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Abstract: Green roofs are expected to contribute to the mitigation of multiple environmental issues
that affect urban areas. Owing to their composition, organization, and external factors, the perfor-
mances of green roofs have been demonstrated to be overall positive but strongly variable. Our work
first aims at proposing consensual definitions and a frame adapted to these biotic-abiotic systems.
It also aims at shedding light on the qualitative relations between various internal properties and
external factors of green roofs on their hydrological and thermal performances. One hundred relevant
study papers were filtered from 395 papers as per our defined search criteria based on originality and
precision. The expectations were to be capable of hierarchizing factors and properties that would
influence the performances of green roofs. The main findings highlighted that most factors and
properties have a positive influence on the performances of green roofs, showing there are many
existing levers to enhance the green roof performances and tackle some of the main urban environ-
mental issues. However, even if previous research has already explored various relations, in the
final filtered consideration of 6 performances and 30 factors and properties, there was a possibility of
180 combined factor–property–performance relations studies overall. Out of these possibilities, only
82 have been studied at least once, leaving the other 98 relations (54%) unexplored. Considering that
these lists were far from exhaustive, a huge potential in determining green roof performances remains
unearthed. In this regard, various proposals have been made regarding: (i) identification of levers
to enhance the performances of green roofs; (ii) filling the gaps: the exploration of the unstudied
relations; (iii) promotion of deeper and innovative experimental approaches for research on green
roof performances; and (iv) the shift from mono to transdisciplinary research about green roofs.

Keywords: substrate; leaf area index; climate; meteorological conditions; retention; detention;
thermal insulation; energy demand; ecosystem services

1. Introduction

The constant expansion in terms of space and density of urban areas has numer-
ous consequences on city infrastructure dynamics and surrounding environment mainly
through impervious surfaces (such as roofs, paved driveways, roads, and paved parking
lots) occupying a predominant place in these spaces [1,2]. They replace the vegetated, per-
vious surfaces and create the danger of waterproofing cities, a phenomenon that promotes
increase of surface runoff. Furthermore, fewer vegetated areas in turn cause a decrease in
canopy interception and transpiration within the city, leading to increased temperature
and decreased air humidity, leading to environmental issues, such as urban heat island
and massive consumption and loss of energy [3].

Since the 1950s and mainly in the past decade, to address such concerns, new forms
of nature-based solutions for urban areas have been emerging. However, many of those
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techniques require availability of land space, which is usually not available in densely
built downtown urban areas [4]. In every city, the availability of roof area is very likely.
Hence, among the techniques allowing introduction of nature into the city, green roofs hold
a significant potential. Integrated into the building, they do not consume any additional
space and can even be implemented on existing buildings (a traditional green roof can
exert a load of up to 250 kg per m2; however, the widely used sedum-based ones are
6 times lighter on an average and are suitable for most buildings; specific guidelines can be
found in [5,6]), which is likely to encourage their massive diffusion. This transformation of
the roofs with soil and vegetation is widely believed among the research community to
contribute to counter the urban environmental problems mentioned above [7].

After major technological developments, various scientific communities (e.g., hydrol-
ogy, climate, ecology) have quite recently taken an interest in this field of study in order to
evaluate its performances, in particular by characterizing some of them that are sometimes
approached as ecosystem services, such as the regulation of heat and water flows or urban
cooling. By studying green roofs in the UK, [8] demonstrated their contribution to the
insulation of buildings, with significant influence of the substrate properties but also of
the actual thermal insulation systems. Refs. [9,10] showed a moderate contribution to the
reduction in annual energy demands as a function of the seasons. Oppositely, under tropi-
cal climate, [11] found insignificant contribution of green roofs to insulation and energy
savings. In Sweden, [12] demonstrated a positive impact of green roofs on the reduction
of runoff water as a function of the depth of substrate and its moisture prior to the rain
event but failed to highlight a correlation with the slope. Under various conditions, [13,14]
measured a large range of water retention performance as a function of the substrates
properties but also of the season and meteorological conditions. This last aspect and the
consequent substrate’s moisture were also strongly highlighted by [15] in three distinct
climate regions. The capacity of green roofs to delay rainwater runoff has been less studied,
but evidences of the potential contribution of green roofs has been noticed [16,17].

Even if authors such as [18,19] have studied the temporal evolution of green roofs, it
has to be noted that most other research have been conducted considering that green roofs
are inert or abiotic systems and that their properties remain constant over time. However,
not only the very nature of the components of their substrates but also the functions
provided by green roofs require to consider them as soils and more specifically Isolatic
Technosols, which makes them highly reactive and submitted to an early pedogenesis [20].
As a result, a significant evolution of the porous architecture of substrates over time is
noted, modifying their internal properties [21]. Beyond that, additional results suggest
that these changes in such properties lead to variations in the performance levels of green
roofs [16,22].

Our paper aims to describe the influence of factors and properties of green roofs by ex-
tracting such factor–property–performance relations (defined in Section 2.1) from the previ-
ously conducted studies. Indeed, some researchers conducted various in-situ or controlled-
conditions experiments or modelling approaches in order to study performances—at a
certain time, some on ageing, some on the influence of the properties of materials. With
such a diverse literature, meta-analysis can serve as a useful tool to parse through both
main findings until now to moderate and evaluate what works best for a particular scenario
and the ways to improve that approach for future studies. It can also serve as a go-to
bibliography for further relevant studies. A fruitful review has already been conducted
that showed the wide diversity of performances of green roofs across the world [23]. Our
expected additional contribution is to qualify the factors and properties that would influ-
ence the performances of green roofs in order to: (i) highlight the most relevant levers that
could be used to enhance their contribution to urban environmental issues and (ii) suggest
future directions for research on green roofs.
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2. Materials and Methods
2.1. Definitions and Frame of the Analysis

Performances of a green roof are the direct and indirect contributions and benefits
to human well-being [24–26]; more specifically, it describes the ability of a green roof
to provide ecosystem services [26]. Some authors also mentioned them as “operational
environmental cost-benefits” [27]. In this work, we focused our attention on hydrological
and thermal performances (Table 1). Such performances are supposed to be under the
influence of factors and properties.

Table 1. Final performances considered.

Hydrological Performances Thermal Performances

Retention Insulation

Detention Energy demand

Reduction of surface temperature

Inner building temperature

Retention is defined as the capacity of a green roof to limit the quantity of drained
water as a function of the incoming water (rainfall) [4,20] In other terms, it is “the amount
of stormwater that will not become runoff [of] the roof” [28]. The water is both retained into
the substrate (due to capillary forces) or the drainage layer (depending on its configuration)
and is later evaporated or uptake and transpired by vegetation. Detention is the capacity
of a green roof to delay the peak of discharge of drained water as a function of the start of
the rainfall thanks to its flow into the substrate and the drainage layer [20,24,28,29].

Insulation is the ability of the roof to “reduce the heat flux through a building envelope
since the growing medium acts as an insulating layer” [25]. Energy demand of a building is
the amount of energy used for cooling and heating [25]. Reduction of surface temperature
is the ability of green roof to reduce the roof surface temperature, thereby helping in the
reduction of energy needs of the building. Inner building temperature is the building’s
interior temperature, which can be dependent on the efficiency of green roof to prevent
solar radiation from heating interior spaces of buildings [25].

From an historical soil science perspective, we chose to very clearly distinguish
the characteristics from the environment of green roofs designated as factors and the
characteristics of the green roof system designated as properties according to the seminal
work from [30].

Factor is an external characteristic of the environment of the green roof that may
influence and affect its performances [27]. They are related to weather conditions (e.g.,
air temperature, wind conditions, humidity); to the characteristics of rain events, such
as its intensity, frequency, and duration; or related to building characteristics [4]. A total
of 25 factors were initially considered and progressively restricted to 12 (Table 2). The
restriction was done after going through the available research articles and analysis the
relevancy of the factors and availability of research material for the particular factor.

Property is here specifically defined as an internal characteristic of the green roof that
may affect its performances. The properties can be related to the number of layers; the
global, physical, and chemical characteristics of the substrate (e.g., depth, composition,
porosity); and of the vegetation (type, density) [4]. It has to be noted that certain authors
named these properties as “structural factors” [31–33]. A total of 33 properties were
initially considered and progressively restricted to 18 (Table 3), similar to the methodology
considered in restricting factors.
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Table 2. Final factors considered.

Factors

Rain characteristics

Rain intensity

Rain frequency

Rain duration

Atmospheric conditions Air humidity

Wind speed

Temperature characteristics and heat fluxes

Average temperature

Maximum temperature

Solar radiation

Latent heat

Building characteristics

Building slope

Building height

Nature of covering material

Table 3. Final properties considered.

Properties

Age of the green roof Date of implementation

Global substrate
characteristics

Substrate composition

Substrate depth

Horizonation/layering

Substrate’s physical
characteristics

Porosity

Granulometry

Bulk density

Solid density

Water holding capacity

Hydraulic conductivity

Substrate’s thermal
characteristics

Thermal resistance

Solar reflectivity

Vegetation
characteristics

Percentage of vegetation

Nature of vegetation

Leaf area index

Diversity of plant species

Biological activity
Soil fauna

Soil micro organisms

Tables depicting initial factors and properties considered before finalization are men-
tioned in Table A1 of Appendix A.

The term “performance relation” is used in order to express the way the studied
factors and properties influence the different hydrological and thermal performances of
the green roof. FPR refers to factor-performance relation, such as effect of rain intensity on
retention. PPR refers to property-performance relation, such as effect of substrate depth on
retention. FPPR refers to combined factor–property–performance relations. Each influence
of a factor on a performance studied by an author is considered as one FPR; similarly, each
influence of a property on a performance studied by an author is considered as one PPR.
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Hence, a same study and a single experiment had the possibility to result in multiple FPR
and PPR.

Influence indices (positive-P, negative-N, neutral-O) are the ways the factor/properties
influence the performances. A positive influence would mean that the factor/property in-
creases the performance provided by the green roof system. For example, an increase of the
substrate depth was demonstrated to increase the retention capacity [31]; hence, the prop-
erty “substrate depth” will be considered by these authors as positive on the performance
“retention”. On the contrary, an intense rainfall can reduce the retention capacity of a green
roof [34,35]; hence, the factor “rainfall intensity” will be considered by these authors to
have a negative influence on the performance “retention”. Determination of the influence
indices was done by evaluating the details of the experimental observations of all studied
papers and the way the authors expressed the influence to be positive/negative/neutral
on any performance. Different papers could find different influence indexes for the same
FPPR depending on what aspect of the performance the studied author concentrated on.

The green roof system can therefore be seen as a complex system that could be de-
scribed by its “properties”, considering on the one hand the nature and physical, chemical,
and thermal properties of its abiotic components (i.e., substrate and drainage layers) and on
the other hand its biotic components (i.e., planted or seeded and spontaneous vegetation,
spontaneous fauna, and microbiota) (Figure 1). As in all biotic/abiotic systems, complex
interactions happen. First, the external system—here described as “factors”—induces
an ageing effect that results in the evolution of “properties” over time (e.g., rain may
induce leaching of fine particles; cold temperature may alter the vegetation development).
Moreover, interactions between abiotic and biotic components may also induce evolution
of “properties” (e.g., plant litter may increase the organic matter content in the substrate;
decrease of the substrate physico-chemical fertility can decrease the biomass production).
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Figure 1. Green roof system’s interactions between its global characteristics, internal properties, and external factors.

Eventually, it can be said that such inter-relations and interactions between all “factors”
and “properties” control the level of performances that could be submitted to changes
over time. Though the system is complex, our approach sheds light on the potential of
simplifying each FPPR and hence understanding the system evolution and performances
better (Figure 1).
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2.2. Search Strategy

To find the articles that studied these FPPR, the Web of Science database was the
chosen source of the data from the three initially considered sources (Web of Science,
ScienceDirect, and Google scholar). The keywords were selected based on their popularity
of utilisation among the authors in this field by trying out various possible and relevant
words related to hydrological and thermal performances. The search was conducted using
the following terms: [TS = (green roof* AND hydrological performance), TS = (green roof*
AND hydric performance), TS = (green roof* AND thermal performance), TS = (green roof*
AND thermic performance)].

The reference list of identified papers was initially manually checked for their rele-
vancy based on their title and keywords and were filtered suiting the purpose of this paper
(hydrological and thermal performances). After the relevant articles were selected (number
of selected papers, N = 395), their abstracts and type of study were analysed, and any
review/non-experimental based articles were eliminated (N = 187).

The remaining studies (N = 208) were selected if they met the following criteria:

• The study conducted has at least one experiment/modelling approach where the au-
thors studied at least one factor/property and tested the effect of this factor/property
by comparing different values of it and directly mentioning the influence of fac-
tor/property on the hydrological/thermal performance of green roof and their influ-
ence index.

• Studies were excluded if they lacked any relevant information, either missing or
ambiguous, as per the understanding of the author. Any other publication lacking
primary data and/or explicit method descriptions were also excluded.

As a result, 100 articles were considered for the rest of this work. These are mentioned
in Table A2 of Appendix B.

2.3. Data Extraction

Data extracted from the eligible studies were the FPR and PPR and their influence
indices. Other than this, the following information was also noted: (i) first author’s name,
(ii) first author’s expertise (based on the theme of the published journal), (iii) journal aims
and scope, (iv) year of publication, (v) study location, (vi) study design, (vii) climatic
condition, (viii) type of study, and (ix) keywords.

3. Results
3.1. Characteristics of the Included Studies

Eligible studies were published between 1997 and 2020, with the biggest chunk of the
studies in the past decade (80%) (Figure 2).

Majority of the studies were sourced from four countries, including the USA (12); the
UK (11); France (9), whose research has been consistent throughout the past decade; and
China (11), which has had a boom in green roof research in the last three years. Other than
these, to a lesser extent, studies have also been conducted in Italy, Sweden, Spain, Belgium,
the Netherlands, Madagascar, Norway, Brazil, Turkey, and Canada during the past decade.

While countries from Europe and North America have been contributing steadily
throughout the past two decades, countries mainly from sub-tropical climate regions and
Asian origin, such as China, Malaysia, Japan, Australia, Singapore, Israel, and Iran, have
contributed significantly during the last half of the decade, thereby almost tripling the
overall research conducted in this area. Before this sub-tropical influx, most of the studies
were from the temperate maritime and continental regions.

Almost half of the studies (47%) were conducted using modelling approach (mostly
since 2017), whereas 34% were in-situ experiments, and 19% were lab experiments (Figure 2).
Until 2011, there was frequent but little research done as per our relevance. Since 2011,
there has been a gradual increase, especially in modelling studies.
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Though it is difficult to pinpoint the first author’s expertise of the articles, it can be
said that most of them are of hydrology background, followed by energy engineering,
environment, soil, and horticulture, among other similar fields.
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conducted.

3.2. Total Number of External Factors and Internal Properties (Considered vs. Studied)

Out of the 25 factors initially considered, based on the criteria explained in the ma-
terials and methods section, 12 factors were studied at least by a single article. Similarly,
compared to external factors, more internal properties (33) were initially considered, and
more (18) properties were actually studied by the authors. Properties related to the set-up
of the green roof system (e.g., composition, substrate depth) and vegetation were compar-
atively well studied, whereas chemical properties, such as nitrogen content or chemical
conductivity, were ignored by almost all the authors considered.

3.3. Influence of External Factors

Empty spaces are prominent (70.8%) in the FPR heat map (Figure 3), showing limited
cases have been considered by the articles and that not all FPR are studied. In fact, overall
studies conducted are also less than half that of the PPR. The same percentage of FPR
(29.2%) for both the hydrological performances (7 out of 24 FPR studied) and thermal
performances (14 out of 48) are studied. However, among the studied ones, thermal
performances are studied better, with an average of three studies per FPR. Reduction
of surface temperature is the best-studied thermal performance, with 15 FPR studies.
Among the hydrological performances, retention is well studied, with 19 FPR. Detention
and insulation performances are almost ignored. It can also be noted that there is not
even a single specific factor that has been studied well for both hydrological and thermal
performances. Factors related to rain have been decently studied for retention performance,
with rain intensity’s effect on retention being the most studied FPR, with seven studies. The
studied factors are also considered to a much lesser extent, with only six FPR studied more
than four times overall. On an average, each nonempty FPR is studied by 2.4 publications.

Only two factors (solar radiation and height of the building) have been studied for
their influence on at least three performances. The average here is two.
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3.4. Influence of Internal Properties

Even if empty cells are still found in the PPR Heatmap (Figure 4), they are much less
prominent compared to FPR (42%), suggesting that they have been better studied.
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Figure 4. Heatmap depicting internal properties influence on performances (PPR).

The performances are more uniformly studied, with at least five properties being
studied for all the performances. Among the hydrological performances, retention and
detention are equally well studied. Thermal performances have been less studied, with the
reduction of surface temperature being the best studied. Relating to substrates, substrate
nature and physical properties, in particular composition and depth, have been studied
the most by the authors overall considering all the performances, with it being mentioned
26 times and 38 times, respectively. On an individual scale, substrate depth’s influence on
the retention performance is the most studied PPR, with authors studying it 17 times.

Relating to vegetation, two properties (percentage of vegetation and leaf area index)
have been studied for their influence on at least four performances. The average here is
two. Among the ones studied, percentage of vegetation has been studied the most by the
authors overall with respect to performances, with it being studied for 40 PPR, making it
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the most studied property. On an individual relation scale, leaf area index’s influence on
the reduction of surface temperature and percentage of vegetation’s influence on retention
are the most studied PPR, with authors studying it 11 times and 13 times, respectively. In a
rather contrasting manner, while substrate and vegetation properties are vastly studied for
all the performances, others have had a great decline, with them being studied for just one
or two performances. On an average, each nonempty PPR is studied by 2–3 authors.

By considering six performances and a final total of 30 factors and properties, there was
a possibility of 180 FPPR studies overall. As presented previously, out of these possibilities,
only 82 have been studied at least once, leaving the other 98 relations (54.4%) unexplored.

3.5. Factor–Performance Relations Influence

It can be seen that the studied factors have a major negative influence on the perfor-
mances, especially the hydrological performances, owing to the rainfall prominently (e.g.,
the highest is the rainfall intensity; the worst is the retention performance of the green roof)
(Figure 5). In fact, 90% of the hydrological FPR have negative influence. With regard to
thermal influence, the positive influences are more noticeable, with 45% and 55% being neg-
ative. Only one FPR was found to have a neutral influence. Building-temperature-related
FPR has the most positive influence, with 55%.
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Figure 5. Influence index of FPR on respective hydrological and thermal performances, showing
largely negative influence.

In general, it can be seen that most studies are in accordance with each other on the
type of influence. In one case (building slope), there is a difference in opinion among the
studies with respect to their influence in the hydrological-retention performance study.

3.6. Property–Performance–Relations Influence

Contrary to the influence of factors, the studied properties have an almost completely
positive influence (95%). Results are very consistent for all performances regardless of
whether they are hydrological or thermal or regardless of whether they are very well
studied (such as retention) or less (such as insulation) (Figure 6).

The difference between various authors in type of influence indices in the PPR stud-
ies is higher than that of FPR, with 5 out of 18 PPR having differences in their type of
influence. Here, along with four cases of retention (diversity, percentage of vegetation,
composition, and water-holding capacity), there is also one case of insulation (layering)
where difference arises.
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Percentage of vegetation, the highest studied PPR, has only one disagreement (in re-
tention). Leaf area index, porosity, and substrate depth, the other well-studied PPR, have
100 percent homogenous observations, each being studied for all the performances and
having positive influence on all of them. Diversity of vegetal species is the most diverse
FPR with respect to influences, with studies showing it can influence retention performance
positively, negatively, and neutrally, too.

Overall, with only five FPR studies among all the studies not being in accordance with
others, it can be said that the type of influence is highly homogenous.

4. Discussion
4.1. Identification of Levers to Enhance the Performances of Green Roof

Our main findings highlighted that most properties have a positive influence on the
performances of green roofs, showing there are many existing levers to enhance green roof
performances and tackle some of the main issues already mentioned, i.e., flooding and
urban heat island.

A few of these could easily be controlled by manufacturers and have been largely men-
tioned already, such as increasing the depth of the substrate, which could help increasing
the retention and detention of water alongside contributing to insulation and consequently
to the decrease of energy demand and inner building temperature in hot periods. Substrate
composition and layering of various materials are undoubtedly another key parameter to
control the level of performances provided by green roofs [36,37]. However, the relations
between them and performances remain complex to establish, considering that it is highly
dependent on many internal properties (nature and proportion of the substrate’s parent
materials) [38] and external factors, such as the climatic conditions [29,39]. Further research
that could help in predicting the contribution of various components and their association
on green roof performances would be highly needed. Vegetation also appears as a valuable
lever to increase performances in relation with their physiology (i.e., transpiration, shad-
owing, biodiversity habitat). Authors such as [40] have already mentioned the importance
of choosing local and native plants and of maintaining an optimal vegetation development
through a possible input of fertilizers [23].

Some other properties have a significant impact on performances but are more difficult
to handle, as they are not directly manageable. For example, the higher the porosity, the
higher the retention and detention of water [35,41] and the better the insulation [42].
Similar thoughts could be made on bulk density or water-holding capacity. However,
such physical characteristics rely not only on the properties of each constituent of the
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substrate but also on the result of their formulation to design the substrates. In addition,
a change over time in the chemical (lower pH, higher organic carbon, and total nitrogen
levels) and physical (settlement) characteristics of different green roof substrates was
identified by [43] without the consequences of these changes on hydraulic properties being
measured. As a consequence, further research on the physical, hydrological, and thermal
properties of substrate would be required in order to enhance the way they control the
behaviour of green roofs [31,44]. More globally, the relations between substrates fertility
(i.e., concentration in nutrients, organic matter content, water available for plants) are also
strongly correlated with the all characteristics related to vegetation. As a consequence, an
agronomical approach of green roofs appears promising to describe the interrelations of
such properties.

Finally, factors are, by definition, absolutely unmanageable, as they are dependent on
either climatic, meteorological, and building properties or the ecological continuum [29,45].
Based on that, a deep work on the adaptation of the properties of a green roof to its
environment should be promoted [46].

4.2. Filling the Gaps: The Exploration of the Unstudied Relations

Previous experimental and modelling research has explored various relations between
factors or properties and hydrological or thermal performances of green roofs. However,
more than half of the potential relations we identified—considering that our lists were far
from exhaustive—remains unexplored. Even if they do not have all the same relevancy,
many outlooks emerged from such a review analysis. Ref. [47], in their study, highlighted
the need and complexity of green roof designing due to unmanageable factors and time-
and location-specific constraints. As more and more FPPR are explored, the complexity of
green roof becomes more manageable with regards to designing for optimal performance.
This is mainly possible, as through this approach instead of the whole system redesign,
specific factors and properties can be controlled and monitored. Most research through the
years, such as [39,48], have also highlighted the need for specific approaches and expansion
of the green roof horizon. But it seems that due to design and implementation constraints,
only the tried and tested approaches, factors, and properties are preferred.

Concerning the impacts of the studied factors, it appears that the ones that are related
to hydrology (i.e., rain characteristics) are dominantly separated from the ones related to
heat fluxes. Indeed, the combined effects of thermal and hydrological behaviour of the
green roof on its performances remain largely unknown. For example, the effect of dry
conditions prior to a rain event are known to have an impact on both water and heat fluxes
into the substrate as well as, more specifically, the impacts of the temperature or the wind
speed on the plant transpiration [39]. At the scale of the whole building, the consequences
of its various characteristics are complex to capture with experiments and mainly rely on
modelling approaches, which require specific skills [49].

The study of green roof properties appears complex, as all the mentioned character-
istics are not only correlated but also evolving over time. The very nature of artefacts,
dominant components of green roof substrates, are well known to be extremely reactive
to environments, which can result in intense and rapid changes in their properties [50].
Apart from its own effects, vegetation could lead to an evolution of Technosols’ physico-
chemical characteristics [51], and so could the soil fauna and even microorganisms. Various
studies, such as [16,22], already suggested that the temporal changes in properties lead to
variations in the hydraulic performance levels of green roofs. Again, relations between
various chemical properties of green roof substrates (e.g., relative abundancy of organic
and mineral contents, availability of nutrients) and their dynamic over time that control
the development of vegetation appear as a major gap in the study of the green roof perfor-
mances. As an explicit example, fine particles’ eluviation from substrates surface have been
monitored on green roofs, which may lead to physical constraints for plant growth [20].

There is a need for studies that consider both approaches and reach a crossroad
point between ageing—which is the term dedicated to evolution of inert materials—and
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pedogenesis—which is the term that describes evolution of living media—to know the
similarities, their interaction, as well as inter-relation between these two approaches.

4.3. Promotion of Deeper and Innovative Experimental Approaches for Research on Green Roof
Performances

Everybody seems to agree and appreciate that green roofs are beneficial, but as seen in
this article, scientifically speaking, there is very less validation with regard to it yet. There
are many studies about green roofs that were not adequately designed on purpose to study
the dedicated effect of factors or properties, owing to the fact that they either considered the
green roof as a whole system, such as [52], or limitations in specific approach development,
such as [53]. There is a need to develop specific approaches relevant and customized to
the green roof scale and behaviour to explore the green roof potential to the fullest extent
possible. In their review, [4] clearly echoed the same sentiment: that there is a need for more
research into green roof performance in an urban environment, as the differences measured
by few existing studies between the early years’ performance of green roofs and the later
years indicate a need for long-term monitoring of green roofs. Ref. [28] also highlighted
there is scarcely any literature on the operation of full-scale, building-implemented green
roofs, and no articles were found on the building technical performance of aged green roofs.
That is not only a risk factor that fails to evaluate long-term green roof performance but also
an utter disregard to the potential improvements in efficiency of green roof performances
by not exploiting it.

In-situ experiments are very rich in terms of data that could be monitored and har-
vested under real conditions [54,55]. Therefore, it is consistently prominent in the past
decade considering its longevity. On the downside, they need long-term observation
and adapted monitoring devices to be implemented at the beginning, and hence, even
if large-scale data are available, their exploitation can be time consuming, tedious, and
impractical. Therefore, the definition of some shared protocols and knowledge about
good practices is expected. Then, implementing long-term observation sites under various
situations would also serve as a reference to all the concerned studies. However, it is
found that the vast majority of in-situ green roof research conducted has been on smaller
green roof test beds or isolated components [28]. This is an interesting observation because,
as this paper highlights, pedogenesis and evolution of green roof components have a
great potential to modify the performance over time. However, the test beds are usually
discarded/not maintained after the experiments, hence denying the possibility of temporal
evolution analysis.

Comparatively, lab-scale experiments are promising [16,17,20] as they, under con-
trolled conditions, could reproduce in a very specific way some variations of factors and
properties. However, they might not be multipurpose and very specific to certain prop-
erties or factors. Unfortunately, this is the least-utilized method for now considering the
difficulties in designing them. Hence, there is a need to design and create such lab proto-
types to understand the influence of each relation and also in order to lighten the long-term
experiments, too.

Considering various implementation and monitoring complexities in the other two
approaches, the modelling approach has been the go-to suggestion by most researchers and
reviewers in the past three decades, showing its potential [39,48]. However, the existing
modelling approaches are not perfectly suited to the evaluation of green roof performances,
as they are more focused on the thermal and hydrological processes (i.e., transfer and
fluxes). Ref. [56] noted that currently, there are many mathematical models in green roofs,
but as each one of them has their own notation, it complicates the study of this field.
Even if modelling approaches have the liberty to simplify systems, a more realistic and
green-roof-specific consideration can be adapted. For example, modelling approaches do
usually consider 100 percent vegetation on green roofs, which is rarely the case owing to
maintenance issues and easy foreign matter growth. Ref. [48] also highlighted the need for
a green-roof-specific approach because of the complex interactions between the hydraulic
and thermal processes that occur in these systems.
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4.4. From Mono to Transdisciplinary Research about Green Roofs

Throughout the study, it was noted that all the research was made by the authors
who had specific interests and studied mostly that specific aspect. Their interest would be
either about hydrological performances or thermal performances, rarely considering both
performance groups together and not specifically related to green roofs [57]. A broader,
transversal, and complex study could lead to a more reliable and precise estimation and
assessment of FPPR.

The expertise and interests of the published authors have also confined them to
more prominent properties, such as the substrate composition and the vegetation. They
have been demonstrated to have direct influence on the performances, and hence, most
of the studies concentrated on them, as they were easier to characterize, ignoring the
other less common but possibly impactful study possibilities. Despite the study of many
different substrates with various composition, almost no research has yet been conducted
to establish the clear relations between physical properties (e.g., bulk density, particle size
of the components) or chemical characteristics (e.g., organic matter or nitrogen contents)
and performances [58,59].

Other disciplines could help in understanding the various properties and factors that
influence the behaviour of green roofs, such as ecology, biology, soil science, agronomy,
and architecture [60]. In this regard, [23] suggested a research on finding the coefficients of
the impact of green roofs to universalize the effect of green roofs on performances, as the
results presented by different authors (most often based on a single or limited number of
case studies) differ significantly from each other, owing to change in the climate, geography,
study concerned, etc.

5. Conclusions

This paper first contributed to the definition of a framework likely to be consid-
ered to describe the intrinsic complexity of green roofs as biotic–abiotic systems—at the
crossroad between architecture and horticulture—and its relation with external factors,
notably meteorological conditions, that contributed to multiple ecosystem services, here
focused as hydrological and thermal performances. As part of the drastically increasing
scientific interest for green roofs, our meta-analytic review highlighted many researches
dedicated to the impact of green roof properties and factors on such performances. Even if
these properties–performance relations are seemingly more important, the comparative
ignorance of more than half of the other possible factors–properties relations also holds
important implications considering their potential in defining green roof performances. It
could also be seen that the studied factors have a major negative influence on the perfor-
mances (68%), whereas the studied properties have a major positive influence (95%), which
highlights that even if the green roof is a complex system, there exists different levers to
be considered for performances enhancement. The trend of more and more researchers
opting for modelling approaches in the past decade also paves way for further studies with
promotion of deeper and innovative experimental approaches for research on green roof
performances, especially in real site conditions to understand the performance changes in a
realistic way. Even if this can be a tedious job considering the difficulties in design, possible
inter-relations, and time consumption, it is the need of the hour considering their possible
impact in improving green roof performances and easing the design process. The first
step regarding this could be developing clear protocols for particular factors–properties–
performance studies to simulate real site conditions. This can ideally be suitable to be
able to implement in multiple climatic conditions by modifying certain parameters based
on the regional characteristics. Along with this, there is a necessity to develop long-term
observations for better understanding and control of the evolutionary and early paedogenic
performance changes.
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Appendix A

Table A1. Tables depicting initial factors and properties considered before finalization.

Initial Factors Considered

Class Characteristics

Rain

intensity

frequency

duration

hydrometeor

Temperature

air temperature

average

minimum

maximum

Heat fluxes

solar radiation

conductive flux from the building

infrared radiation

latent heat

sensible flux

storage flux

Building surface

evenness

slope

total surface

height of the building

architecture

roughness (surrounding buildings)

nature of the covering material

Wind
speed

orientation

Atmospheric and weather conditions

air humidity

fine particles deposition

cloudiness

pollutants concentration

greenhouse gases
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Table A1. Cont.

Initial Properties Considered

Class Characteristics

Nature

composition

manufacturer

date of fabrication

date of implementation

Physical

depth

surface state

horizonation/layering

porosity

granulometry

bulk density

solid density

structure

aggregate stability

Pore-size distribution

Hydric

retention curve

water-holding capacity

wilting point

saturation point

hydraulic conductivity

preferential flow

van Genuchten parameters

Chemical

organic carbon

nitrogen

pH

CEC

available phosphorus

mineralogy

chemical conductivity

Thermic
thermal conductivity

thermal capacity

Biological
germination capacity

microbial diversity

microbial abundancy

Living organisms (vegetation, animals,
microorganisms)

organic matter addition (e.g., faeces deposition)

organic matter transformation

burrowing activities

leaf area

biological diversity

biological abundancy



Sustainability 2021, 13, 10017 16 of 24

Appendix B
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