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Featured Application: This study compares the existing heuristic rules using small/large net-
works, different resource types, relaxed/limited resource supply, and serial/parallel resource al-
location procedures.

Abstract: Resource-constrained project scheduling (RCPS) aims to minimize project duration under
limited resource availabilities. The heuristic methods that are often used to solve the RCPS problem
make use of different priority rules. The comparative merits of different priority rules have not
been discussed in the literature in sufficient detail. This study is a response to this research gap. It
compares 17 heuristic priority rules and seeks the best performing heuristic priority rule. This is
the first study ever that compares heuristic priority rules by considering combinations of variations
in (1) resource allocation procedures, (2) number of activities, (3) number of resource constraints,
and (4) resource supply levels. The objective is to understand the relative merits of heuristic rules
used in solving the RCPS problem. The findings indicate that the “minimum late finish time” rule
generates the shortest predicted project duration when used in parallel resource allocation, whereas
the “minimum late start time”, “minimum late finish time”, and the “highest rank of positional
weight 2” rules perform best in serial resource allocation. It was also found that parallel resource
allocation is slightly superior to serial resource allocation in most instances.

Keywords: resource constrained project scheduling; heuristic methods; heuristic priority rules

1. Introduction

Work scheduling involves a set of decision-making processes that are modeled after
a production system. Various types of scheduling methods were developed in the last
century. Out of these, CPM is one of the most popular scheduling techniques. A work
schedule includes several activities that need to be executed in a certain order and involves
several resources that are used for the execution of these activities. Renewable resources
such as construction equipment remain intact after production, whereas non-renewable
resources such as construction materials are consumed and depleted during production.

Resource-constrained project scheduling (RCPS) aims to achieve minimum project
duration when the work schedule is composed of a set of activities that are subject to not
only precedence constraints but also to resources with limited availability [1,2]. In classical
CPM, the main constraint in determining project duration is precedence relationships.
However, resource constraints may cause delays in activities, which in turn may affect the
project duration predicted by CPM. One of the outcomes of RCPS is activity start and finish
times that conform to precedence relationships and satisfy resource constraints. RCPS
techniques were used in various fields such as prefabricated construction [3], optimizing
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time, cost and energy consumption [4], improving sustainability in construction [5], and
financial optimization [6].

Several methods have been used to solve the RCPS problem. Heuristic methods are the
most frequently used methods, especially in commercially available project management
software packages. Even though different researchers have used different heuristic priority
rules over the years, a detailed comparison including different resource conditions of these
rules has never been made. In this study, a detailed comparison is presented after a brief
literature review of RCPS problems and solutions. The results are tested by using cases
generated by the Project Scheduling Problem Library (PSPLIB) developed by Kolisch and
Sprecher [7]. These cases are modified by defining extra resource conditions to test the
heuristic rules under varied conditions. The outcome is expected to bring clarity to the
selection and use of the best performing heuristic rules in given situations, eliminating any
doubts that existed in the past.

After the introduction to the study in Section 1, the organization of the paper involves
Section 2—Materials and Methods, which includes a literature review of RCPS research and
well as heuristics research (Section 2.1), followed by the mathematical formulation of the
RCPS problem (Section 2.2), and a detailed overview of heuristics methods that includes
not only the serial and parallel resource allocation methods but also the many heuristic
priority rules (Section 2.3). Heuristic priority rules are compared using both serial and
parallel resource allocation by solving single mode benchmark problems and the results
are presented and discussed in Section 3—Results and Discussion. The conclusions are
presented in Section 4.

2. Materials and Methods
2.1. Literature Review

Mathematical methods or exact algorithms constitute the most precise approaches
for solving RCPS problems. These approaches are deterministic and exhaustive in nature.
Mathematical methods were generally used in the earlier days of RCPS research. For
example, the branch and bound method was used by Johnson [8] as early as in 1967.
Branch and bound methods are still used for different kinds of RCPS problems (e.g., [9]).
Mathematical methods are accurate, but in some cases fail to generate results. In addition,
mathematical methods are not useful when tackling large problems. In such situations, the
use of heuristic methods is recommended.

Heuristic and meta-heuristic methods do not depend on deterministic calculations and
are faster than mathematical methods. Heuristic methods are problem-specific (i.e., they
are designed to solve a particular problem and may not perform as well in other problems),
whereas meta-heuristic methods are problem-independent (i.e., a meta-heuristic method
such as tabu-search or genetic algorithms can be used to solve a variety of problems) [4].
Heuristic methods include specific rules that solve RCPS problems whereas meta-heuristic
methods include computational procedures that gradually converge to the optimal solution.
Neither heuristic nor meta-heuristic methods guarantee optimum results [10].

Various heuristic methods have been used to solve the RCPS problem. For example,
lower bound methods can produce heuristic solutions to the RCPS problem [2]. On
the other hand, meta-heuristic methods involve adaptive search algorithms [11], as they
improve the solution gradually through several iterations with the hope of reaching the
global optimum, but sometimes reaching only a local optimum that falls short of the global
optimum. In contrast to other methods, heuristic and meta-heuristic methods involve
randomness in calculations.

Even though heuristic and meta-heuristic methods do not guarantee an exact optimal
solution, the results converge faster than mathematical methods. With the increased
power and wider use of personal computers, meta-heuristic methods became popular
and more frequently used to solve RCPS problems. The main advantage of heuristic
and meta-heuristic methods is converging to a “reasonable” optimum solution within
acceptable limits faster than deterministic methods, especially in solving large problems.



Sustainability 2021, 13, 9956 3 of 16

The main disadvantage is that the user may not always obtain the optimum solution.
Since the early 1990s, genetic algorithms have been extensively used for solving RCPS
problems (GA) [3,12–14]. Other meta-heuristic methods such as tabu-search [15], simulated
annealing [16], ant colony algorithm [17] and the artificial bee colony with differential
evolution [18] were applied. Different problem types such as multi-project cases can be
solved using forward-backward genetic algorithm techniques [19]. Kannimuthu et al. [20]
used Probabilistic Global Search Lausanne for multi-project multi-mode problem cases.
Different techniques such as Entropy-based heuristics that are adapted for solution of RCPS
problems, the main objective of entropy-based heuristics, is maximizing the total-entropy
of the schedule [21,22].

Heuristic priority rules are the most common algorithms in solving RCPS prob-
lems [23] because of their simplicity and their high computation speed [24]. Heuristic
priority rules reflect an intuitive background rather than optimality and are preferred
in small size manufacturing. Heuristic priority rules are used for sorting activities and
alleviating resource conflicts in the RCPS problem. The first heuristic rules were introduced
by Kelley [25] in the early 1960s and later discussed by Davis and Patterson [26]. Tormos
and Lova [27] introduced the parallel scheduling scheme for multi-project situations, and
Klein [2] experimented with bi-directional planning in solving the RCPS problem. Bud-
dhakulsomsiri and Kim [28] attempted to solve the multi-mode RCPS problem by using
priority-based heuristic rules, considering labor vacations and activity splitting. Padman
et al. [29] tested various heuristic rules to minimize the net present value of a project.

Davis and Patterson [26] conducted one of the earliest studies comparing heuristic
priority rules. Their study involved comparing the performance of 8 priority rules on 83
different schedules. They found that the “minimum total slack” rule comes first among
other rules. Özdamar and Ulusoy [30] used only parallel resource allocation along classical
forward scheduling and iterative scheduling methods. They compared 5 heuristic priority
rules by testing them on 205 different problems that were borrowed from studies conducted
by Alvarez- Olaguíbel and Goerlich [31]; Christofides et al., [32]; Li and Willis [33]; and
Patterson [34]. Their proposed method, called “local constraint-based analysis”, was the
best performing rule, while the “highest weighted resource utilization” rule was the runner
up. Schirmer and Riesenberg [23] conducted a comparative analysis using sampling-based
techniques. They used PSPLIB’s 480 schedules with 30 activities to test 10 priority rules
and found that the “late start time” rule performed best with serial resource allocation,
and the “worst case slack (WCS)” rule performed best with parallel resource allocation.
In Schirmer’s [35] study, it is stated that performances of WCS and LFT rules are almost
similar in parallel resource allocation. The WCS rule performs better only on PSPLIB’s 30
activity schedules and on larger size schedules, LFT (Late Finish Time) rule shows better
performance. In Chen’s [36] study, it is discovered that LFT and LFTS (Late Finish Time
Stochastic) rules perform better in stochastic case of RCPS problems.

The project size and resource constraint situations also affect the performance of
heuristic priority rules [10]. Kanit et al. [37] investigated whether the size of the problem
and the number of resource constraints affect the performance of priority rules on 10 real
RCPS problems and found no significant differences for problem size. However, they
observed a correlation between rule performance and the number of resource constraints.
No analysis was found in the literature that considers combinations of variations in (1)
resource allocation procedures, (2) number of activities, (3) number of resource constraints,
and (4) resource supply levels. This is the first study that compares heuristic priority rules
by considering combinations of variations in all these four conditions.

2.2. Problem Formulation

The RCPS problem is a NP-hard problem that involves achieving the shortest project
duration given the availabilities of different types of resources [38]. The RCPS problem is
described in detail by Brucker et al. [1] and Klein [10] for a single mode case. In the single
mode case, activities can shift depending on the availability of float, but activity durations
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and resource availabilities are fixed. The assumptions are that intermittent activities are
disallowed, and the project network is not cyclical, nor is it activity-on-arrow. In this study,
projects include four different renewable resources. The formulation of the single mode
RCPS problem is presented in Equations (1) to (5) [39].

minT = ∑
LFTj
t=EFTj

t·Xjt, (1)

where:

Xjt =

{
1, i f LFTj < t
0, otherwise

, f or j ∈ J and t ∈
[
EFTj, LFTj

]
. (2)

In Equation (1), the objective of the analysis is the minimization of T, the project
duration; LFTj and EFTj represent the late and early activity finish times respectively of
activity j; and t is any time between EFTj and LFTj. The set J includes all the activities in
the project, and n is the total number of activities in the network. According to Equation (2),
Xjt takes the value of 1 if activity j finishes at the end of time t, or the value of 0 otherwise.

The constraints are defined in Equations (3) to (5). Equation (3) is a constraint that
makes sure that an activity may be shifted within its float, but no further. The predecessor
constraints are defined in Equation (4) such that an activity cannot start before all its
predecessor activities are completed. In Equation (5), resource constraints are defined such
that all activities must be executed within resource limits. dj is duration of activity j, rjr is
resource demand of activity j for resource r, Pj is activities preceding activity j, and Rτ is
supply of resource r.

Subject to:

∑
LFTj
t=EFTj

Xjt = 1 j = 1, . . . , n, (3)

LFTi

∑
t=EFTi

t·Xit ≤
LFTj

∑
t=EFTj

(
t− dj

)
·Xjt j = 2, . . . , n i ∈ Pj, (4)

∑n
j=1 rjr ∑t+dj−1

τ=t Xjτ ≤ Rτ . (5)

2.3. Heuristic Methods

Heuristic methods are widely used for solving RCPS problems. Resource allocation
procedures and a brief introduction to heuristic rules are presented in this section. Serial
and parallel resource allocation are prominent procedures that use heuristic rules to sort the
activities to be scheduled by their importance. In this study, these procedures are presented
with flowcharts. Both methods are described with algebraic expressions in [18].

2.3.1. Serial Resource Allocation Procedure

The serial resource allocation procedure was proposed by Kelley [25]. It is widely
used in heuristic/meta-heuristic methods. In the serial resource allocation procedure
presented in Figure 1, the number of steps is equal to the number of activities in the
network. In each step, one activity from the decision set (Dn) is selected and the earliest
start time of this activity is determined without violating constraints. Two different activity
sets are updated throughout the procedure, the scheduled set (Sn) and the decision set
(Dn). The scheduled set consists of activities that have been scheduled according to
precedence relationships, whereas the decision set includes activities that comply with not
only precedence but also resource limitations. To be included in the decision set, an activity
must satisfy two conditions, namely (1) the activity should not be in the scheduled set;
and (2) all predecessors of the activity should have been scheduled. An activity is selected
for inclusion in the decision set by using a heuristic priority rule. In the terminology of
Klein’s [10] study, the decision set is called “available activities”, and the scheduled set is
defined as a “partial schedule”.
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Figure 1. The serial resource allocation procedure.

As seen in Figure 1, at the beginning, by default, the first activity is inserted into
the decision set. Because it is the only activity in the decision set, this activity is selected
and scheduled. In the second step, the forthcoming decision set contains this scheduled
activity’s successors. By using priority rules, one of these activities is scheduled without
violating resource and precedence constraints. After this activity is scheduled, this activity’s
start and finish times are determined without violating resource constraints, and the activity
is included in the scheduled set (Sn). The process is completed after all activities are
scheduled using this procedure.

Figure 2 shows a sample 8-activity network. Figure 3 shows the outputs of the serial
resource allocation procedure’s six steps in rearranging the activity start-finish times.
In each step, the scheduled set (Sn) is augmented by one activity by selecting the most
appropriate activity from the decision set (Dn), as explained previously. In this case, the
activity with the smallest duration is the most eligible activity in the decision set. Each step
in Figure 3 represents one calculation cycle as displayed in Figure 1.
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Figure 2. A sample network.

• Activity 1, which has no predecessors, is automatically added to the scheduled set (Sn)
but does not appear in the resource diagram in Step 1 because it does not consume
any resources.

• In the first step, the successor of Activity 1 that has the smallest duration is selected
for inclusion in the scheduled set (Sn). In other words, Activity 3 is the most eligible
activity out of Activities 2 and 3 that are connected to Activity 1 in the decision set
(Dn) and that have respective durations of 2 and 1 days. So, Activity 3 is added to the
scheduled set in the first step.
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• In the second step, the successor of Activities 1 or 3 that has the smallest duration is
selected for inclusion in the scheduled set (Sn). In other words, Activity 2 is the most
eligible activity out of Activities 2 and 5 that are connected to Activities 1 and 3 in the
decision set (Dn), and that have respective durations of 2 and 4 days. So, Activity 2 is
added to the schedule set in the second step.

• In the third step, the successor of Activities 1, 2, or 3 that has the smallest duration is
selected for inclusion in the scheduled set (Sn). In other words, Activity 4 is the most
eligible activity out of Activities 4 and 5 that are connected to Activities 1, 2, and 3 in
the decision set, and that have respective durations of 3 and 4 days. So, Activity 4 is
added to the schedule set in the third step.

• This procedure is continued until no activity remains in the decision set.
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2.3.2. Parallel Resource Allocation Procedure

The flow chart of the parallel resource allocation procedure is presented in Figure 4.
There are two known algorithms that are related to parallel resource allocation, the Kelley
Algorithm proposed by Kelley [25], and the Brooks Algorithm proposed by Bedworth and
Bailey [40]. Inspired from Kolisch’s [24] study, the Brooks Algorithm is used to perform
parallel resource allocation in this study. There are several similarities and differences
between parallel and serial resource allocation procedures. Similar to the procedure in
serial resource allocation, the total number of steps in the parallel resource allocation
procedure is equal to the total number of activities in the schedule. The main additional
variable that is used in parallel resource allocation is the time of the allocation (tn), which
displays the current time of the resource allocation step. In addition, the scheduled set (Sn)
used in serial resource allocation is replaced by the active set (An) and the completed set
(Cn) in parallel resource allocation. The active set (An) includes the processed activities
at time (tn), which means that the start and finish times of these activities are within (tn).
Once the activities’ start and finish times fall behind time (tn), these activities are inserted
to the completed set (Cn). The decision set in parallel resource allocation has the same
meaning as the decision set in serial resource allocation, the only difference being that the
activities must begin at time (tn) to qualify for a place in the decision set (Dn). Similar
to serial resource allocation, the most appropriate activity is selected at each step of the
parallel resource allocation procedure by using heuristic priority rules.
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Figure 5 shows the outputs of the parallel resource allocation procedure’s first five
steps in rearranging the activity start-finish times. As mentioned above, the time of the
allocation for the nth step (tn) is an additional parameter that is used in parallel resource
allocation. At the beginning, tn is zero (time now) and is incremented in each step until
the conclusion of the resource allocation processes. The selection of the activity with the
smallest duration as the most eligible activity in the decision set is used as a priority rule
at every allocation time (tn). Each step in Figure 5 represents one calculation cycle as
displayed in Figure 1.
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• Activity 1, which has no predecessors, is automatically added to the active set (An)
but does not appear in the resource diagram in Step 1 because it does not consume
any resources. Neither does Activity 8 for the same reason.

• In the first step, i.e., when t1 = 0, there are four activities (Activities 2 and 3) in the
decision set (D1) that can start at time zero. Activity 3 is the most eligible as it has the
smallest duration out of these four activities and is plotted in the first step.
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• In the second step, since Activity 3 has been scheduled in the preceding step, there is
one remaining activity (the second activity) in the decision set (D2) that can start at
time zero (t2 = Day 0) that is directly started on day 0.

• In the third step, since Activities 2 and 3 have been scheduled in the previous steps,
there are two activities (Activities 4 and 5) in the decision set (D3) that can start at
time zero (t3 = Day 2). Activity 4, which has the smallest duration out of these two
activities is the most eligible and is scheduled in the third step.

• In the fourth step, since Activities 2, 3, and 4 have been scheduled in the previous
steps, in this case, there are two activities (activity 6 and 5) in the decision set (D4) that
can start at time t4 = Day 5. Activity 6 is selected to be scheduled since its duration is
lower than the duration of Activity 5. This procedure is continued until no activity
remains in the decision set. As seen in Figure 5, the remaining activities, all of which
use resources, are scheduled without exceeding the maximum supply.

2.3.3. Heuristic Priority Rules

Browning and Yassine [41] tested 20 heuristic priority rules on 12,320 problems. Özkan
and Gülçiçek [42] found the optimum heuristic rules for specific project types using artificial
neural networks. Heuristic priority rules can be classified as (1) rules that use network
characteristics, (2) rules that use time values, (3) rules that use resource parameters, and (4)
rules that use a combination of the previous three rules [31,43].

The 17 rules presented in Table 1 are borrowed from Klein’s work [10]. This shortened
version of Klein’s list [10] of heuristic priority rules excludes the rules that were found
by Klein [10] to be irrelevant in resource allocation. The first column represents the
abbreviations of the rules, the second column represents the formula of each rule. The
terms “max” and “min” represent the importance factor. As an example, in the SAD rule,
activities with shorter durations are more important than activities with longer durations.

In the SAD rule, the activity that is selected from the decision set is the activity that
has the minimum activity duration (dj); in the MIS rule it is the maximum number of
immediate successors (Fj); and in the MTS rule it is the maximum number of successor
activities (F∗j ).

The HRPW rule uses the “positional weight 1” rule that is calculated by adding the
duration of the related activity (dj) to the sum of the durations of all immediate successors
(∑i∈Fj

di). According to the HRPW priority rule, the activity with the highest positional
weight 1 is selected from the decision set. The HRPW* rule uses “positional weight 2”
formulated by adding the duration of the relevant activity (dj) to the sum of the durations

of all successor activities
(

∑i∈F∗j
di

)
, not only the immediate successors. The HRPW*

priority rule requires that the activity with the highest positional weight 2 should be
selected from the decision set.

The EFT and EFTD rules are the static early finish and the dynamic early finish
heuristic rules, respectively. The static early finish rule uses the initial CPM’s early finish
values before resource allocation calculations started. On the other hand, in the dynamic
early finish rule, the CPM values are updated in each step of the resource allocation
calculations. These updated early finish values are used for the selection of the eligible
activity.

The LST and LFT are the late start and finish times of an activity. These rules stipulate
that the activities with the earliest LST and LFT are selected from the decision set.

The STFS and STFD rules require that activities with the smallest static total float (i.e.,
float that exists in the original schedule before resource allocation), and dynamic total float
(i.e., float that is created in every step of the resource allocation process), respectively be
picked from the decision set.
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Table 1. Heuristic priority rules.

Priority Rule Formula Process for Picking Activities at Each Iteration

SAD Min dj The activity that has the minimum activity duration (dj) is
picked.

MIS Max Fj The activity that has the maximum number of immediate
successors (Fj) is picked.

MTS Max Fj* The activity that has the maximum number of total
successors is picked.

HRPW Max
(

dj + ∑i∈Fj
di

) The activity that has the highest rank positional Weight 1
(see explanation in the text above Table 1) is picked.

HRPW* Max
(

dj + ∑i∈F∗j
di

) The activity that has the highest rank positional Weight 2
(see explanation in the text above Table 1) is picked.

EFT Min EFTj The activity with the earliest finish time is picked.
EFTD Min EFTDj The activity with the earliest dynamic finish time is picked.
LST Min LSj The activity with the earliest late start time is picked.
LFT Min LFj The activity with the earliest late finish time is picked.
STFS Min LSj-ES The activity with the smallest static total float is picked.
STFD Min LSj-ESj The activity with the smallest dynamic total float is picked.
HRD Max (dj ×∑m

r=1 ujr) The activity with the highest resource demand is picked.

HWRU Max[(
ω×

∣∣∣Fj

∣∣∣)+ (1 + ω)×∑m
r=1 (

ujr
ar
)
] The activity with the highest weighted resource utilization

and number of successor activities is picked.

HRU1 Max ∑i∈Πjh ∑m
r=1

(
uir
ar

)
| h = 1, . . . πj

The activity with the highest resource utilization in all paths
succeeding activity j is picked.

HRU2 Max ∑i∈Πjh ∑m
r=1

(
uirdi

ar

)
| h = 1, . . . πj

The activity with the highest resource utilization in all paths
succeeding activity j (including the impact of the duration of

activity i) is picked.

TIMROS ω(LSn−LSj)
LSn−LS1

+ (1−ω)× acrj/acr1
The activity is picked according to Bedworth’s [42] heuristic

rule HRU1 (see clarification in the text below).

TIMRES ω(LSn−LSj)
LSn−LS1

+ (1−ω)× actj/act1
The activity is picked according to Elsayed and Nasr ‘s [43]

heuristic rule HRU2 (see clarification in the text below).

In the HRD rule, the activity with the greatest resource demand is selected from the
decision set. Resource demand is formulated as the product of the duration of an activity j
(dj) with the demand in resource (r) in activity (j) (∑m

r=1 ujr) where m is defined as the total
number of resource types. The HWRU rule was proposed by Ulusoy and Özdamar [44]
and makes use of the sum of the weighted resource demand

[
(1 + ω)×∑m

r=1 (
ujr
ar
)
]

and

the total number of immediate successor activities
(
w×

∣∣Fj
∣∣) where (w) is the weight, (ujr)

is the demand of resource (r) in activity (j), and (ar) is the availability of resource (r). The
activity that displays the largest

[(
ω×

∣∣Fj
∣∣)+ (1 + ω)×∑m

r=1 (
ujr
ar
)
]

is selected from the
decision set.

The HRU1 rule was introduced by Bedworth [45] and makes use of the relationship

∑i∈Πjh ∑m
r=1

(
uir
ar

)
| h = 1, . . . πj. Where πjh is a set of activities on path (h) placed after

activity (j). The sets
(
1, . . . , πj

)
represent all paths placed after activity (j) in the network.

The HRU2 rule was proposed by Elsayed and Nasr [46] and is a modified version of the
HRU1 rule as it makes use of the relationship ∑i∈Πjh ∑m

r=1

(
uirdi

ar

)
| h = 1, . . . πj.

The TIMROS and TIMRES rules use the HRU1 and HRU2 rules, respectively. While
LSn represents the late start time of the last activity, acrj represents the HRU1 value of
activity j, and actj represents activity j’s HRU2 value. In the many studies that have
compared heuristic rules, there is no consensus on how superior a specific rule is to
other rules in different types of problems [41,47–50]. Franco-Duran and de la Garza [51]
investigated the selection of appropriate heuristic rules but only for specific types of
projects. Messelis and de Causmaecker [48] developed a super algorithm that selects an
appropriate algorithm but only for of individual multi-mode resource-constraint project
scheduling cases. Vázquez et al. [49] developed a genetic algorithm-based auto selection
tool to determine the most appropriate priority rule but only for a multi-project resource



Sustainability 2021, 13, 9956 10 of 16

constrained project scheduling problem; they also proposed a tie breaker mechanisms in
case pairs of rules get the same priority. Franco-Duran and de la Garza [52] also used
tie-breakers to enhance heuristic rule performance and compared the heuristic rules on 142
different networks. The identification of appropriate heuristic rules is an open research
question [53].

3. Test Results and Discussion

In this study, 17 heuristic priority rules are compared using both serial and parallel
resource allocation by solving single mode benchmark problems obtained from PSPLIB,
a library that was introduced by Kolisch and Sprecher [7]. A random problem generator
called ProGen is used for generating the problems [54].

A sample network generated by PSPLIB is presented in Figure 6. There are 32 activities
in the network. The first and last activities are dummy activities, these activities do not
need resources and their durations are equal to zero.
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Figure 6. Sample network diagram from benchmark networks.

The benchmark problems in PSPLIB consist of four sets of different size problems.
These 4 problem sets have 480, 480, 480, and 600 schedules that include 30, 60, 90, and 120
activities, respectively. In this study, all these problems are solved using the 17 different
heuristic rules presented in Table 1 using both the serial and parallel resource allocation
procedures.

To expand the testing to reflect varying conditions, six combinations of resource types
and resource supply levels were also considered (Table 2).

Table 2. Test combinations and descriptions.

Combination No. Number of Resource Types Resource Supply Level

1 1 Relaxed supply level
2 1 Minimum supply level
3 4 Relaxed supply level
4 4 Minimum supply level
5 10 Relaxed supply level
6 10 Minimum supply level

• To increase the variety of problem sets, situations where only one type of resource is
used (Combinations 1 and 2 in Table 2), 4 types of resources are used (Combinations 3
and 4 in Table 2), and 10 types of resources are used (Combinations 5 and 6 in Table 2)
are also considered. In PSPLIB’s default case, the scheduled activities use four different
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types of resources. So, looking into the use of fewer or more numerous resource types
widens the research field and helps with the interpretation of the results.

• To reflect the varying conditions in construction projects, two resource supply levels
are defined in the last column of Table 2. The supply in the “minimum supply level”
satisfies an activity’s demand for a specific resource. The supply in the “relaxed supply
level” exceeds demand by a factor of 2.5.

All calculations were programmed in Matlab for all 17 heuristic priority rules that
were presented in Table 1 using both serial and parallel resource allocation procedures,
and the variations expressed in the 6 combinations presented in Table 2. In other words, 12
tests were conducted to test each of the 17 priority rules on each of the 2040 benchmark
problems, a total of 12 × 17 × 2040 = 416,160 tests.

Tables 3 and 4 show the average increases in project duration after RCPS procedures
are implemented using serial and parallel resource allocation procedures, respectively,
for each heuristic rule. The rules that achieve the lowest increase in project duration are
underlined and bolded. The following are observed in Tables 3 and 4.

Table 3. Average increase in project duration after serial resource allocation, and heuristic rule performance rankings (in
parentheses).

Heuristic Rules
1 Resource Type 4 Resource Types 10 Resource Types

Relaxed Supply Limited Supply Relaxed Supply Limited Supply Relaxed Supply Limited Supply

SAD 27.05% (4) 165.09% (4) 48.64% (4) 273.07% (4) 74.42% (4) 345.80% (4)
MIS 19.35% (2) 142.79% (2) 35.94% (3) 241.96% (2) 56.47% (2) 319.51% (2)
MTS 15.31% (2) 135.89% (2) 29.73% (2) 232.42% (2) 48.86% (2) 312.08% (1)

HRPW 21.60% (3) 151.63% (3) 39.20% (3) 253.21% (3) 60.59% (3) 327.77% (3)
HRPW* 14.25% (1) 135.14% (1) 28.19% (2) 231.59% (1) 46.71% (1) 311.13% (1)

EFT 21.41% (3) 145.38% (2) 39.62% (3) 249.37% (3) 61.61% (3) 327.30% (3)
EFTD 20.92% (3) 143.45% (2) 38.22% (3) 245.33% (2) 59.71% (3) 324.26% (3)
LST 13.61% (1) 135.12% (1) 27.50% (1) 232.51% (2) 46.22% (1) 311.99% (1)
LFT 14.05% (1) 135.02% (1) 28.39% (1) 232.47% (2) 47.75% (1) 312.48% (2)
STFS 34.38% (4) 177.17% (4) 59.41% (4) 289.40% (4) 86.69% (4) 356.53% (4)
STFD 19.27% (2) 154.48% (3) 36.58% (2) 257.02% (3) 58.37% (3) 331.37% (3)
HRD 22.31% (3) 155.36% (3) 41.51% (3) 256.40% (3) 64.32% (3) 332.48% (3)

HWRU 21.96% (3) 144.88% (2) 40.62% (3) 244.82% (2) 62.43% (3) 322.53% (2)
HRU1 20.78% (3) 144.90% (2) 36.49% (2) 241.74% (2) 56.93% (2) 320.16% (2)
HRU2 20.61% (3) 146.32% (2) 36.41% (2) 244.25% (2) 56.60% (2) 321.15% (2)

TIMROS 16.97% (2) 140.48% (2) 30.45% (2) 235.68% (2) 49.68% (2) 315.43% (2)
TIMRES 17.32% (2) 142.30% (2) 31.01% (2) 238.82% (2) 50.35% (2) 317.04% (2)

Note: The minimum value in the problem set in each column is underlined.

As expected, when the supply is larger than the demand (“relaxed supply” regardless
of number of “resource types”), the project duration does not suffer from as much time
extension as when resource supply is strictly limited to demand.

• Assuming the same supply level in all cases, projects with a larger variety of resources
suffer more time extension compared to projects that use only few types of resources
(e.g., 10 “resource types” vs. 1 “resource type”, regardless of supply level).

• The increases in project duration vary dramatically for each of the six combinations
regardless of whether one uses serial or parallel resource allocation, but there is only a
slight difference between the performance of the serial and parallel resource allocation
procedures. The increases in project duration are calculated by dividing the delayed
duration by the critical path length, very much like Franco-Duran and de la Garza [51]
did in their study.

• To assess the performance of heuristic rules relative to each other’s, they are grouped
in Figure 7 by their distance to the mean increase of project duration assuming a
normal distribution. The worst performing heuristics fall into the fourth slice that
represents a performance that surpasses the mean increase in project duration (µ) by
more than one standard deviation (+σ), whereas the ones that fall into the first slice
are considered the best performing heuristic rules since the first slice represents a
performance that falls behind the mean increase in project duration (µ) by more than
one standard deviation (-σ).
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• In serial resource allocation (Table 3), while the LST priority rule consistently results in
a desirable outcome, i.e., shorter project durations when ample resources are available,
the HRPW* rule causes the largest time extensions when resources are limited. On the
other hand, in parallel resource allocation (Table 4), the LFT rule stands out as the best
performing priority rule in almost all cases.

Table 4. Average increase in project duration after parallel resource allocation, and heuristic rule performance rankings (in
parentheses).

Heuristic Rules
1 Resource Type 4 Resource Types 10 Resource Types

Relaxed Supply Limited Supply Relaxed Supply Limited Supply Relaxed Supply Limited Supply

SAD 22.69% (3) 154.64% (3) 37.95% (3) 249.08% (3) 58.28% (3) 322.58% (2)
MIS 21.89% (3) 154.78% (3) 37.12% (3) 248.00% (3) 56.72% (2) 321.30% (2)
MTS 15.29% (2) 134.52% (1) 27.79% (2) 223.10% (1) 44.64% (1) 302.20% (1)

HRPW 20.11% (3) 150.37% (3) 35.16% (3) 246.50% (2) 54.40% (2) 320.54% (2)
HRPW* 14.58% (1) 134.07% (1) 26.93% (2) 223.26% (1) 43.54% (1) 302.21% (1)

EFT 19.72% (2) 140.85% (2) 34.60% (2) 234.02% (2) 53.41% (2) 312.45% (2)
EFTD 22.69% (3) 154.64% (3) 37.95% (3) 249.08% (3) 58.28% (3) 322.58% (2)
LST 14.02% (1) 134.43% (1) 26.56% (2) 225.59% (1) 43.40% (1) 304.40% (1)
LFT 14.19% (1) 132.90% (1) 26.28% (2) 221.78% (1) 43.06% (1) 301.15% (1)
STFS 17.58% (2) 150.36% (3) 31.63% (2) 244.00% (2) 50.20% (2) 318.46% (2)
STFD 14.02% (1) 134.43% (1) 26.56% (2) 225.59% (1) 43.40% (1) 304.40% (1)
HRD 21.97% (3) 158.63% (4) 36.87% (3) 250.31% (3) 57.04% (2) 326.48% (3)

HWRU 19.19% (2) 138.17% (2) 32.64% (2) 227.78% (1) 51.06% (2) 305.83% (1)
HRU1 18.52% (2) 139.90% (2) 30.77% (2) 228.52% (1) 48.45% (2) 307.39% (1)
HRU2 18.96% (2) 144.39% (2) 31.37% (2) 233.99% (2) 49.59% (2) 311.80% (1)

TIMROS 16.06% (2) 136.30% (2) 27.91% (2) 225.28% (1) 44.94% (1) 304.64% (1)
TIMRES 17.12% (2) 141.36% (2) 28.95% (2) 230.27% (1) 46.33% (1) 308.63% (1)

Note: The minimum value in the problem set in each column is underlined.
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In serial resource allocation (Table 3), the SAD and STFS rules rank fourth in every
combination of resource type and relaxed/limited supply and the HRPW, EFT, EFTD, STFD,
HRD, HWRU, HRU1, and HRU2 rules rank third at least once. These rules consistently
failed to perform better than the other rules in serial resource allocation as they resulted in
longer extensions of the project duration. On the other hand, the MTS, HRPW*, LST, LFT,
TIMROS, and TIMRES rules consistently ranked first or second.

In parallel resource allocation (Table 4), only the HRD rule is ranked fourth, and the
SAD, MIS, HRPW, EFTD, and STFS rules are ranked third at least once. In parallel resource
allocation, these rules are considered as low performance rules, whereas the MTS, HRPW*,
EFT, LST, LFT, STFD, HWRU, HRU1, HRU2, TIMROS, and TIMRES rules ranked first and
second.

When one considers both serial and parallel resource allocation combined, Tables 3 and 4
indicate that the MTS, HRPW*, LST, LFT, TIMROS, and TIMRES rules consistently rank
first and second (i.e., they resulted in shorter extensions of the project duration) and can
be considered as the best performing rules regardless of the resource allocation procedure
used.
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Table 5 shows the average increases in project duration by size of network after
RCPS procedures are implemented using serial and parallel resource allocation under
the six combinations of circumstances defined in Table 2. After comparing the serial and
parallel resource allocation procedures, the better results (i.e., the lowest increases in project
duration) are underlined and bolded in Table 5.

Table 5. Average increases in project duration after RCPS procedures.

Combinations as of
Table 2

30-Activity Networks
(480 Cases)

60-Activity Networks
(480 Cases)

90-Activity Networks
(480 Cases)

120-Activity Networks
(600 Cases)

Number of
Resource

Types

Resource
Supply
Levels

Serial
Allocation

Parallel
Allocation

Serial
Allocation

Parallel
Allocation

Serial
Allocation

Parallel
Allocation

Serial
Allocation

Parallel
Allocation

1 resource
type

Relaxed
supply 7.02% 7.15% 7.46% 7.89% 7.61% 7.79% 24.66% 25.35%

Limited
supply 57.34% 55.17% 103.76% 101.73% 140.54% 138.4% 184.17% 182.17%

4 resource
types

Relaxed
supply 19.18% 18.12% 16.88% 16.71% 15.88% 15.61% 46.17% 43.50%
Limited
supply 117.03% 112.25% 185.19% 177.04% 241.40% 230.99% 303.23% 290.64%

10 resource
types

Relaxed
supply 37.33% 35.05% 30.33% 29.05% 27.76% 26.56% 73.37% 67.17%
Limited
supply 158.46% 155.08% 249.93% 242.01% 325.45% 314.88% 405.31% 391.59%

Note: The lowest increases in project duration are underlined and bolded.

As seen in Table 5, parallel resource allocation performs better than serial resource
allocation in most of the cases, the only exception occurring in the case of one resource type
with a relaxed supply level. This finding can be interpreted to mean that in simple cases
where there is only one resource that is available in abundance relative to demand, it is quite
sufficient to perform simple serial resource allocation rather than the more complex parallel
resource allocation. It can also be inferred from this finding that parallel resource allocation
is slightly more advantageous than serial resource allocation in situations that involve
multiple resource types, a situation that occurs quite often in construction projects. The
results do not agree with Kim and Ellis Jr.’s [55] study that used an elitist genetic algorithm
to compare these resource allocation techniques and that found that serial allocation
performed better than parallel allocation. In that article it is said that the search space of
serial resource allocation is larger than the search space of parallel resource allocation. As
in Kolisch [24]’s study, serial resource allocation outperforms parallel resource allocation in
case of multi-pass techniques. However, in the single-pass case, parallel resource allocation
performs better than serial resource allocation.

4. Conclusions

The main advantage of heuristic methods in solving RCPS problems is that they
operate with high computational speed because they use simple priority rules. Using the
best-performing priority rules enhances the advantages of heuristic RCPS. Most scheduling
software packages use heuristic priority rules. In this study, the most common heuristic
priority rules are tested under a variety of conditions defined by network size, resource
allocation procedure, number of types of resources, and resource supply levels.

It is not easy to determine by surveying the literature which priority rule exhibits
the best performance in solving the RCPS problem. While some researchers consider few
real projects, others compare few (but not all) priority rules, and others use only one size
(often a small size) network to compare the rules. To fill this gap, 17 priority rules were
investigated in this study in a total of 2040 projects, i.e., all the projects in PSPLIB organized
in four sets of work schedules of 30, 60, 90, and 120 activities, using different types of
resources and different resource supply levels.

Overall, it was found that the MTS, HRPW*, LST, LFT, TIMROS, and TIMRES rules
consistently rank first and second as they resulted in shorter extensions of the project
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duration regardless of the resource allocation procedure used. It was also found that in
most cases, parallel resource allocation performs better than serial resource allocation, and
that the “minimum late finish” rule (LFT) performs better than the other priority rules in
parallel resource allocation. In serial resource allocation, the “minimum late start time”
(LST) and the “highest rank of positional weight 2” (HRPW*) rules share the first rank
depending on the combination of resource supply levels and number of resource types. All
three rules are simple and tend to demonstrate that simple heuristic priority rules perform
better (i.e., result in shorter extensions of the project duration) than complicated rules.

Even though the study presents a thorough comparison of priority rules used in
heuristic methods, it also has limitations. Multi-mode and multi-project applications, the
impact of project type and project scope need to be investigated in future research. In
addition, 1, 4, and 10 resource types and minimum and relaxed supply levels are considered
in Table 2. The use of more sophisticated measures such as the Resource Factor (RF) defined
by Pascoe [56] and the Resource Strength (RS) proposed by Kolisch [43] can be explored in
future research.
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Table of Acronyms

CPM Critical Path Method
RCPS Resource Constrained Project Scheduling
PSPLIB Project Scheduling Problem Library
WCS Worst Case Slack
LFT Late Finish Time
LST Late Start Time
EFT Early Finish Time
SAD Shortest Activity Duration
MIS Maximum Immediate Successors
MTS Maximum Total Successors
HRPW Highest Rank Positional Weight
EFT Early Finish Time
EFTD Early Start Time Dynamical
LST Late Start Time
LFT Late Finish Time
STFS Smallest Static Total Float
STFD Smallest Dynamic Total Float
HRD Highest Resource Demand
HWRU Highest Weight Resource Utilization
HRU Highest Resource Utilization
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