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Abstract: The outbreak of novel coronavirus disease 2019 (COVID-19) caused many consequences in
almost all aspects of our lives. The pandemic dramatically changes people’s behavior in urban areas
and transportation systems. Many studies have attempted to analyze spatial behavior and to present
analysis data visually in the process of spreading COVID-19 and provided limited temporal and
geographical perspectives. In this article, the behavioral changes in urban areas and transportation
systems were analyzed throughout the U.S.A. while the COVID-19 spread over 2020. Specifically,
assuming the characteristics are not repetitive over time, temporal phases were proposed where
spikes or surges of confirmed cases are noticed. The interdependencies between population, mobility,
and additional behavioral data were explored at the county level by adopting the machine learning
approaches. As a result, interdependencies with the COVID-19 cases were identified differently by
phase. It appeared to have a solid relationship with population size at all phases. Furthermore, it
revealed racial characteristics, residential types, and vehicle mile traveled ratio in the urban and
rural areas had a relationship with confirmed cases with different importance by phase. Although
other short-term analyses were also conducted in terms of the COVID-19, this article is considered
more legitimate as it provides dynamic relationships of urban elements by Phase at the county level.
Moreover, it is expected to be encouraging and beneficial in terms of phase-driven transportation
policy preparedness against a possible forthcoming pandemic crisis.

Keywords: post-COVID-19 planning; phase analysis; interdependency; behavioral model; XGBoost;
machine learning

1. Introduction

The outbreak of novel coronavirus disease 2019 (COVID-19) was identified in Decem-
ber 2019 and declared as a pandemic in March 2020 by the World Health Organization
after attributing more than a hundred thousand cases and over four thousand deaths
globally [1]. Based on previous studies showing that limiting people’s movement and
interaction behavior is significant to prevent the spread of infectious diseases during the
pandemic period [2–5], countries have implemented various types of social distancing poli-
cies that suit their circumstances. In addition, efforts have been made to control the spread
of the COVID-19 through various forms of control and prevention recommendations de-
pending on the socio-economic situation and cultural context. Effective policies, including
teleworking, reduced traffic, social distancing, and international traveling restriction, were
applied to alleviate the spread of the pandemic [6,7]. Still, they also affected people’s health
and well-being [8] to make the situations complex.

In the United States of America (U.S.A.), since March 2020, state governments have
imposed quarantine to “stay-at-home” for months and regulated gatherings including but
not limited to schools, workplaces, businesses, services, etc., to minimize the dispersion
of the pandemic. Trips were only allowed in case of essentials, and this led people to
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increased chances of home-based work and reduced chances of contact. Despite all-around
measurements by the national unit, the number of cases and deaths in the U.S.A. had
increased up to more than 20 million and 300,000, respectively, by December 2020 [4].
The COVID-19 pandemic lasted more than a year hardly yet have been experienced and
has had a significant impact on urban elements and associated user behaviors, namely
populations, activities, occupations, and locality. Changes in behavior and urban elements
were observed in various forms over 2020, but those were not periodically repeated sequels
but rather a unique situational consequence from a pandemic outbreak. To make matters
worse, the surge or spikes in irregular patterns has made it difficult for us to cope, and our
behavior pattern also spread with irregular shapes and directions. Eventually, the causes
and consequences of unpredictable behavior patterns of residents will make it challenging
to build our community more sustainable. To respond to the needs of predictable behavioral
changes and contribute to sustainable community development, this work aims to present
an analytical framework that responds to the ever-changing COVID-19 confirmed cases.

The data sets used in this article were organized in a multi-level format (a.k.a., panel
data) to better capture unobserved heterogeneity across regions. To deal with such longi-
tudinal data, models incorporating mixed effects have been used in many studies. These
models can account for correlated phenomena by single regions and control detrimental
effects [9]. Although parametric modeling approaches have been widely adopted in many
studies, it is notoriously difficult to adjust the configuration of a model while taking into
account the underlying relationships among features (i.e., variables). As an alternative, a
boosting method, ML algorithms, can be applied to address uncertainty issues in the mod-
eling of behaviors. In particular, additive and rule-based learning features for a boosting
algorithm have an inherent ability to handle multi-level data sets [10,11]. To take advantage
of algorithmic features, we used eXtreme Gradient Boosting (XGBoost) to investigate the
changes in patterns of urban elements and associate policy impacts. In addition, inter-
pretable statistics can provide useful insights into urban planning, policymaking, and data
collection efforts. Thus, this article contributes to the progress of ML in the application
of urban contexts and to the body of literature aiming to characterize the post-pandemic
urban planning strategies—a.k.a., the era of new normal.

This article, therefore, aims to provide useful insights into designing multi-phase
strategies/policies to minimize unexpected impacts at the community and national lev-
els by comparing model results for the periodic phenomenon of COVID-19. In order to
incorporate the characteristics of each community and to examine the pattern changes of
urban elements included, we collected and analyzed the relationship of population and
socioeconomic indicators, mobility, and consumption behaviors in the urban context with
the COVID-19 confirmed cases across the U.S.A. throughout 2020. In particular, we enthu-
siastically targeted to identify changes in patterns of urban elements such as demographics,
mobility, and living consumption behaviors at the county-level communities. Furthermore,
we investigated the interrelationships between the urban elements. Throughout these find-
ings, this article provides valuable suggestions to develop a more predictable framework
for a sustainable community that can prepare for possible pandemics in the future.

2. Literature Review

Studies on the phenomenon of pandemics did not first begin with the spread of
COVID-19 since we have already experienced H1N1 pandemics called swine flu in 2009,
with more than 280,000 deaths worldwide in the first 12 months [12]. Through research
from this period, Hosseini et al. [13] and Leggat et al. [14] confirmed the seriousness of the
spread of transmission through travel or movement, and Goodwin et al. [15] confirmed that
many people had mentally difficult experiences during the pandemic period. However,
there were few in-depth and detailed studies of behavior analysis compared to COVID-19.

Several studies have already been conducted on behavioral change analysis as the
COVID-19 cases soar, and the findings have been published with its contributions from vari-
ous scopes. In early 2020, due to relatively limited data availability, studies were conducted
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to find the relationship between the number of confirmed COVID-19 cases and specific
activity patterns for limited temporal and geographical scales. Li et al. [16] attempted
to visualize the spatial distribution of the correlation between the new COVID-19 cases
and the mobility change of six activities in the U.S. counties using Google’s Community
Mobility Report, and it was confirmed that staying at home was associated with a slowing
growth rate of COVID-19. Population size and density were also confirmed to have a
significant relationship with the COVID-19 spread [17], but these characteristics weakened
its significance when the geographical scale broadens from county to state [18]. Hohl
et al. [19] created a web application that can monitor the COVID-19 cases updating daily
based on county population, and they visually specified the existence of differences by
clusters. An additional finding was that the higher the age group was, the more significant
relationship with COVID-19 [20,21], and it became more significant in the presence of
disability, race, occupation, and urban area [20]. The wage level and employment status
also showed a significant relationship with COVID-19 [22].

As the pandemic spread further, recommendations for maintaining social distancing
through local governments and federal agencies were proposed, and consequential behav-
ioral changes were investigated with survey data. Li et al. [23] checked the frequency of
visits of point of interest (POI—restaurants, museums, and schools) in sixteen cities in the
U.S.A. and investigated the relationship with the COVID-19. Observations were that the
lower the frequency of POI visits, the more helpful it for preventing the spread. Brown and
Ravallion [24] confirmed that social distance was correlated with county characteristics.
In counties with higher income levels, the social distance was well maintained, and the
infection rate was lower. A higher infection rate was observed in counties with lower
income levels, which is related to racial composition.

The spread of COVID-19 continued, and federal and local governments were man-
dated to maintain social distancing that resulted in changes in travel patterns. Brough
et al. [25] found that the lower the level of education and income, the slighter the decrease
in travel. Fatmi [26] found more in-home activities and less daily out-of-home travel and
long-distance travel with surveys in the Kelowna region of British Columbia, Canada.
Older adult groups are tied with frequent and increased recreational/social activities and a
decrease in young adults. For in-home activities, the higher the income level, the longer
the teleworking hours, and the more time was spent on leisure or other activities in the
lower-income level. Hotle et al. [27] conducted a travel-related survey of 2168 people in
the U.S.A. The result showed decreased travels in locations that were perceived as having
a high risk of exposure, but males are less likely to alter their travel patterns. With the
relationship of housing type, Browne et al. [28] surveyed behavior by resident types during
COVID-19 and found decreased physical activity and increased sedentary behavior for
residents in multi-unit buildings compared to those in detached houses. Reduced traffic
demand and volume were also highlighted by Du et al. [29,30].

Behavioral pattern changes before and after COVID-19 has shown, and it presented
the various aspect of changing elements by Abdullah et al. [26], and Hasan et al. tried to
find significant variables affecting COVID-19 spread [31]. Additionally, new travel patterns
were found when commuting conditions had changed [32,33].

As various data engaged with COVID-19 were collected, visual expressions of spatial
changes became diversified, and schematization, including behavioral analysis, became
possible. Gao et al. [34] developed a web application that shows data by county by updating
mobility statistics such as travel distance and stay-at-home time. Pan et al. [35] estimated
and visualized Social Distancing Index, including trip distance by county, using mobile
location data on the website along with COVID-19 related data. The scope of the research
topic continues to expand by travel restrictions and pattern changes, transit analysis, water,
and food usage patterns [36–42].

Many studies attempted to analyze spatial behavior and present analysis data visually
in the middle of the COVID-19 spread and provided limited temporal and geographical
perspectives [43,44]. Therefore, to fill in the scant analysis of the pattern changes and
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interrelationships of urban elements throughout the country due to pandemics, this study
aimed to examine the interdependency among demographics, mobility, additional behav-
ioral changes, and COVID-19 with a wider spectrum of temporal phases and geographical
scales across 2020 for all counties in the U.S.A.

3. Material and Method

Analytical data was manipulated in three major processes to reflect the temporal and
geographical diversity of data, including demographics, mobility, and additional behav-
ioral changes. The process of variable selection, data segregation, and data transformation
at each process was introduced in subsections, respectively.

In terms of method, machine-based nonparametric statistical learning (a.k.a., machine
learning, ML) techniques have showed relatively high modeling performance to conduct a
wide variety of modeling tasks compared to parametric approaches [45–47]. It is mainly
due to the fact that the family of ML techniques is algorithmically based on fewer pre-
determined assumptions than parametric linear models thanks to their ability to capture
complex, nonlinear, and hidden patterns in the data. With the significant advancement
in computation ability, the capability of ML and associated data science techniques seem
virtually limitless, and they offer novel opportunities to conduct urban analytics. In this
article, Xgboost, a boosting aggregation of a tree-based model, is adopted to analyze urban
behavior dynamics resulted from the COVID-19 cases while alleviating some weaknesses
of single tree regression.

3.1. Variable Selection

Specific datasets of regional demographics, mobility, behavioral changes, and COVID-19
cases were obtained from various sources by their characteristics represented during the pan-
demic season. To maintain consistent temporal and geographical scales in this research,
data sources were collected for the whole year of 2020 from 1st January to 31st December
and targeted 3142 U.S. counties, including Alaska and Hawaii. Since daily record data
are not realistic for its availability and model structure, data sources were re-structured
and matched to a monthly temporal scale. Geographical detail was specified at the county
level as much as possible, but some sources were collected at the state level if county-level
attributes were not available.

Regional demographics were sourced from the 2019 American Community Survey
(ACS) 5-year estimates publicly announced by the United States Census Bureau in 2020.
This source is the most recent and reliable for less populated areas and small population
groups over 2019 ACS 1-year Estimates [48]. As early research with COVID-19 found that
racial groups showed significant behavioral differences, having samples with less bias is
believed to be more realistic and suitable to analyze the relationship as much as possible.
Selected attributes from the original source include populations, the number of household,
and the household median ages with raw values, and employed population, the population
age 18 or under, the population age 65 or over, four race groups, three income groups, four
vehicle ownership groups, and two household types proportionally to the total number of
population and household as it represents characteristics of each county.

In terms of mobility characteristics, two different sources were selected. The first
one is monitoring records of travel in millions of vehicle miles in urban and rural areas,
which is monthly publicized by the U.S. Department of Transportation (DOT) Federal
Highway Administration (FHWA). However, it has a geographical scale limitation set to
the state level. As a supplemental detail of mobility behavior, a mobility index indicating
normalized distance index divided by distance traveled during the previous period by
county was adopted. This index is suggested and shared via GitHub by ‘Descartes Labs’
to estimate people’s mobility characteristics during COVID-19 spread and would be a
good source depicting behavior by time at the county level [49]. Both data were to be
utilized to simultaneously consider the mobility characteristics of urban and rural and of
county-level geographics.



Sustainability 2021, 13, 9910 5 of 21

Additionally, people’s behavior, including monthly retail trade statistics and gasoline
prices, were considered for additional attributes [50]. Monthly retail trade data was
obtained from the U.S. Census Monthly retail trade information to reflect the living and
travel behavior from the consumption patterns, and it includes monetary sales amount of
grocery, health and personal care, sporting/hobby/book, and gas items by state. Monthly
gas price was collected from the U.S. Energy Information Administration, and average
gasoline prices by state or groups of states were selected to see how travelers are sensitive
to the gasoline price [51]. Despite its source’s geographical limitation, it is judged to be
reasonable to add in this research analysis based on the early research findings.

At last, monthly and county-level statistics of COVID-19 cases data is sourced from
The New York Times, based on reports from state and local health agencies, and they
shared and updated COVID-19 cases via GitHub [52]. Through data collection efforts, the
combined datasets, including demographic, mobility, additional behavior changes, and
COVID-19 cases, were secured as listed in Table 1. with temporal and geographical scales
by variables, and it is use to try to find the interdependencies lying between them in the
surge of pandemic situations.

Table 1. Variable description and scale scope.

Variables Description Temporal Scale Geographical Scale

Geographic & temporal
county County name (3142 counties) Month County
state State name (51 states) Month State
date Month of 2020 Month County

Demographic
pop Total population Year County
hh Number of households Year County
hh_median Household median age Year County
under_18_ratio Population ratio of age 18 or under Year County
over_65_ratio Population ratio of age 65 or over Year County
white_ratio Race White population ratio Year County
black_native_ratio Race Black population ratio Year County
asian_ratio Race Asian population ratio Year County
hispanic_ratio Race Hispanic population ratio Year County
200k_under_ratio Income level (<200 K) ratio Year County
200k_500k_ratio Income level (200 K–500K ) ratio Year County
500k_over_ratio Income level (>500 K) ratio Year County
veh_0_ratio Number of vehicle (0 availability) ratio Year County
veh_1_ratio Number of vehicle (1 availability) ratio Year County
veh_2_ratio Number of vehicle (2 availability) ratio Year County
veh_3_more_ratio Number of vehicle (3 or more availability) ratio Year County
h_single_ratio Housing type—single-detached house ratio Year County
h_20_more_ratio Housing type—20+ multi-complex house ratio Year County
emp_tot_ratio Employed population ratio Year County

Mobility

vmt_rural_ratio Monthly Vehicle Mile Travel ratio in rural
2020-on-2019 Month State

vmt_urban_ratio Monthly Vehicle Mile Travel ratio in urban
2020-on-2019 Month State

mobility_index
Monthly Mobility index (traveled distance
percentage compared to an average of Jan & Feb
2020)

Month County
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Table 1. Cont.

Variables Description Temporal Scale Geographical Scale

Life behavior

gas_ratio Monthly average gasoline price ratio
2020-on-2019 Month Multi-State

grocery_ratio Monthly grocery sales ratio 2020-on-2019 Month National

health_personal_care_ratio Monthly health and personal care items sales
ratio 2020-on-2019 Month National

gas_ratio Monthly gasoline sales ratio 2020-on-2019 Month National

sporting_ book_ratio Monthly sporting goods and books sales ratio
2020-on-2019 Month National

Dependent Variable
cases Monthly COVID-19 new cases Month County

3.2. Data Segregation by the Temporal Phases

Prior to the full-fledged analysis, the status of COVID-19 during the year 2020 was
reviewed, and it was confirmed, as shown in Figure 1 [41]. This plot shows the distribution
of the average number of confirmed cases of COVID-19 per week, targeting the period
from 1st March to 31st December 2020. What is interesting is that over time, the increase
in the number of confirmed cases of COVID-19 has not taken a linear form, and the
increase or decrease in the number of confirmed cases has been different. Among the
different patterns of confirmed cases, the periods of April, July, and December, which
are shaded, are identified as periods of a noticeable increase in the number of cases
compared to the previous month of each phase. April was the beginning of the spread
of COVID-19, and it appears to have increased as responses and measures have not been
settled in all communities [21]. Spikes in July were due to the summer holiday season, with
outdoor activities and increased leisure activities in residential areas due to quarantine [53].
The COVID-19 surge in December was caused by many exchanges over Thanksgiving,
Christmas, and year-end holidays [54]. Therefore, this study was conducted for 2020,
but it was reasonable to analyze the three-monthly data separately in April, July, and
December without combining them in a single analysis pool, comparing the results of
the three analyses to evaluate the differences in population distribution, mobility, and
additional behavioral changes. For reference, each period was referred to as phase, and
April was designated phase 1, July as phase 2, and December as phase 3.

3.3. Data Preprocessing: Log-Transformation of the Confirmed Cases of COVID-19

The distribution pattern of the number of confirmed cases of COVID-19, a dependent
variable, has also been observed with interest. As the number of confirmed cases has not
been evenly distributed across all counties—a certain number of confirmed cases have
been found in specific counties—it is difficult to achieve high classification accuracy if the
collected number of the COVID-19 confirmed cases is used as it is in the analysis. The
distribution of probability distribution function (PDF) and cumulative distribution function
(CDF) in the three phases presented to the left column of Figure 2 shows that the number
of observations is concentrated in the interval of particular values.
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Although ML models (e.g., XGboost) are nonlinear and nonparametric models that
are not susceptible to the predetermined assumption—i.e., constant variances in the error
terms, it can be possible to suffer from any heteroscedasticity issues during the modeling
process. In addition, the distribution of the COVID-19 cases in the shape of categorical type
may ignore counties where mere cases are observed, and this would lead to biased model
estimation. To address these possible detrimental issues, the raw distribution of COVID-19
cases was log-transformed, and the results were shown in Figure 2. As a result, it is found
that the distribution of PDF and CDF of the number of confirmed cases have a clearer linear
form of distribution when the log-transformation is processed. This equivocally distributed
observations of the dependent variable over the entire interval. It is meaningful and allows
us to come up with more precise and predictive models. Therefore, in this work, we hope to
note that the model’s dependent variable, the COVID-19 cases, was log-transformed in the
subsequent analysis process. As this study adopts boosting approach for the data analysis,
the independent variable values are applicable as they are for further analysis. However, to
enhance the visual understanding of the analysis results, population and household among
the independent variables were used for analysis after processing log transformation.

3.4. Extreme Gradient Boosting: Boosted Tree-Based Modeling Approaches

The XGBoost used in this study is a boost-based ensemble model, and its algorithmic
process can be represented as a flowchart in Figure 3 from data preparation to model results.
This section rather focuses on method highlighting detailed descriptions of structural
formulas and methods for analysis separately.
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The XGBoost model is a rule-based and nonparametric estimation technique based
on decision tree models to find patterns of data and estimate the shape of data structures.
The algorithm presented as a way to overcome the limitations of lack of consistency and
overfitting of existing decision tree techniques is a model that applies ensemble learning
techniques. It also has the advantage of being relatively free from unobserved heterogeneity
problems between individuals and groups that can arise from multi-level data. These
ensemble algorithms have bagging and boosting techniques. Bagging is an algorithm that
estimates multiple decision trees in the process of bootstrapping data and sums them up
to present results and boosting has an algorithmic structure that determines optimized
decision trees by sequentially updating the residuals of the decision trees. The boosting
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algorithm we want to utilize in this work establishes a rule to minimize the residual error
between observations and predictions, which can be expressed as follows Equation (1),
with generic expressions of Equations (2) and (3).

f̂ (x) = argmin f (x)L(y, f (x))) = argmin f (x)Ex[EyL[y, f (x)]|x] (1)

f̂ (x) = f
(
x, θ̂
)

(2)

θ̂(x) = argminθEx
[
EyL[y, f (x, θ]|x] (3)

However, because Equation (3) is generally not possible with parameter estimation,
the following iterative optimization processes can be driven:

Step 1: mean ( f̂ (x)), residual (ri), dependent variable (yi)—initial value set-up

f̂ (x) = 0, ri = yi

Step 2: calculate residuals for each observation
Step 3: apply observed data (x, y) to a decision tree f̂ b (fitting)
Step 4: add a reduced version of the new decision tree and update the dependent
variable, f̂

f̂ (x)← f̂ (x) + λ f̂ b(x)

Step 5: residual update

ri ← ri − λ f̂ b(xi)

Finally, a generic boosting model is derived from the sum of sequential decision trees
estimating y for a given x, such as Equation (4).

fB(x) =
N

∑
b=1

λ f̂ b(x) (4)

3.5. Model-Agnostic Interpretation of ML Models

As mentioned above, ML models tend to show high modeling performance with
the most data sets thanks to their ability to capture complex and unobserved patterns.
Nonetheless, it is generally less interpretable than other modeling approaches due to their
complex sub-structures and the reliance of repetitive computation. To better understand
behavioral characteristics in the realm of urban studies, it is imperative to interpret the
inner processes of a learned model to explain the results—e.g., behaviors in cities.

In predictive modeling, the impact of independent variables on dependent variables
is different from one another. To gain useful information about the relative impacts of
each independent variable, “Variable Importance (VI)” can be adopted. Specifically, the
larger the error in the prediction value as the independent variable changes, the higher the
importance of the corresponding independent variable, which is described as the relative
variable importance (VI, or Feature Importance, FI.) This implies that it is an important
variable in the classification phase of the decision tree model and plays a large role in the
interpretation process of the results of the analysis through machine learning techniques.
Relative variable importance is determined by comparing all independent variables and
ranking of variables contributing to the reduction of the overall variance. Since the criterion
for mean square error (MSE) is applied to determine the decision tree, it is the reduction of
sum of squared error (SSE) for each independent variable, which aggregates the reduction
of SSE for the independent variable, and the residual sum (SSR), a molecule of SSE weighted
in statistics, is defined as follows Equation (5).

SSR = ∑C∈≤aves(T) ∑i∈c(yi −mc)
2 (5)
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Changes in SSR between variables indicate variable importance at a particular classifi-
cation stage, which can be measured by the following Equations (6) and (7).

VId
(
xj
)
= ∆d = SSRd −∑

i
SSRd

i (6)

VI
(
xj
)
=

∑D
d=1 VId

(
xj
)

nnodes
(7)

In general, the relative variable importance is presented as an indicator between 0
and 1 and is denoted as 0 in the absence of contributions. Relative variable importance
refers to the influence of independent variables that affect dependent variables, meaning
that high-importance variables make significant contributions to the dependent variable.
Additionally, the marginal effects of independent variables allow further interpretation
of the model. The mean marginal effect describes the relationship between independent
variables and predictive responses, which means the marginal effect of selective properties
on the predicted response of the learned model [55]. Therefore, it is visualized via partial
dependence (PD) plot to provide causal interpretation by measuring the average marginal
rate of change for different values of independent variables, which can be a significant
basis for predicting future effects. The average marginal change of an independent variable
is measured by Equation (8).

f̂xs(xs) = Exs

[
f̂ (xs, xc)

]
(8)

where xs is the selected independent variable, and xc is the set of independent variables
except, xs.

All variables are used for the learning model, f̂ , and the average marginal rate of
change of xs for the predicted value y can be obtained by marginalizing the predictions
for other independent variables, such as Equation (9). Thus, the average marginal rate of
change becomes an indicator of the effect of one unit change of an independent variable on
the dependent variable.

f̂xs(xs) =
∫ f̂

(xs, xc)dP(xc) (9)

To visually represent the relationships between these variables, an approach that uses
the Shapley value to describe the resulting values of machine learning-based models is
introduced under the name SHAP (SHapley Additive exPlanations) [56]. Based on game
theory, Shapley value constructs a combination of different characteristics to know the im-
portance of a particular variable, predicts the contribution of a variable through variations
in the difference between its prediction and average prediction. If the contribution of the
chosen independent variable, xs is called φs and the number of observations in the data is
m, Shapley value can be obtained through expression (10), and all the contributions of the
variables can be summarized as shown in expression (11).

φm
s = f̂ (xm

+s)− f̂ (xm
−s) (10)

φs(x) =
1
M

M

∑
m=1

φm
s (11)

Relative variable importance is represented by the absolute value mean of the variable-
specific Shapely value in the entire data to find the global importance of the model and is
equal to expression (12).

Is =
n

∑
i=1

∣∣∣φ(i)
s

∣∣∣ (12)

The relative variable importance and variable properties can be combined to represent
each variable’s contribution, with observations and Shapely value observations sorted by
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variable importance, respectively, in different colors and values on the x-axis. In addition,
the average marginal change can be determined by plotting the observed value on the x-axis
on the y-axis for each variable, thereby determining the relationship between that variable
and the predicted value of the model. Thus, this work seeks to analyze the behavior and
interrelationship of urban residents and elements by identifying the importance ranking
of independent variables for each model through visual analysis of the relative variable
importance, partial dependence, and interaction plots.

4. Model Estimation

The relationships between independent variables and the confirmed COVID-19 cases
were examined through the XGBoost model. Since the XGBoost model focuses on classifica-
tion, it is appropriate to find the specific independent variable and its level. The dependent
variable can be classified most efficiently and accurately, rather than predicting parameters
by finding the relationship between the independent and dependent variables. Therefore,
we analyzed the data prepared earlier and presented key variables and variable-specific
levels in predicting and classifying the increase in new confirmed cases of COVID-19 for
each phase. The accuracy of the predicted model for each phase was analyzed before
identifying the characteristics of the key variables for each phase.

The number of the data record for each phase is 3142, the same as the county previously
introduced in Table 1, of which 2095 records, 2/3 of the total dataset, were randomly
selected to train, and 1047 records corresponding to the remaining 1/3 were tested to
compare the prediction accuracy of the model.

To determine the accuracy of the XGBoost model, we compared the observations and
predictions used in the test on the graph to determine the performance plots representing
them, as shown in Figure 4. It is found that the overall shape of the scattered data is
distributed according to the linear form of the right-up side, indicating that the distributions
of the observations (x-axis) and the predictions (y-axis) have similar shapes. This means
that the prediction of the number of new confirmed COVID-19 cases predicted by phase
is correct. In addition, as the phase progresses, the variance of the data decreases, and
it can be seen that it is clustered close to the trend of the alignment. This means that
the relationship between observed and predicted values is more accurate. Moreover, the
results of each phase’s model were identified and compared with the following Table 2
by adopting the metrics including residual mean squared error (RMSE), R-squared, and
explained variance score. The shape of each phase-specific prediction model previously
observed through Figure 4 can be quantitatively identified in Table 2.

As phase progresses, RMSE, or model spread, becomes less and less, indicating that
phase 3 is more than twice as unbiased as phase 1. Furthermore, it has been confirmed
that the R-squared value and explained variance score also have higher accuracy and
improved predictive power as the phase progresses. The first thing that can be confirmed
through this is that the number of newly confirmed COVID-19 cases from selected data
can be predicted with more than 80% accuracy. It is very encouraging that the number of
confirmed cases in each phase is predictable at a high level through demographic, mobility,
and data indicating consumption behavior collected by the county. However, the degree
of dispersion seems to be relatively high because the number of confirmed cases was just
beginning to increase in April, the early days of COVID-19. The prediction of models
with low variance and high accuracy as phase progresses is believed to have made it more
efficient to classify the increasing number of confirmed cases by utilizing the variables
used. The interrelationship between the variables affecting each phase step is discussed in
the next chapter.
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Table 2. Model result statistics.

Phase 1 Phase 2 Phase 3

RMSE 0.93 0.68 0.45

R-Squared 0.81 0.88 0.92

Explained variance score 0.81 0.88 0.92

5. Model Results

For the predicted models by phase, we prepared a variable importance (VI) plot using
SHAP value to look at the importance and orientation of variables classifying to predict the
number of new confirmed COVID-19 cases and compared it with Figure 5. The variables
are listed in order of importance from above, and the more important they are to the right,
and the closer red they are, the higher the value of the variable.
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By interpreting phase-specific VI plots according to this rule, several considerations
are possible. The overall comparison shows that VI is predicted differently by phase. What
we can see from this is that each phase witnessed by a surge in new confirmed cases has
different urban factors, supporting that the temporal segmentation of this study design is
reasonable. The role of unconfirmable variables when the annual data are all analyzed into
a single model was identified through the temporal segmentation, and the relationship
between the more detailed urban factors was identified. The population has been shown to
be the most important variable in model prediction in all phases, which is judged to be a
reasonable result considering the highly contagious characteristics even when non-contact
with COVID-19. In phase 1 and phase 2, Black Native (black_native_ratio) and Hispanic
(Hispanic_ratio) to county population ratios have significant positive effects. As discussed
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in the reference chapter, this study confirms that racial differences are related to the number
of confirmed cases of COVID-19. In addition, large numbers of households (hh) are also found
to be key in phase 1, confirming rapid spread in populated areas during the early stages of
COVID-19 spread. It also shows that the high VMT ratio in the rural area (vmt_rural_ratio)
in phase 1 and low VMT ratio in the urban area (vmt_urban_ratio) in phase 2 preferentially
affect the model. The significance of the VMT ratio in a rural area in phase 1 shows that
more confirmed cases occurred at places with higher VMT compared to 2019 due to poor
hygiene education for residents or government quarantine policies in the rural area. The
key and negative relationship of VMT ratio in urban areas in phase 2 can be interpreted as
lower VMT in urban areas compared to 2019 due to additional and severe confirmed cases.
Interestingly, in phase 3, a household was expected to be the second significant variable
rather than the characteristics of race and mobility, reflecting the spread of families and
relatives many times.

As the phase progressed, variations in the order of VI were identified, and different
urban factors were associated with the spread of COVID-19. For a more detailed analysis by
phase, we computed and plotted a particle dependence that shows the degree of influence
the variables have on the number of new confirmed cases COVID-19, the dependent
variable. Considering the page limitations, we plot the top four variables of VI. Then,
an interaction plot was prepared to check the interconnection between each variable.
However, since population variables were predicted to be the most important, we looked
at the relationship between population and the other three variables. By doing so, we can
see how the distributions of the population and the next-highest variables are interrelated.

5.1. Phase 1

In phase 1, population (pop), ratios of Black Native (black_native_ratio) and rural VMT
(vmt_rural_ratio), and Household (hh) were expected to be important. These variables can be
summarized in Figure 6 by representing a partition plot that shows the degree of influence
on the number of new cases of COVID-19 by variable and an interaction plot that indicates
the interrelationship of variables. First of all, in the partial dependence presented on the
left, it can be observed that in population, if more than 10,000 people—the value shown on
the axis is log-transformed—the number of new confirmed cases is starting to increase. The
relationship with the Black Native ratio can be seen to increase continuously. Furthermore,
the VMT in the rural area shows a significant increase in the number of confirmed cases if it
is more than 70% compared to 2019. Looking at the relationship between variables based
on population, we can see that Black Native has a weak positive relationship in population
size, and rural VMT is generally evenly distributed but has a weak negative relationship
and a perfect positive relationship with household.

5.2. Phase 2

In phase 2, population (pop), the ratio of VMT in an urban area (VMT_urban_ratio), the
ratio of Black Native (black_native_ratio), and the ratio of detached single housing unit (h_single_ratio)
were expected to be important, and dependence plots and interaction plots can be found in
Figure 7. The difference between the characteristics of the population identified in phase 1
and phase 2 is that the increase in confirmed cases begins in counties with a population of
more than 1000 people. It is also found that the decrease in the VMT ratio in an urban area is
related to the increase in the number of confirmed cases, but less than 10% of the decrease in
the VMT ratio in the urban area compared to 2019. This shows that although the spread of
COVID-19 has affected the VMT in the urban area, the decrease in trips in phase 2 is only
about 10%. Next, it is very interesting to note that the number of confirmed cases decreases
from more than 10–20% of all households in the ratio of detached houses.

This is because it is possible to have minimal contact or exchange with neighbors
in detached houses, and outdoor activities in summer are also possible with less contact.
Exploring at the relationships between variables based on population, we can see that
the VMT ratio in the urban area is widely observed, the ratio of Black Native has a positive
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relationship with large population sizes and has a perfect negative relationship with the ratio
of detached single housing unit, affecting the number of confirmed cases.Sustainability 2021, 13, x FOR PEER REVIEW 15 of 22 
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5.3. Phase 3

In phase 3, population (pop), household (hh), household median age (hh_household), and
state (state) were expected to be important, and dependence plots and interaction plots
could be found in Figure 8. The pattern of increase in the number of confirmed cases following
population size was more vicious than phase 2, and the increase was also confirmed in
counties with smaller population sizes. This is reasonable given the trend in December, when
the number of confirmed COVID-19 cases is the highest of 2020, to disprove the discovery of
confirmed cases across almost every country. What is interesting about phase 3 is that it is
difficult to find a noticeable level of variable in increasing the number of confirmed cases in
other variables except population. The spread of COVID-19 is at its peak, and it is believed
to be showing this pattern of influence because it has already become a global phenomenon.
For the relationships between variables based on population, it can be judged that households
are evenly observed across the board. The median age of a household is negatively related
to population size. They have indiscriminate relationships on a weekly basis and affect the
number of confirmed cases.Sustainability 2021, 13, x FOR PEER REVIEW 16 of 22 
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5.4. Summary

As above, the interrelationship between the number of newly confirmed COVID-19
cases and the variables are examined. Above all, it was confirmed that population size
was the most important variable, and the size of the population affected by the number of
new confirmed cases by phase also decreased. In the early stages of spreading, phase 1 and
phase 2, race-specific characteristics were also identified as major variables, supporting
the results of existing studies while showing that equality issues are likely to be presented
in urban elements. From the VMT ratio in the urban area identified in phase 2, only
a 10% decrease in VMT was identified, and the decrease was not significant but had a
substantial impact on the increase in the number of confirmed cases. It was also noted
that residential patterns also had an important impact on phase 2, where people were
highly active. Considering that phase 3 is the period during which family and relatives
gatherings are concentrated, the important priority of variables predicted by VI is judged
to be significant.

6. Discussion

The relationship between the number of newly confirmed COVID-19 cases in the
U.S.A. and variables structured in multi-level panel format of demographic, mobility,
and behavioral characteristics were explored using the XGBoost model to analyze urban
context at county level. Rather than analyzing 2020 through a single temporal window,
three distinctive phases were segmented, analyzed, and compared through a phase-specific
model. This revealed differences of VI by phase, as shown in Table 3, that could not be con-
firmed if the entire year was analyzed. Given the nature of the COVID-19 with contactless
infection characteristics, the positive relationship of the number of new confirmed cases by
population size identified in all phases is judged by reasonable analysis results. In addition,
the relationship between the VMT ratio in the rural area identified in phase 1 and the VMT
ratio in the urban area identified in phase 2 also illustrates the national response and the
change in resident behavior as the number of confirmed cases increases. Additionally, the
detached houses as a type of housing unit, a variable identified during phase 2 when active
outdoor activities are expected in summer, which is negatively related to the increase in the
number of confirmed people, are well explained. The fact that variables such as population
and number of households were significantly identified in phase 3 due to active year-end
family and relatives meetings that began with Thanksgiving can also be judged that the
model reflected people’s behavior. Unfortunately, in phase 1 and 2, racial characteristics
have been identified as variables of high importance with a positive relationship. This has
already been confirmed in previous studies.

Table 3. Variable relationship with the COVID-19 cases.

Period
Relationship in VI Order

Positive (+) Negative (−)

Phase 1

population
black native ratio
VMT rural ratio
Hispanic ratio

households

-

Phase 2 population
black native ratio

VMT_urban_ratio
h_single_ratio

gas_ratio

Phase 3 population
bhouseholds

hh_median
state

Asian ratio
h_single_ratio
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7. Conclusions

By 2020, 20.1 million confirmed cases and 352 thousand confirmed deaths had been
counted in the U.S.A. [57]. In the process, policies for the health and well-being of resi-
dents were established and implemented, followed by efforts by many institutions and
cooperation from participants to promote the emotional health of residents who expected
continued relationships. However, not all policies, institutions’ efforts, and participants’
cooperation have had consequences significantly. It is also attributed to the frightening
infectious transmission power of the COVID-19, but the unpredictable patterns of behavior
and interconnection of residents are also believed to have contributed greatly to increasing
uncertainty. This growing uncertainty poses a major obstacle to running and developing
our community in a stable way. To overcome the obstacle, many researchers engaged a
variety of data to conduct research and analysis on urban elements during the pandemic
period and shared valuable findings to help curb the spread of the COVID-19. However, as
the spread of the disease was actively caused by contact between people, the spreading
patterns were not the same across communities over time. Therefore, in this work, we
looked at what behavior patterns are expected and interrelated in pandemic situations
such as COVID-19 when the confirmed cases are soared. Additionally, in order to take into
account the timely behavioral factors at the county level, it was intended to examine the
changes by utilizing data that could be used as soon as possible and by adopting model
that analyzes multi-level data efficiently. As expected, different temporal and geographical
characteristics and behaviors were identified as important to the spread, identifying details
that could not be detected by a single model.

Based on the analysis results of this study, we would suggest some proposals for
possible policy preparation. First, in emergency situations such as a pandemic, measures
need to change and to update with time. Second, the greatest relationship is highly related
to demographic characteristics, and this could be confirmed from the result of examining
behavioral characteristics and interrelationships with urban elements. Considering the
information of variables that can cause a lot of contact with people due to the nature of
the disease, the policy should be prioritized for disease-related pandemic measures. And
people’s travel pattern needs to shed light on the policy-specific highlights depending on
the pandemic progress.

However, it is very unfortunate that racial characteristics are identified as a large factor,
and it is expected that further in-depth analysis and research are considered desirable
before making an analytical judgment on whether racial characteristics themselves are
classified as one of the essential variables or as a result of the social equity inherent in the
community. Additionally, it should be acknowledged that the causal relationship between
the identified important urban elements over time and the COVID-19 confirmed cases
remains a future research task. Given that the temporal phase period established in this
study is a month, the direct causal sequence term between elements and the confirmed
cases is believed too long, and further studies using a shorter temporal phase analysis or a
model that can adequately explain the causal relationship may be possible. Furthermore,
more detailed model prediction is expected if considerations are added to policies or
regulations that restrict mobility characteristics, such as bans of cross-regional travel or
international travel.
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Nomenclature

ASC American Community Survey
CDF Cumulative Distribution Function
COVID-19 Novel Coronavirus Disease 2019
DOT Department of Transportation
FHWA Federal Highway Administration
FI Feature Importance
ML Machine Learning
MSE Mean Square Error
PD Partial Dependence
PDF Probability Distribution Function
POI Point Of Interest
SHAP SHapley Additive exPlanations
SSE Sum of Squared Error
SSR Sum of Squared Residuals
VI Variable Importance
VMT Vehicle Mile Traveled
WHO World Health Organization
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