustering algorithm to group all acceleration–deceleration
functions into an optimal number of groups. Nominal operating conditions were mod-
eled for this simulation run (e.g., level-terrain and acceleration–deceleration functions in
Figure 4) except for the speed, which was selected to be 60 mph. The reason for choosing
60 mph is that the time taken by a vehicle to accelerate from 0 to 60 mph is a commonly
used performance measure for vehicle acceleration [67]. The simulation run resulted in
over 400 stopped vehicles, which were used in the process described in Figure 5.

The comparison of two time series (e.g., deterministic acceleration–deceleration func-
tions) is usually made by producing a distance metric between every two points that
coincide in the two input time series (Figure 6a). As a result, such a distance is not ap-
propriate for comparing deterministic acceleration–deceleration functions because they
vary in length. Thus, the DTW algorithm was used because it applies a non-linear (elastic)
alignment through time-normalization for distances between points in two data series
(Figure 6b) [63]. In this way, the pattern match is recognized between two similar time
intervals even if they do not have the same length.
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The following is an overview of the DTW and k-means algorithms. Acceleration–deceleration
functions in Figure 6 can be expressed as a sequence of feature vectors A and B.

A = a1, a2,−−−, ax,−−−, aXB = b1, b2,−−−, by,−−−, bY (13)

Using the aid of an x-y plane, shown in Figure 7, where A and B sequences are
developed along the x and y-axes, respectively. The timing differences between A and B
can be depicted by a sequence of points ∆t = (x, y):

F = ∆t(1), ∆t(2),−−−, ∆t(k),−−−, ∆t(K) (14)

where: ∆t(k) = (x(k), y(k)), k: any point in sequence F, K: number of points in sequence F.
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Sequence F can represent a function that creates a mapping from the time axis of
function A to function B, which is called a wrapping function (F). This function coincides
with the diagonal function x = y when the difference in time between A and B is zero,
whereas it shifts further up or down as the time difference grows. Distance d can be used
as a measure of the difference between any two points ax and by as follows:

d(∆t) = d(x, y) =
∣∣∣∣ax − by

∣∣∣∣ (15)

Then, the weighted summation of distances on the function F is expressed as:

E(F) =
K

∑
k=1

d(∆t(k))·w(k) (16)
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where: w(k) is a non-negative weighting coefficient introduced to allow E(F) to measure
flexible features on the compared time series and measure the goodness of the function
F [63]. The dissimilarity score (D) is then defined as the distance between functions A and
B after eliminating time differences between them, as shown in Equation (17), where w(k)
in the denominator is utilized to compensate for the effect of the number of points (K). In
conclusion, a lower dissimilarity score means the series is more similar.

D(A, B) = MinF

[
∑K

k=1 d(∆t(k))·w(k)

∑K
k=1 w(k)

]
(17)

Once the dissimilarity scores between all the deceleration-acceleration functions from
the 400 stopped vehicles were computed, the widely used k-means clustering algorithm
was then applied to the unique values of the dissimilarity scores aiming to divide them
into k similar groups. The clustering was done such that changing the cluster of any
dissimilarity score will not minimize the Within-Cluster Sum of Squares (WCSS) [64]:

WCSS = argS min
m

∑
i=1

n

∑
x=1
||x− µi||2 (18)

where: µi is the averages of dissimilarity scores contained within cluster i (i = 1, 2, . . . , m),
and n is the number of dissimilarity scores in cluster i.

The next step was to determine the optimum number of clusters by using the heuristic
Elbow method, which requires the following steps: 1—Perform k-means clustering for n
number of clusters, 2—Compute WCSS for each clustering result, 3—Graph the WCSS
(y-axis) and the number of clusters (x-axis) as introduced by Thorndike [68], and 4—
Determine the optimum number of clusters at which a point marks a sudden flattening
of the curve. This point on the curve suggests that using more clusters is no longer worth
the decrease in WCSS. According to the Elbow method chart (Figure 8a), four clusters
were selected to be the optimal number of clusters. Figure 8b presents the four selected
deterministic acceleration–deceleration functions. The deceleration and acceleration of the
selected functions from 60 to 0 mph and from 0 to 60 mph, respectively, are as follows:
(−1.92, 3.4), (−4.4, 4.2), (−7.35, 4.9), and (−4.65, 6.3) for function 1, function 2, function 3,
and function 4, respectively, all units in ft/sec2. The final step was to model those functions
in Vissim as desired acceleration–deceleration functions.
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4.6. Vissim–Python–CMEM Interface

This section focuses on the interfaces formed among Vissim, Python, and CMEM. A
robust code developed in Python controls Vissim externally and connects Vissim with the
LDV and HDDV modules in CMEM (Figure 9). The code starts with a for-loop to iterate the
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investigated operating factors in Vissim based on the scenario to be performed. The code
then runs the simulation in Vissim, which provides simulation time, a vehicle identifier,
a vehicle type (LDV or HDDV), speed, acceleration or deceleration, and the number of
stops on a second-by-second basis. The Python interface code uses Vissim’s vehicular
trajectories to extract stop profiles for all stopped vehicles. Following this, the code formats
stop profiles to be processed in CMEM and assigns a CMEM-based vehicle category to
the LDVs and HDDVs. The code then calls the LDV or HDDV module in CMEM for each
vehicle through the command prompt. CMEM uses individual vehicle data to estimate
instantaneous emissions for each vehicle. Next, the code computes the emissions-based
stop penalty for each emission type for each stop profile. Finally, the average stop penalty
for each emission type is calculated for each scenario.
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5. Results

Figure 10 shows the individual impact of the tested factors on the KE to assess how
each of the tested factors impacts the KE.
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The left part of Figure 10a,c,e,g presents the individual impact of various LDVs, speeds,
grades, and driving behavior on the KE of different emission types and fuel consumption.
Similarly, the right part of Figure 10b,d,f,h shows the impact of the aforementioned factors
on the KE for the HDDVs. The individual impact was determined by varying one factor
while keeping all other factors constant. It is apparent from Figure 10 that the KE of the
HDDVs is ~3–10 times large than that of the LDVs. These experimental results provide ap-
parent evidence that various emission criteria are not necessarily linearly correlated. Thus,
minimizing a particular criterion does not necessarily minimize others. This conclusion is
expected [20] and suggests that a unique value of the stop penalty is required to minimize
each emission criterion. For example, for a movement with a road gradient of 2%, a KE
value of 139, 130, 76, 61, and 320 s is required to minimize HC, CO, FC, CO2, and NOx,
respectively. A careful analysis of these values could help us define signal optimization
strategies for various cities based on their sensitivity to a particular emission type.

The individual impact of wind speed and direction and the percentage of heavy vehi-
cles in the fleet are shown in Figure 11. We can see from Figure 11a that wind solely has a
significant impact on the KE, especially at high headwind speeds (>20 mph). That is be-
cause the wind direction and speed directly impact the effective speed of a moving vehicle.
Thus, an accelerating vehicle upwind/downwind produces more/less fuel consumption
and emissions than an accelerating vehicle with no wind conditions.
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Figures 12 and 13 present representative results of the impact of the wind effect and
the percentage of heavy vehicles in the fleet on the KE under various cruising speeds and
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road gradients. As mentioned in previous sections, our analysis investigated the impact of
wind effect only for the HDDVs; hence Figure 13a,b presents the change in the KE of an
HDDV. As expected, the wind speed and direction have shown that headwinds cause the
HDDV to utilize more energy (which produces more fuel consumption and emissions) to
overcome the wind blowing in the opposite direction. The findings in Figure 13c,d confirm
a significant positive correlation between the percentage of HDDVs in the fleet and the KE.
Such a correlation becomes even more apparent under extremely high and low cruising
speeds and grades.
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The impact of the percentage of HDDVs on the KE (shown in Figure 11b) suggests
that the combined impact of this percentage with multiple factors will have a significant
impact on the KE. The impact is depicted in Figure 13c,d, and it is logical because LDVs and
HDDVs have different engine sizes and technologies, which leads to various production
rates of fuel consumption and emissions. The following section discusses the relationship
between each factor and the KE.

6. Discussions

Based on the ranges of the stop penalty, resulting from various factors shown in
Figure 10, the main parameter that drives the KE values (of various emission criteria) is
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the vehicle type. The impact of vehicle type does not seem to follow an easily identifiable
pattern. On one side, the minimum KHC and KCO belong to normal emitting LDV (three-
way catalyst, fuel-injected, >50K miles, high power/weight ratio), as shown in Figure 10a.
In contrast, the minimum KNOx, KFC, and KCO2 belong to normal emitting LDVs with
no catalyst. Similarly, the maximum KE of different emission criteria belongs to various
vehicle types. Moreover, the KHC and KCO of some vehicles increase or remain constant
with the decrease of KNOx, KFC, and KCO2. Thus, it seems that reducing FC and CO2, as
generally adopted practices in the traffic community, may not lead to a tangible reduction
in HC and CO. Previous studies have not recognized this inconsistency in the results. That
can be explained, at least partially, by the different vehicle masses, engine powers, fuel
used per engine’s displacement, engine efficiency, and engine technologies used by vehicle
manufacturers.

A question may arise concerning the high values of the KHC and KNOx for LDV 7, 9,
10, and 11, as shown in Figure 10a. The reason for such high values is the occasionally low
emitting (approaching zero) CMEM’s CO and NOx estimates, for those LDV types, during
idling. These low emitting values significantly increase the KE, according to Equation (7).
However, it is not clear why CMEM resulted in such low estimates.

Figure 10b shows how the stop penalty fluctuates for HDDVs. Unexpectedly, it can be
seen from Figure 10b that the KHC and KNOx have an inverse relationship with the KCO, KFC,
and KCO2. That can be easily seen in the transition in the curves from HDDV1 to HDDV2
and from HDDV2 to HDDV3. KCO, KFC, and KCO2 increased in the first transition while
KHC and KNOx slightly decreased. The opposite happened in the second transition where
KCO, KFC, and KCO2 decreased, KNOx barely decreased for HDDV3, but KHC has increased.
These are all crucial findings to consider when computing the stop penalty, especially for
fleets with a high proportion of heavy vehicles.

Indeed, decelerating and accelerating from/to higher cruising speeds requires more
energy and emits more emissions, which explains higher KE. The cruising speed is the
second most significant parameter, and it has a positive exponential relationship with the
KE. This is mainly observed for CO, CO2, fuel consumption, and at speeds higher than
50 mph, for HC and NOx, as shown in Figure 10c,d.

The observed significant increase in KE with the increase in speed could be attributed
to the cruising speed before or after stopping. These results depend on the emitting rate
of a specific emission type during each phase of the stop. For example, Figure 2 shows
that HC rates are higher for a specific vehicle type while decelerating, whereas CO2 rates
are the highest during accelerating. That should be a major concern when computing the
stop penalty for left and right turn movements, as their cruising speeds before and after
stopping are usually significantly different. Keeping in mind that emitting rates during
various phases depends on the vehicle type, the impact of cruising speed on the KE cannot
be separated from the impact of the vehicle type.

The emissions generally increase when vehicles travel uphill and combat gravity. On
the other hand, potential energy is added to the engine’s kinematic energy when traveling
downhill; thus, less emissions are produced on downhill terrains. The findings of this
study found that the relationship between road gradient and the LDVs KE can be identified
as linear for CO and NOx and second order polynomial for CO2 and fuel consumption.
A linear relationship can also be observed for the HC at grades between −7% and 2%
(Figure 10e); however, KHC decreases slightly and does not seem to be impacted by higher
grades. That is attributed to the fact that HC estimation while idling is very sensitive to the
increased engine load [54]. Thus, resulting in lower KHC variations (between 130 and 140 s)
than the other emission criteria.

The impact of road gradient on the HDDVs KE seems exponential (Figure 10f), with
the KHC and KFC being the least and the most sensitive to grade increase, respectively.
We note here that the HDDV categories in CMEM are for heavy trucks manufactured in
the years between 1995 and 2000; thus, newer trucks may have lower KE because of the
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new legislation released since then concerning reducing emissions. Nevertheless, it is still
expected that HDDVs stop penalties will be significantly higher than those for LDVs.

Regarding driving behaviors, the results showed that the levels of accelerations and
decelerations significantly impact the KE. That is a logical and expected finding considering
that individual driver’s driving habits control the amount of fuel injected into the engine.
The impact of driving behavior on the KE does not follow a recognizable pattern and is
not easily predictable, especially for LDVs, as shown in Figure 10g. For example, although
function 1 has the lowest acceleration–deceleration values and resulted in the lowest KHC
and second-lowest KCO, it also had the highest KCO2 and KFC. Interestingly, function 3 has
the highest deceleration and resulted in the second-highest stop penalty for all emission
types and fuel consumption. Such results indicate the importance of the deceleration
phase duration despite the low emitting rate of most of the emission types during that
phase. Figure 10h shows that the HDDVs stop penalty under various driving behaviors
seemed to follow expected patterns, where the stop penalty increases with more aggressive
(higher) accelerations. Such patterns could be seen clearly for KCO, KNOx, KFC, and KCO2.
However, a much lower impact is observed for the KHC. We note here that although the
stochastic acceleration–deceleration functions developed in this study were based on a
large dataset, it is expected that the stop penalty could diversify more with a higher degree
of stochasticity in driving behavior. Overall, these results indicate that further research is
needed to better understand the impact of driving behavior on the KE, especially for LDVs.

The results of wind effects have shown that the KE increases linearly with the decrease
of the tailwind speed and the increase of the headwind speed. For example, a 20-mph
headwind could increase KCO from 1150 s at no-wind conditions to 1300 s (Figure 11a).
This difference is equal to 150 extra seconds of CO production while idling. In the opposite
direction, a 20-mph tailwind could decrease KCO by 40 s compared to its value at no-wind
conditions. One can conclude that the excess emissions saved from a tailwind of a certain
speed cannot recover the emission increases caused by a headwind of the same speed
magnitude. We note here that the wind effect is most profound for trucks because of their
large drag area against the airflow while moving. That does not mean that wind speed
and direction will not impact LDVs stop penalties. However, such impact is left for future
research due to the unavailability of emissions models to estimate fuel consumption and
emissions under various wind speeds and directions for LDVs.

The impact of the proportion of heavy vehicles in the fleet is significant for most
emission types and fuel consumption, as shown in Figure 11b. That finding is expected
after observing the significant differences between stop penalties for each of the LDVs
and HDDVs. Although the relationship between the percentage of HDDVs and the KE is
linear for all emissions and fuel consumption, the intensity (slope of the line) is noticeably
different. The most variation caused by the percentage of heavy vehicles is observed for
KFC and KCO2. The KCO and KNOx come in second and third place, respectively, whereas
KHC increases intangibly (1 s) with each 1% increase in the percent of HDDVs. These
remarkable findings suggest that, on the one hand, reducing the production of CO, CO2,
and fuel consumption of a fleet relies on reducing those parameters from both LDVs and
HDDVs. On the other hand, reducing HC and NOx depends much more on controlling
those parameters from the LDVs.

Most of the results presented in Figures 10 and 11 confirm that the emitting rate of
CO2 is strongly correlated with the fuel consumption rate. Hence their stop penalties
are relatively similar under various operational conditions. That suggests that aiming to
minimize either of them will minimize the other.

Although deriving the emissions-based stop penalty proposed in this paper is applica-
ble for vehicles with Internal Combustion Engine (ICE), zero-emissions vehicles (electric
vehicles) can still be combined with the ICE vehicles in the process of developing or
optimizing signal timings plans using the proposed Environmental Performance Index.
In such a case, the stop delay and number of stops can be applied similarly to the ICE
vehicles. However, the stop penalty can be used as the number of seconds of delay is
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equivalent to a stop-event (e.g., a widely used value of 10 s). Future research is needed to
derive an energy-based stop penalty to include the impact of stops made by the emerging
electrical vehicles.

This study used a simulation-based investigation, the conclusions of which can be
applied to any region. However, since the emissions model used in this study is developed
based on an American vehicular fleet, the results are highly applicable to the US fleet or any
similar fleet. Although it is expected that the same investigation results in other regions
would not deviate significantly from the results presented in this paper, we recommend
using a relevant emissions model to the area of interest when computing the emissions-
based stop penalty.

The findings of this are clear and can be summarized as follows: First, various emis-
sion types have different stop penalties; thus, unique Env-PI under the same conditions
are in order. Thereby, minimizing a particular emission criterion may decrease but will
not necessarily minimize another criterion. The exception is the minimization of fuel
consumption which minimizes CO2 because of their linear correlation. This finding does
not support the claims of previous studies [9,14,46,69,70] that reported a reduction of an
equal magnitude for all the emissions using the same objective function. Second, various
operating conditions have a significant impact on the stop penalty. Thus, the stop penalty
required to minimize a specific emission type on a particular link varies based on the link’s
vehicular, operational, topological, and external parameters. That means a link-based
observation of traffic dynamics and geometry should be made if one optimizes signals
to reduce emissions. Subsequently, those observations should be used to estimate the
stop penalty for a specific emission type to be reduced when optimizing signal timings.
We note here that the findings presented in Figures 10–13 are representative of the entire
findings of this study. Hence, such figures are not adequate to estimate the KE under
the combined impact of multiple factors for various emission criteria. However, the pre-
sented figures can be used to estimate the KE for the cases and emission types presented
in them. Future research efforts to develop predictive models to estimate the KE under
the compound impact of various factors have already begun. Such predictive models are
required to estimate the stop penalty under the combined impact of multiple real-world
conditions. Once the KE is estimated from the predictive models, it will be used in the
proposed Env-PI objective function (Equation (8)) to minimize sustainability metrics in
signal timings optimization procedures. Future research should also include utilizing the
Network Fundamental Diagram (NFD) to evaluate the impact of optimal signal plans
developed using the Env-PI on the traffic conditions of the signalized corridor of interest,
as outlined in [71,72].

7. Conclusions

Reducing emissions by optimizing traffic signals is challenging and requires a lot
of work to quantify the various air emission criteria under various signal timing plans.
However, reducing one type of emissions does not minimize other emissions, and it is
likely to increase the delay. To solve this issue, this study derived an emission type-based
environmental objective function (called Env-PI) to minimize particular emission criteria.
The paper also explained how the Env-PI is different for various emissions based on the
emissions-based stop penalty, even under identical operating conditions. Furthermore,
the present study reveals the relationship between various operating conditions and the
emissions-based stop penalty.

We generated emissions-based stop penalty data using a set of full-factorial experi-
ments and based on simulated traffic and emissions data. A real-world intersection has
been modeled in Vissim to perform various experiments under different operating condi-
tions. Vehicular trajectories from the field were used to develop acceleration–deceleration
functions, which were utilized to represent various driving behaviors. The emissions
model, CMEM, has been used to estimate the investigated emissions (HC, CO, NOx, and
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CO2) and fuel consumption. A Vissim–Python–CMEM interface has been developed to
speed up the experimental work and minimize errors.

The results reveal a significant relationship between the emissions-based stop penalty
and the independent parameters, including the vehicle type, percentage of heavy vehicles,
driver behavior, road gradient, cruising speed, and wind effect. Furthermore, the findings
show that all the investigated independent parameters have a significant individual impact
on the emissions-based stop penalty. The main parameters driving the variation in the
stop penalty are the vehicle type and cruising speed, while the road gradient and driving
behavior had a slightly lower impact.

Furthermore, the emissions-based stop penalty value differs for different emission
criteria depending on their emitting rates during each stop’s driving phase. Thus, our
study concluded that using the Env-PI with an accurate estimation of its stop penalty is
vital to minimize emissions through optimizing traffic signals. This is especially true for
urban communities suffering from specific polluting criteria, where such an Env-PI can be
deployed to develop new signal retiming strategies or integrated into existing ones.

Finally, a few critical limitations need to be considered. First, our study used the
same acceleration–deceleration functions for both LDVs and HDDVs due to the lack of
HDDVs trajectories from the field. Although this assumption is not perfect, it introduces a
smaller error than using Vissim’s default acceleration–deceleration functions. Second, the
emissions model CMEM used in this study was developed using a relatively old vehicular
fleet. Therefore, future research is needed to accommodate these limitations. In addition
to that, there is a need to conduct additional research to address the following problems:
First, future research should incorporate more comprehensive sustainability measures
(e.g., safety and noise). Second, the variability of stop profiles’ emissions used to compute
the emissions-based stop penalty should be further researched using variance estimation
techniques. Finally, future research should focus on developing a health risk index based on
optimal signal timings to minimize specific emission type and compare it to optimal signal
plans to mitigate other types of emissions to help achieve sustainability of human beings.
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