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Abstract: In managed orchards, fertilization brings out not only high productivity expectations but
also severe environmental pollution. Because economic profit takes priority over environmental
cost, increasing amounts of fertilizer have been used in mature subtropical Torreya grandis orchards.
However, given the magnitude of global nitrogen deposition, it’s worth considering whether heavy
fertilizer treatment is necessary. To elucidate the balance between T. grandis nutrient demands and
fertilizer supply, we determined the C, N, and P concentrations of foliar and soil ([C], [N], [P]) at
9 orchards undergoing long-term fertilizer treatments in two scenarios of N and N + P addition with
different intensity. After documenting the dynamic variation of plant growth, nutrients characteristic,
and the corresponding resorption efficiency, we found that excessive N addition interfered T. grandis’
sensibility to P availability in this N-enrichment area, leading to an increasing foliar [P] and resorption
efficiency (PRE) and decoupling plant C:N:P ratios. As a result, enhanced fertilizer supply failed
to improve carbon accumulation, plant growth, and yield effectively. These results demonstrate
that extra fertilization in the N-saturated study area highly reduced the economic and ecological
efficiency of fertilizers. Thus, our research suggests that N addition in the studied orchards should be
rejected, and we recommend organic management as a more conducive method to achieve sustainable
development.
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1. Introduction

Torreya grandis (T. grandis) is an old relict species within the family of Taxaceae that
is endemic in China, often referred to as Chinese Torreya. It has been one of the most
economically important tree species in the subtropical region of China. The Kuaijishan
Ancient Chinese Torreya Community was listed in China National Important Agricultural
Heritage and Globally Important Agricultural Heritage Systems (GIAHS) in 2013 [1,2].
Trees in the community area are considered ‘living fossils’ because they originated from
the application of grafting and artificial selection techniques in ancient China. Many of
those trees are over one thousand years economic old but still sustain a high yield of seed
production. The Chinese Torreya community is highly valued both ecologically (e.g., water
and soil conservation, climate regulation, biodiversity maintaining) and economically (e.g.,
nuts, medicine, oil, and as an ornamental tree). As a result, the planting area of T. grandis
has steadily increased in several provinces during the past three decades. However, the old
Torreya plantation in the Kuaijishan Ancient Chinese Torreya Community is facing severe
degradation due to nature aging, climate change, and inappropriate management, such as
overfertilization.
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Alternate bearing phenomenon loom large, due to the overexploitation of T. grandis
seeds; to improve this, escalating amounts of chemical nitrogen (N) and phosphorus (P)
rich fertilizer have been applied by the local manager, without any scientific management
guidance (e.g., supplying based on the demands of plants). N and P are key nutrients
that play pivotal roles in controlling plant growth and litter decomposition, as well as
in ecosystems’ biochemical cycles [3–5]. However, the indiscriminate use of chemical
fertilizer (including quantity and proportion) has caused abnormally high concentrations
of N and P to accumulate in the soil, which has severely stressed the terrestrial plants’
multiple physiological processes. Furthermore, the excessive use of chemical fertilizer has
also generated serious adverse environmental consequences, such as non-point source
pollution [6] and N-induced soil acidification (especially due to NH4+), both of which have
been observed in multiple ecosystems [7–9]. It should be noted that soil acidification would
change ecosystem biogeochemistry, accelerating cationic nutrient (such as Ca2+, Mg2+)
leaching and thereby, reducing plant productivity in turn [10,11] and negatively affecting
local biodiversity [12,13].

Under natural conditions, N input to an N-limited ecosystem (such as boreal forests)
will improve net primary productivity (NPP) through a direct fertilizing effect on vege-
tation [14]. As a direct result from global change, N deposition in many regions of the
world (i.e., United States, western Europe, and China) currently exceeds 10 kg N ha−1

yr−1, especially in tropical and subtropical areas of China [15,16],where over 80–120 kg N
ha−1 yr−1 has been reported [17]. China has become one of the highest N deposition area,
and N deposition has increased by approximately 60% over the past three decades [16].
A meta-analysis has reported an N saturation threshold of 50–60 kg ha−1 yr−1 across the
entire terrestrial ecosystem [18]. Therefore, as N deposition levels continue to accelerate,
N-limitation has been subsequently alleviated [19], and there is a high likelihood that the
ecosystem is shifting to an N-enriched status [20]. Unlike N, which can be accumulated
through biological fixation and increasing deposition, available soil P comes from slow
parent mineral weathering and a low rate of atmospheric deposition from wildfires. Based
on nutrient demand balance theory, excessive N input has been reported to not only disturb
the balance in the biogeochemical cycles of essential plant nutrients [21–23], but also initiate
P-limitation in forest ecosystems [24–27]. Fang et al. [28] reported N saturation in three
subtropical sites and noted that P deficiency is becoming progressively more problematic.
The anthropogenic alternation of regional P and N cycling has led to large areas of southern
China forests shifting to human-induced P-limitation [27]. NPP/GPP has transformed
from being N-limited to P-limited in many forest ecosystems [4,26,29,30].

Soil N and P availability, especially when combined with N deposition and/or external
addition, can influence forest productivity and ecosystem processes [3,31]. Trees can keep
leaf nutrient concentrations and their ratios stable by modulating the nutrients coming
from branches, roots or senescent leaves [32,33]. Recently, foliar N and P concentration
stoichiometry ratios (i.e., N:P, C:N, C:P) have been used to indicate soil N- and/or P-
limitations on plant growth [24,34,35]. In addition, nutrient resorption [nitrogen (NRE)
and/or phosphorus (PRE)] from senescing plant tissues and the proficiency of nutrient
conservation [36], are also widely used as indicators in studies of nutrient cycling between
plants and soil in fluctuating environments. Generally, nutrients would transfer from
senescent leaf to trunk before falling off, thereby maintaining the plant nutrients at a
favorable level. The NRE and PRE might depend on the type of nutrient limitation [37]
and vary in response to the plant’s intrinsic genetic characteristics [38,39]. NRE/PRE is
commonly employed to determine the relative limitation between N and P; NRE/PRE
values > 1 imply a stronger N-limitation at the ecosystem scale [26]. However, previous
studies predominantly focused on the effect of single N or P addition on leaf nutrients or
resorption; thus, the effect of multiple nutrient addition on NRE and/or PRE in subtropical
forests is not well understood.

Meanwhile, the relationship between plant P uptake and nutrient environmental
supply is more comprehensive than N. Under intensive management, the long-term addi-



Sustainability 2021, 13, 9736 3 of 14

tion of balanced compound fertilizer may cause excess P in orchards, as plants generally
require less P than N [40]. P is an essential element for nucleic acids and membrane
lipids. Although P sensing and signaling are not fully understood, there appears to be
a series of physiological processes in plants that are either stimulated or suppressed in
response to P supply [41]. Unlike the immobile N in the plant cell wall, most leaf P is
hydrolyzable and, therefore, more easily resorbed [42,43]. In fact, due to its indiscriminate
uptake, greater variability of foliar P has been reported even in growth stages in which it is
not needed [44]. Species in P-poor environments, such as subtropical evergreen trees, are
equipped with a corresponding adaptation mechanism that makes them more susceptible
to toxic eutrophication under excessive P addition [45].

At present, there is not even a clear relationship between N and P fertilization with
economic benefit (such as seed yield) in our research area; furthermore, an excessive or
unreasonable rate of fertilizer consumption faces both increasing economic investments
and the deterioration of the soil’s physical and chemical properties, let alone its internal
nutrient influence mechanism. Thus, it is critical to determine the optimal amount of
fertilizer necessary to achieve ideal growth. A comprehensive understanding of fertilizer
impact on crop quantity and soil quality is critical for improving fertilizer treatment
strategies in economic consideration and maintaining a healthy soil environment. To solve
the above problems, we examined the C, N, and P stoichiometry of soil, as well as the
green and senescent leaf of mature T. grandis trees, in nine orchards with varying N and
N + P fertilizer treatments. The objective of this study was to: (1) evaluate whether the
continuously increasing N deposition in subtropical forests has alleviated the N-limitation
and excessive N applications causing nutrients imbalances with that restricting plant
growth, and (2) whether P additions can relieve this condition and improve growth or seed
yields. These results are expected to provide fertilization guidelines and recommendations
to help farmers reduce costs and soil pollution while ensuring optimal production.

2. Materials and Methods
2.1. Study Site

The study was conducted at the origination locale of T. grandis—Chinese Torreya Forest
Park (29.69–29.73◦ N, 120.49–51◦ E), in Shaoxing, Zhejiang Province, China (Figure 1). This
study comes from our investigation on local ancient trees. There are several orchards with
different intensities of management. The physical and chemical properties of the soil in
the study area before management (2009) was provided by the local forestry bureau. It
consisted of: organic carbon (OC)-18.2 g/kg; total N (TN)-1.67 g/kg; total P (TP)-1.56 g/kg;
hydrologic N (HN)-132 mg/kg; and Olmes-P (AP)-225 mg/kg; pH-5.25. The soil was acidic
and characterized as the Hapludult soil type with respect to Chinese Soil Taxonomy [46].
T. grandis trees of over 130 years old with a distribution density of 22–55 trees per hectare
were selected as the study object. The average tree height was 7.8 ± 0.5 m (mean ± SD);
the diameter at breast height (DBH) was 46.2 ± 2.2 cm, and the average crown breadth of
the trees was 6.0 ± 0.6 × 7.0 ± 0.5 m.

2.2. Nutrient Addition

Based on different fertilization habits, we selected 2 groups of orchards: N addition
only and N + P addition according to a fixed ratio of N:P2O5. Each nutrient included
5 gradients: 0, 27, 48, 54, 108 kg/ha·a (N0, N1, N2, N3, N4) and 0, 11.8, 21, 23.6, 47.2 kg/ha·a
(P0, P1, P2, P3, P4). These fertilization modes have lasted more than ten years. Two fertil-
izer scenarios share an unfertilized control designated “N0P0”. The experimental design
included 9 treatments (P0N0, P0N1, P0N2, P0N3, P0N4; P1N1, P2N2, P3N3, P4N4) and five
replicates in each treatment, totaling 45 (100 m × 100 m) plots. Each plot had 25–32 mature
T. grandis trees and were subjected to the same management practices except for nutrient
addition. N and P fertilization was applied in the form of urea and superphosphate twice
(April and July) a year, at a depth of 10 cm below the soil’s surface.



Sustainability 2021, 13, 9736 4 of 14Sustainability 2021, 13, x FOR PEER REVIEW 4 of 14 
 

 
Figure 1. Location of the study site. 

2.2. Nutrient Addition 
Based on different fertilization habits, we selected 2 groups of orchards: N addition 

only and N + P addition according to a fixed ratio of N:P2O5. Each nutrient included 5 
gradients: 0, 27, 48, 54, 108 kg/ha·a (N0, N1, N2, N3, N4) and 0, 11.8, 21, 23.6, 47.2 kg/ha·a 
(P0, P1, P2, P3, P4). These fertilization modes have lasted more than ten years. Two fertilizer 
scenarios share an unfertilized control designated “N0P0”. The experimental design in-
cluded 9 treatments (P0N0, P0N1, P0N2, P0N3, P0N4; P1N1, P2N2, P3N3, P4N4) and five repli-
cates in each treatment, totaling 45 (100 m × 100 m) plots. Each plot had 25–32 mature T. 
grandis trees and were subjected to the same management practices except for nutrient 
addition. N and P fertilization was applied in the form of urea and superphosphate twice 
(April and July) a year, at a depth of 10 cm below the soil’s surface. 

2.3. Sample Collection and Measurements 
In each plot, five green leaf sample groups (50 leaves for each group) were collected 

from the apricus healthy shoots of random plants in the middle of the canopy in Sep-
tember 2019. Similarly, five 1 m × 1 m litter collection boxes were arranged along the di-
agonal of each plot. Both sample sets—the green leaf samples and the mixed litter sam-
ples—were individually oven-dried at 60 °C to a constant weight. Then they were re-
spectively ground and sieved through a 1 mm mesh screen for further analyses. Soil 
samples were collected at the same time when leaf samples were collected. Each soil 
sample was a mixture of five soil collections from a 20–40 cm depth (main root absorption 
area), and each location was randomly selected along the diagonal of each plot. The soil 
was dried and sieved to measure the particle size distribution and other soil chemical 
properties. Considering the difficulty of non-destructive biomass estimation of these old 
trees, annual shoots were used to evaluate the growth characteristic. The annual shoots 
are the main sites bearing seeds. The number of annual shoots were determined by five 
0.5 m-long branches in the middle of canopies selected randomly (Figure 2). 

Figure 1. Location of the study site.

2.3. Sample Collection and Measurements

In each plot, five green leaf sample groups (50 leaves for each group) were collected
from the apricus healthy shoots of random plants in the middle of the canopy in September
2019. Similarly, five 1 m × 1 m litter collection boxes were arranged along the diagonal of
each plot. Both sample sets—the green leaf samples and the mixed litter samples—were
individually oven-dried at 60 ◦C to a constant weight. Then they were respectively ground
and sieved through a 1 mm mesh screen for further analyses. Soil samples were collected
at the same time when leaf samples were collected. Each soil sample was a mixture of
five soil collections from a 20–40 cm depth (main root absorption area), and each location
was randomly selected along the diagonal of each plot. The soil was dried and sieved to
measure the particle size distribution and other soil chemical properties. Considering the
difficulty of non-destructive biomass estimation of these old trees, annual shoots were used
to evaluate the growth characteristic. The annual shoots are the main sites bearing seeds.
The number of annual shoots were determined by five 0.5 m-long branches in the middle
of canopies selected randomly (Figure 2).

The foliar and soil nutrient properties (i.e., total N~TN, total P~TP, hydrolyzable
N~HN, Olsen-P~AP, and soil organic carbon~SOC), as well as soil pH, were measured in
accordance with national forestry industry standards [47–50].
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Figure 2. General view of a mature T. grandis tree (a) and its annual shoots (b).

2.4. Data Analysis

To examine the relative nutrient limitation among the treatments, we calculated
nutrient resorption efficiency (NuRE) using the following equation:

NuRE = 1 − NuSENESCENT
NuGREEN

× MLCF × 100%

where NuGREEN and NuSCENESCENT are the nutrient concentrations ([N], [P]) in green
and senesced leaves, respectively, and MLCF is the mass loss correction factor with a value
of 0.780 for evergreen species [51].

Given the large data set collected, we also tested the relationships between the log-
transformed nutrient stoichiometry of green and senescent leaves by applying a type II
linear regression model (SMA, standardized major axis; Y~X) using the lmodel2 package
in R (3.6.1). Y is the [C], [N], [P] or stoichiometry ratios in the foliar samples and X is the
related variables in the senescent leaves; slope >1 indicated slower increase of Y than X;
slope < 1 indicated a faster increase of Y than X, and slope = 1 indicated a synchronous
change of X and Y [52].

Significant difference of each dependent variable (C, N, P stoichiometry of soil, foliar,
and nutrient resorption) among fertilizer treatments were tested by one-way analysis
of variance (ANOVA) followed by least significant difference (LSD) and Tamhane’s T2.
Distance correlation analysis was performed to assess the nutrient content correlation
among the soil, green leaves, and senescent leaves. Results were considered significant
when p < 0.05. All statistical analysis was performed using the SPSS software (version 20.0,
SPSS Inc., Chicago, IL, USA) and R (3.6.1).

3. Results
3.1. Soil Nutrient Characteristics

Fertilization treatments affected soil properties, such as nutrient content and N:P
stoichiometry, but not C:N ratios (Figure 3). N addition increased soil TN and HN content
and decreased TN:P; but as P addition was proportional, the soil TN:P increased because
of the obvious increase in soil P (Table 1). SOC contents were also increased with both N
and N + P addition, while soil pH decreased with fertilizer addition.
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Table 1. Soil nutrient contents under different treatment. SOC (g/kg), TN (g/kg), TP (mg/kg), HN (mg/kg), and AP
(mg/kg) denote total soil organic C, total N, total P, hydrolyzable N, and olsen-P, respectively. Error bars refer to ±1
standard error, p < 0.05, n = 5; different letters indicate significant difference among N addition gradients with or without P
addition separately; * indicates a significant difference between P treatments in the same N treatment.

N
P0N0

P0N1 P0N2 P0N3 P0N4
N + P
P1N1

P2N2 P3N3 P4N4

SOC 18.2 a ± 2.0 17.2 a* ± 0.4 18.0 a* ± 0.5 19.5 b* ± 0.9 21.0 b* ± 0.3 23.2 b* ± 2.8 22.6 b* ± 1.0 30.8 c* ± 2.1 34.2 d* ± 0.6
TN 1.67 a ± 0.1 1.79 a 2.3 b ± 0.1 2.9 c ± 0.2 3.7 d ± 0.3 1.9 b ± 0.2 2.1 b 2.8 c ± 0.1 3.4 d ± 0.1
TP 1.56 a* ± 0.1 1.45 a* 1.52 a* 1.56 a* 1.6 a* 2.1 a* ± 0.1 2.46 b* ± 0.1 3.1 c* ± 0.2 4.45 d* ± 0.1

HN 132 a ± 3.5 145 b ± 11.2 175 c ± 10.6 208.7d ±
13.2

299 e ± 11.7 130.8 a ± 3.5 163.6 b ±
13.2 207 d ± 13.1 266.4 d ± 5.6

AP 225 a ± 15 269.1 b ± 6.4 282.8 b ± 5 245.4 b ±
11.9 274.6 b ± 9.6 362 a ± 4.4 609.7 b ± 25 615.3 b ±

10.3
1081 c ±

22.7
pH 6.7 a 3.9 b 4.1 b 4.98 b 4.4 b 3.7 b 5.0 a 4.0 b 5.5 a

3.2. Plant Nutrient and Growth Characteristics

Fertilizer addition increased foliar nutrient content to some extent, which depended
on the nutrient element and leaf life stage (Figure 4). Green leaf uniformly exhibited a
higher nutrient concentration ([C], [N], and [P]) than senescent leaf, but nutrients showed
different patterns under the two fertilization scenarios. For green leaf, moderate fertilization
increased leaf [N] and [C] in both N and N + P addition scenarios, while there was no
significant difference among other treatments conditions (p > 0.05, Figure 4). For senescent
leaf, the resorption proficiency ([C], [N] and [P]) trend paralleled that of the green leaf,
although the magnitudes differed. Similarly, there was no significant difference in [C]
and [N] among different treatments in the senescent leaf. While P addition increased [P]
in both green and senescent leaf, [P] exponentially increased with the N + P fertilizer
supply gradient (Figure 4). Green leaf [P] was significantly correlated with soil inorganic
nitrogen concentration (indicated by soil hydrolyzable nitrogen, HN) rather than inorganic
phosphorus (indicated by soil AP) (Table 2), while there was no correlation of leaf [N] with
either soil P or N content.
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Table 2. Pearson correlation coefficients of the nutrients in leaves and soil in the N + P addition
scenario.

Soil TN Soil TP Soil HN Soil AP SOC

Leaf P 0.789 ** 0.809 ** 0.906 * 0.541 0.691 **
Leaf C:P −0.564 * −0.548 * −0.917 * −0.507 −0.476
Leaf N:P −0.582 * −0.549 * −0.900 * −0.488 −0.512

** and * indicate statistical significances at α 0.01 and 0.05.

The C:N ratio of both green (2.15 ± 0.05 under N + P treatments; 2.12 ± 0.08 under
N treatments) and senescent (2.47 ± 0.09 under N + P treatments; 2.15 ± 0.25 under
N treatments) leaves showed no significant difference among the treatments (Figure 4).
The significant increase in [P] under N + P treatments led to big variations in foliar N:P
(Figure 4), which declined with increasing fertilizer addition. There was no significant effect
of fertilization treatments on nutrient utilization efficiency in carbon fixation indicated by
C:P and C:N.

The fresh seed yields of T. grandis in these orchards averaged 203.2 ± 15.0–230.2
± 8.4 kg/tree (Table 3), with a significant decrease under high fertilization (P0N4 and
P1N4), while moderate N + P fertilization increased seed yield. The number of annual
shoots per 0.5 m-long branch ranged between 57.0 ± 2.3 and 60.5 ± 4.2 and showed no
significant difference under fertilizer treatments (p > 0.1).



Sustainability 2021, 13, 9736 8 of 14

Table 3. Annual shoots on each 0.5 m branch and yield per tree (kg) under different fertilizer treatments.

N
P0N0

P0N1 P0N2 P0N3 P0N4
N + P
P1N1

P2N2 P3N3 P4N4

Shoots 59.6 ± 3.0 58.3 ± 3.3 60.5 ± 4.2 57.6 ± 2.1 57.9 ± 3.1 59.2 ± 4.2 58.2 ± 2.3 59.0 ± 2.7 57.0 ± 2.3
Yield 219 ± 8.9 228.8 ± 6.3 226 ± 9.2 217.6 ± 3.2 203.2 ± 15.0 * 233.2 ± 4.6 * 230.2 ± 8.4 * 227.4 ± 8.9 * 214.4 ± 9.6

* indicates a significant difference between the treatment and control.

4. Discussion
4.1. Effects of Fertilizer on Soil Condition

Long-term N deposition and fertilization could elevate soil nutrient concentration
beyond the demand of the plant, altering the soil nutrient cycles [53]. Because most
soils in subtropical areas are severely acidic, improper and excessive use of fertilizers
could further deteriorate soil physical, chemical, and biological properties, especially
aggravating soil acidification and soil hardening. Decreases in soil pH caused by fertilizer
will likely reduce soil microbial and enzyme activities, which subsequently reduces organic
matter mineralization and ultimately reduces “chemical facilitation” [54], which presented
obviously with intensifying N fertilization in this study.

4.2. Effect of Fertilizer on Plant C, N, and P Stoichiometry

One of the primary goals of this research is to evaluate whether T. grandis requires
extra fertilization or whether adding additional nutrients can improve seed production. In
the present study, fertilization tended to increase the foliar nutrients ([C], [N], [P]), but only
the increase in [P] was statistically significant in the N + P addition scenario. The steady
foliar [N] under increasing fertilization may indicate diminished N-limitation to plant
growth, which can be explained by a plant behavior developed from adjusting to nutrient-
abundant environments. A significant increase of leaf [P] in N + P scenario resulted in a
distinct decrease in the C:P and N:P ratios. According to the growth-rate hypothesis, plant
invests more phosphorus to RNA for rapid protein synthesis in fast-growing organisms [55].
Hence, the opposite condition, high leaf [P], indicated a low-growing condition of T. grandis
under high fertilization, which was confirmed by the statistical results of annual shoots
(Table 3).

The soil nutrient pool (TN, TP, HN, and SOC), under long-term fertilizer treatment,
was much higher than that in other subtropical areas [56,57]. Long-term soil nutrient
enrichment resulted in much higher T. grandis foliar nutrient (N and P) contents than the
average values of 753 terrestrial species [58] and other subtropical evergreen trees [59].
Due to the different N and P utility patterns in physiological processes, regardless of
species and site fertilizer supply, plants can store a greater percentage of inorganic P
than N. Thus, with increasing fertilizer addition, foliage accumulated more P than N [44].
It was also observed that some plant species growing in P-limited environments might
not downregulate P uptake when a higher supply of P is available [44,60,61]. When the
environment P supply shifts from P-limited to non-limited condition, the plants may
undergo an excessive P uptake, even to saturated or toxic levels. Hence, foliar [P] usually
displays a much higher variation after fertilizer treatments. Therefore, it is not surprised
that the foliar [P] nearly doubled after a high fertilizer treatment compared to the control
group (Figure 4). Given the generally low bioavailability of P in subtropical soils, T. grandis
may have developed an efficient mechanism to take up and accumulate P in response to the
strong selective pressure [62,63]. Unlike previous studies [21,64–69], leaf [N] of T. grandis
didn’t change much in response to the increasing soil [N] availability, which implied that
fertilizer treatments had no effect on T. grandis N absorption (Table 1; Figure 3). In this
scenario, relatively stable leaf [C] and [N], but increased leaf [P], led to opposite trends
between C:P and N:P and soil nutrient content (Table 1; Figure 3). Therefore, our findings
answered the first question, that long-term fertilization, combined with increasing nitrogen
deposition, results in a N-enriched environment. This result also confirms that N-limitation
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has been generally alleviated in this subtropical forest; while P-limitation in the study area
was aggravated by N enrichment [58,67,68].

Stoichiometry homeostasis was used to analyze plant composition, ecosystem func-
tion, and nutrient limitation, especially for key elements such as C, N, and P ratios [69,70].
Generally, plants uptake nutrients in appropriate proportions to maintain nutritional bal-
ance, depending on physiological consumption [13,22]. The inherently higher variability
of P concentration in plants, relative to N, was illustrated in a survey of European wet-
lands [71]. Similarly, our findings demonstrated that the correlations between foliar [P]-[C]
and [P]-[N] were decoupled due to a more sensitive response of foliar [P] to the N + P
fertilizer supply (Figures 3 and 4). This suggests that the balance of biogeochemical C, N,
and P cycles were broken by the fertilizer treatments, which could decrease ecosystem
stability [72] and alter the N and P cycles [73], leading to degenerative feedback between
the plant and the ecosystem [74]. Under these circumstances, foliar [P] or the N:P ratio
may not reflect the actual demands of the plant under P addition conditions [75]. Although
many studies indicate that the N:P ratio of mature leaves has been widely used to diagnose
plant growth nutrient limitations, with thresholds (such as 10 and 20) to classify the plants
into N-limited, N and P co-limited, and P limited plants [24,76,77].

4.3. Effect of Fertilizer on Plant Nutrient Resorption

Acquisition (root uptake) and conservation (resorption from senescent tissue) are
two important biological strategies for plants to maintain balanced nutrition where soil
nutrients are deficient. These processes are also important in cycling nutrients between the
soil and plants [78]. Choosing between alternative strategies for plants depends on the cost
(time and energy) of each process and the species characteristics. Short-term experiments
have demonstrated that, generally, plants will reduce nutrient utilization efficiency when
the surrounding nutrient availability increases [73], while the relationship between foliar
resorption and soil nutrient concentration is not consistent [34,79,80].

Nutrient resorption was another important index indicating environmental nutrient
deficiency or not. Our results indicated a constant or slight decreased NRE, which further
verified our supposition concerning N enrichment in these orchards (Figure 5). According
to nutrient balance theory, N addition aggravated P-limitation that was illustrated by
increasing PRE. However, increased P migration from senescent leaf to green leaf (PRE) in
response to increasing N + P fertilizer supply conflicts with the negative correlation between
fertilizer treatment and nutrient resorption [73]. This kind of counterintuitive result has
been observed in a single-resource conservation standpoint in previous studies [81,82]; yet
multiple-element theory much more appropriately explains variability in foliar nutrient
resorption [67]. Based on a Pearson correlation analysis, we found that green leaf [P]
was not related to soil [AP], but it was highly correlated with soil N content (Table 3). It
should be noted that the root system can directly uptake inorganic nutrients (AP and HN)
and therefore plays a more important role in nutrient absorption than organic nutrients.
This inorganic nutrient preference may help explain the absence of a common trend in
studies comparing P resorption to soil P availability [34,80]. In our study, although the
soil and leaves were characterized by a higher [P] compared to other studies of evergreen
trees [52], excess N addition was responsible for the amplified P-limitation (Figure 5),
which subsequently elevated leaf P uptake directly [83,84].
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Figure 5. Nutrients resorption efficiency of N (NRE), P (PRE) and relative nutrient resorption (RR = NRE − PRE) of
T. grandis under different fertilizer treatment scenarios. The lowercase letters indicate a significant difference among
treatments, p < 0.05.

The standardized major axis (SMA) analysis showed that leaf [P] is independent of soil
[P], which supports the above hypothesis. Strong dependencies, indicated by a slope > 1,
were found only between senescent and green leaf [C] (Table 4). For an evergreen species
with a long leaf life span, T. grandis exhibited a more conservative P use strategy as opposed
to the external root uptake strategy, regardless of soil P availability. Similar results were
also reported in some non-mycorrhizal species [85]. This mechanism allows plants to
maintain a higher nutrient absorption efficiency with relatively less cost (energy and time)
but lowers the utilization efficiency and productivity [86].

Table 4. Relationships of nutrients among soil, leaves, and litter through SMA analyses.

Y X Slope Intercept R2

Leaf N Soil TP 0.24 1.26 0.63 *
Leaf N Soil HN 0.21 0.87 0.48 *

Litter N Leaf N 0.9 0.25 0.72 **
Litter P Soil TP 0.69 −0.02 0.59 *
Litter C Leaf C 1.63 −1.12 0.51 *
Leaf C SOC 0.18 1.42 0.88 **

Leaf C:P Leaf P −1.03 1.70 0.99 **
Leaf C:P Leaf P −1.02 1.36 0.98 **

PRE Leaf P −1.02 1.36 0.98 **
* and ** are 2-tail sig. p < 0.1 and 0.05.

On these bases, contrary to previous research [87], fertilizer treatment in this study
also failed to increase the vegetative (indicated by the annual shoots) and reproductive
growth (indicated by the yield of fresh seeds) of T. grandis. Although moderate P addition
improved foliar nutrients content and seed yields slightly, while high intensity fertilization
in both scenarios showed negative effects on seed yield (Table 3). Moreover, the fertilizer
significantly reduced the C:P (indicating the P utilization efficiency in productivity) of T.
grandis in this study, suggesting that the P utilization efficiency of plants was reduced by
the increased nutrient supply [88]. Our analysis suggested that both P and N fertilizer
might be unnecessary for T. grandis.

5. Conclusions

Long-term fertilizer treatments increased soil N and P significantly in T. grandis or-
chards, which increased leaf N and P concentrations, but there was no obvious positive
impact on T. grandis growth but only a negative impact on seed yield under heavy fertilizer
application. In our study, N enrichment was indicated by stable and decoupling relation-
ships between the soil and leaf [N]. Leaf [P] was highly correlated with soil [N], and N
enrichment amplified the physiological P limitation (deficiency). Excessive N addition
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interfered T. grandis’s sensibility to P availability in this N-enrichment area, which is indi-
cated by increasing PRE with both modes of fertization intensity. Therefore, leaf [P] or the
N:P ratio may not reflect the actual demands of the plant under the P addition conditions
in our study. Furthermore, large amount of fertilizer application might waste resources
and alter soil physicochemical properties (e.g., soil acidification). Decreasing fertilizer
application should be taken into consideration to accomplish the sustainable development
of the orchard ecosystems.
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