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Abstract: The agricultural drainage in rural area plays important roles in water supply and drainage
for crop cultivation. Various kinds of debris near agricultural drainage, however, causes sedimenta-
tion in the drainage during rainfall. The debris introduced into the agricultural drainage moves out
of the drainage under a high flow rate. This causes a reduction in the flow rate, which may affect the
discharge capacity, resulting in crop damage. This study developed a reduction facility to reduce
debris entering agricultural drainage and analyzed the performance by measuring the capture effi-
cacy in the hydraulic experiment. A total of 648 runs were performed for 216 experiment conditions
where three replications and error ranges were calculated depending on the inflow characteristics of
debris. This study also evaluated the performance of the reduction facility and established the design
criteria by developing a capture efficacy equation by flow rate and type of reduction facility.

Keywords: disaster reduction; agricultural drainage; reduction facility; debris; hydraulic experiment

1. Introduction

A drainage is a structure that is installed for rainwater to flow during rainfall, and it is
used in various settings such as rural, mountainous and urban areas [1]. The agricultural
drainage located in rural areas serves as waterways for supplying water or drainage,
through which nearby trees and crops are introduced. Debris such as branches and crops,
located around the agricultural drainage during rainfall, flows into the drainage along with
rainwater, and sedimentation occurs in a slow flow. The inflow of debris into agricultural
drainage causes sedimentation, while overflow due to lack of discharge capacity is a major
cause of flooding of agricultural land. Despite these damages, the quantitative standards
applied to offer guidelines for reducing facilities or maintenance of agricultural have been
poorly established.

Agricultural drainage is important for water supply and drainage, and various studies
such as crop production and cultivation techniques have been conducted. The problems
of salinization due to inadequate drainage systems in agricultural areas were raised,
and the solution was proposed by structural and engineering methods [2–5]. A method
for maintaining soil-moisture conditions favorable to crop production according to the
drainage capacity of the agricultural drainage was studied [6,7]. To provide continuous
water supply in agricultural areas, it set up agricultural drainage for groundwater flow
rate and suggested a plan for control and management [8–15]. It was explained that
the efficiency of water use through the installation of agricultural drainage has an effect
on harvesting by diversifying crops and reducing costs [16,17]. In addition, historical
reviews of drainage channels in agriculture as well as methods of utilization based on
ancient hydraulic technology were proposed [18]. Research on structural and utilization
of agricultural drainage channels was mainly conducted to improve crop production and
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cultivation techniques. However, studies related to securing water-discharge capacity for
smooth water supply and drainage to agricultural drainage channels were not conducted.

Most studies on drainage have focused on flow characteristics and change in flow
rates by each parameter, through hydraulic experiments and numerical modeling. An
empirical flow estimation equation was proposed, through hydraulic experiments, and
based on the flow rate, road slope, and lateral slope of drainage and local constants,
changes in the interception flow rate were analyzed [19,20]. An empirical equation was
proposed considering the factors of topographical characteristics of flow rate emitted
through the drainage system in the road area [21]. A varied flow analysis was performed
for the flow rate into the drainage, considering the topography characteristics, and the
safety related to the installation of reduction facilities was reviewed [22]. A reduction
facility was developed for inflow of debris flowing into the drain, and the effect through
flow rate and Fr was reviewed, and an equation was proposed [23]. The studies on
drainage, through hydraulic experiments and numerical modeling, mainly addressed
the flow characteristics and change in flow rates. Development of a reduction facility
that blocks the deposition of transportation and sedimentation of debris entering into
agricultural drainage is insufficient. In addition, only safety related to the installation of
the reduction facility was reviewed, and there was no research on the improvement on the
capture efficiency by flow rate to block the debris.

Since the quantitative definition of the size or shape of the debris is difficult, most
of the previous studies focused on sedimentation characteristics and design methods
through hydraulic experiments. A design method was presented for reduction facilities to
reduce sedimentation of debris on bridges and culverts in rivers or hydraulic characteristics
according to the size of the debris [24–31]. The reduction efficiency was measured using the
capture efficiency for debris of the reduction facilities, or the effects of hydraulic changes
such as friction co-efficient were analyzed [32–36]. In addition, the degree of debris
accumulation was analyzed or the effects of piles installed on the bridge to block debris
and scour reduction were presented by pile installation [25,26,37]. Reduction facilities or
hydraulic properties to prevent debris sedimentation have been studied, but a focus on
large-scale facilities and development of reduction facilities for debris reduction in small
facilities such as agricultural drainage has not been addressed.

The studies on debris have presented a criterion for reducing flood damage, such as
the number of piers, the length of spans, and the width of piers to improve the discharge
capacity of rivers [37,38]. The design conditions were presented by analyzing hydraulic
characteristics considering the debris for the bridge and the culvert [30,31]. Despite these
studies, the necessity to design criteria for rivers and roads to block the debris was proposed
by other studies. Studies on debris suggested the need for design criteria or related studies
to reduce sedimentation in various structures. However, no studies on agricultural drainage
have addressed the development of debris-reduction facilities or associated hydraulic
characteristics.

The purpose of this study was to develop a reduction facility in consideration of
the inflow characteristics of debris in agricultural drainage and to conduct performance
evaluation of the capture efficiency. The research method was divided into three parts for
development of reduction facility, hydraulic experiment and performance evaluation. The
reduction facility is developed to be applicable to agricultural drainage by reviewing the
design criteria of drainage, blocking facilities and current status of debris. The hydraulic
experiment is established to include various conditions such as flow rate, velocity and
debris by reviewing laboratory specifications. The performance test is to evaluate the
performance of the capture efficiency of debris of the reduction facility and to propose
design criteria by developing the regression equation.
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2. Materials
2.1. Reduction Facilities

In 2005, the Federal Highway Administration (FHWA) proposed a deflection structure
for debris flowing into the drainage [39]. The screen and deflector screen were proposed
as reduction facilities for debris flowing into the drainage, and the design standard was
provided for the deflector screen only. The reduction facilities for debris flowing into the
drainage proposed by FHWA are designed as a screen or grid type. A design with a higher
height and narrower width than the drainage has been proposed for the screen or grid
to block debris flowing into the drainage (Figure 1). The debris may be classified into
driftwood, stone and others; however, it is difficult to define it in terms of size and scale.
Thus, reduction facilities for debris are designed in either screen or grid form.
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Figure 1. Debris Reduction Facility (FHWA): (a) Steel debris in urban area; (b) Steel rail debris deflector; (c) Debris deflector
designed in example.

2.2. Characteristics of Debris Entering Agricultural Drainage

The agricultural drainage to supply and drain the agricultural water is found in rural
areas. The debris, such as crops or branches, near agricultural drainage enters into the
drainage during rainfall. The debris entering the drainage moves along the agricultural
drainage or sediment, results in charge capacity, and the long-term sedimentation may
cause damage by flooding. Accordingly, this study defines the size of debris related to
agricultural drainage. Debris such as branches and pieces of wood pieces were collected,
as shown in Figure 2, at a rural area located near Daegu Metropolitan City in South Korea
during a walk, at about one kilometer along the agricultural drainage.
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Figure 2. Debris with Size Allowing Entrance into Agricultural Drainage.

About 350 items of debris such as crops and branches were collected in a section
of about one kilometer near the agricultural drainage. The sizes and lengths of debris
near agricultural drainage were different, although only the debris with a size that could
pass into drainage was collected. The diameter and length of the debris near agricultural
drainage was 1~2 mm and 90~250 mm, respectively, and about 70% had a diameter of
2~7 mm. The size characteristics are shown in Table 1.

Table 1. Characteristics of Debris by Size.

Range Count Ratio (%)

Diameter > 1 mm 0 0.0
1 mm < Diameter > 2 mm 16 4.6
2 mm < Diameter > 3 mm 46 13.1
3 mm < Diameter > 4 mm 65 18.6
4 mm < Diameter > 5 mm 59 16.9
5 mm < Diameter > 6 mm 44 12.6
6 mm < Diameter > 7 mm 34 9.7
7 mm < Diameter > 8 mm 16 4.6
8 mm < Diameter > 9 mm 16 4.6

9 mm < Diameter > 10 mm 9 2.6
10 mm < Diameter > 11 mm 7 2.0
11 mm < Diameter > 12 mm 8 2.3
12 mm < Diameter > 13 mm 6 1.7
13 mm < Diameter > 14 mm 5 1.4
14 mm < Diameter > 15 mm 6 1.7
15 mm < Diameter > 16 mm 2 0.6
16 mm < Diameter > 17 mm 1 0.3
17 mm < Diameter > 18 mm 3 0.9
18 mm < Diameter > 19 mm 2 0.6
19 mm < Diameter > 20 mm 1 0.3

20 mm < Diameter 4 1.1
Sum 350 100.0

Length 90 mm~250 mm

2.3. Development of Reduction Facilities for Agricultural Drainage

The reduction facilities that capture debris before agricultural drainage are small in
size, and it is difficult to determine their size in reference to the debris. The development
of reduction facilities for small-scale drainage has not been studied, and only the FHWA
standard proposed in 2005 has been applied up to now. However, agricultural drainage
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causes damage to crops due to the lack of discharge capacity that results from debris
sedimentation and the resultant overflow during rainfall.

Korean legislation classifies the installation location of drainage into mountain, plain
and agricultural land, and sets the design frequency between 20 and 50 years. In addition,
the debris in drainage and sedimentation of soils is suggested to add 20% of the design
flood [40–42]. Overseas design criteria are classified according to the size and geographical
characteristics of drains, and the United States has plans for 2 to 100 years, and Japan for
20 to 50 years [43,44].

This study develops a reduction facility, as shown in Figure 3, with the size of 400 mm
most commonly used for agricultural drainage by considering the design criteria for debris-
reduction facilities in Section 2.1. Moreover, the design considers the characteristics of
debris near agricultural drainage that could flow into the drainage, and design criteria for
drainage. The proposed reduction facility of the agricultural drainage is a square with a
width of 400 mm (B), a height of 400 mm (H), and an overflow height (y) of 80 mm, which
is 20% of the height. The overflow height was added to allow flow even after capturing the
debris. The overall form is a grid with horizontal net distance (d1), vertical net distance
(d2), and an effective cross-sectional area. The diameter (D) of the used circular grid bar is
5 mm.
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Figure 3. Design of Reduction Facility.

Three kinds of reduction facilities were developed given the size of debris, d1 and
d2. These reduction facilities had identical drainage B and y and have grid sizes of 4 × 4,
6 × 6, and 8 × 8, respectively. Table 2 shows the specifications of developed reduction
facilities. The grid of the reduction facility is rectangular, and the spacing was determined
by considering the diameter and length of the debris. Given that the maximum diameter
and minimum length of the debris near the agricultural drainage is 25 mm and 90 mm,
respectively, the maximum d2 for the vertical passage of debris and minimum d1 for the
horizontal passage were calculated and applied. The d1, d2 and A were 96 mm, 75 mm
and 7200 mm2 for 4 × 4 type; 63 mm, 48 mm and 3024 mm2 for 6 × 6 type; and 46 mm,
35 mm and 1610 mm2 for 8 × 8 type, respectively.
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Table 2. Specification of Reduction Facility.

Agricultural
Drainage (B) Overflow Height (y) Reduction Facility Horizontal Net

Distance (d1)
Vertical Net

Distance (d2)

Effective
Cross-Sectional

Area (A)

400 mm 80 mm
4 × 4 96 mm 75 mm 7200 mm2

6 × 6 63 mm 48 mm 3024 mm2

8 × 8 46 mm 35 mm 1610 mm2

B, y, d1, d2, A is a parameter for the reduction facility for agricultural drainage of Figure 3.

3. Methods
3.1. Hydraulic Experiment

The hydraulic experiment was performed to develop a reduction facility to reduce
inflow of debris into agricultural drainage and for capture efficiency. For the hydraulic
experiment of agricultural drainage, a 1:1 scale laboratory, the best size to test hydraulic
characteristics, was constructed. The hydraulic laboratory consisted of a pump capable of
supplying a sufficient flow to the agricultural drainage with size of 400 × 400 mm, a high
water tank for stable water supply and a storage tank after the agricultural drainage for
circulation (Figure 4).
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Figure 4. Hydraulic Lab for Agricultural Drainage: (a) Water Tank; (b) Pump Facilities; (c) Head Tank; (d) Rectifying Tank;
(e) Agricultural Drainage; (f) Return Tank.

In the 17.5 m × 17.5 m (306.25 m2) hydraulic laboratory, circulation proceeds to Water
Tank, Pump Facilities, Head Tank, Rectifying Tank, Agricultural Drainage, Return Tank.
The volume of the water stored in the hydraulic laboratory is about 114 m3 and is designed
to maintain the maximum flow rate of the pump for about five minutes. The agricultural
drainage was set to have a cross-section of 0.4 m × 0.4 m and a length of 8.75 m, so that the
upstream and downstream boundaries through hydraulic experiments have no effect on
the flow. Table 3 shows the specifications of each hydraulic laboratory facilities.
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Table 3. Specifications of Laboratory Facilities.

Contents Facilities Dimension
(Width × Depth × Height) Capacity

(a) Water Tank 11 m × 6.85 m × 0.7 m 52.8 m3

(b) Pump Facilities 15 HP × 2, 10 HP × 1 0.33 m3/s
(c) Head Tank 4 m × 6 m × 2 m 48.0 m3

(d) Rectifying Tank 5 m × 4 m × 0.7 m 14.0 m3

(e) Agricultural Drainage 0.4 m × 8.75 m × 0.4 m 1.4 m3

(f) Return Tank 14 m × 1.5 m × 0.2 m 4.2 m3

3.2. Experiment Conditions

The reduction facility to reduce debris entering the agricultural drainage was de-
veloped and the capture efficiency was measured. Three kinds of reduction facilities to
reduce debris, 4 × 4, 6 × 6 and 8 × 8 types, were developed to be applied in the hydraulic
experiment by considering the conditions in Section 2.3. The 4 × 4 type has 16 spaces with
four vertical and horizontal spaces; the 6 × 6 type with 36 and six for each; and the 8 × 8
type with 64 and eight for each (Figure 5).
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Figure 5. Reduction Facilities for Agricultural Drainage: (a) 4 × 4; (b) 6 × 6; (c) 8 × 8.

Although the optimal debris used in hydraulic experiments is the type collected near
agricultural drainage, there are limitations to the application of the same-sized debris to
various experimental conditions. Accordingly, the circular rods that are similar to the
debris and are easy to secure were used for each diameter. The amount of debris added
per session was calculated for an area of 64,000 mm2, which is 50% of the total effective
cross-sectional area, excluding the overflow water level. The composition of debris was, as
shown in Table 4, 12 of 3 mm, 12 of 5 mm, 12 of 7 mm, 10 of 10 mm, and 10 of 12 mm.

Table 4. Specification of Debris for Hydraulic Experiment.

Debris Length (mm) Diameter (mm) Count Effective Cross
Sectional Area (mm2)
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Reduction facilities for agricultural drainage are installed perpendicular to flow direc-
tion. The inflow direction of debris with a size of 160 mm is expected to have an effect on
the capture efficiency. Two kinds of drop directions, those identical or perpendicular to
flow directions, were applied as shown in Figure 6. The inflow characteristics of debris
were also considered in measuring the capture efficiency of the reduction facility.
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The conditions manipulated in the hydraulic experiment to measure the performance
were the facility type, velocity, depth and the drop conditions. Based on 400 mm of
agricultural drainage, the reduction-facility types used three cases of 4 × 4, 6 × 6, and
8 × 8; velocity was six cases of 0.3, 0.6, 0.9, 1.2, 1.5 and 1.8 m/s; depth was six cases of 0.08,
0.12, 0.16, 0.20, 0.24 and 0.28 m; and drop conditions used six cases, three for each horizontal
and vertical drop, resulting in 648 runs with 216 conditions and three replications. The
conditions of the hydraulic experiment are shown in Table 5.

Table 5. Conditions of Hydraulic Experiment.

Agricultural
Drainage (m)

Reduction
Facility Velocity (m/s) Depth (m) No. of Debris Drops

400
4 × 4 grid
6 × 6 grid
8 × 8 grid

0.3 0.08 Horizontal drop conditions:
3 times

Vertical drop condition:
3 times

(1 drop of debris = 41 pieces,
ø 3 mm~ø 12 mm in diameter)

0.6 0.12
0.9 0.16
1.2 0.20
1.5 0.24
1.8 0.28

Number of Experiment Runs Horizontal drop conditions: 324
Vertical drop condition: 324

4. Results
4.1. Efficiency Test for Each Inflow Characteristic of Debris

A total of 648 runs were performed in the hydraulic experiment, with three cases for
facility type, six cases for velocity, six cases for depth, two cases for drop condition, and
three replications. The conditions of depth 240 mm and velocity 1.8 m/s, depth 280 mm
and velocity 1.5 m/s, and depth 280 mm and velocity 1.8 m/s caused an overflow damage
due to the debris captured in the reduction facilities. All conditions resulting in an overflow
damage due to the lack of discharge capacity due to the capture of debris had a flow rate
of over 0.16 m3/s, where the installation of reduction facility is impossible. Figure 7 shows
the capture efficiency of each type through the drop conditions of vertical and horizontal.
A total of 207 velocity and depth conditions were run for the conditions from 0.01 m3/s to
0.144 m3/s, excluding the conditions resulting in overflow damage.
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For the 4 × 4 type, the capacity efficiency was 4.1~98.8% with a first quartile of
19.00%, a median of 48.17% and a third quartile of 63.83% in horizontal drop conditions,
and 6.7~98.8% with a first quartile of 14.42%, a median of 54.50% and a third quartile
of 65.33% in vertical drop conditions. The range of difference in capture efficiency by
inflow characteristics was −4.58% to 6.33%, where the first quartile value was higher in the
horizontal one, while the median and third quartile values were higher in the vertical one.
The quartile values that had less effect on the outlier of capture efficiency were 44.83% for
horizontal and 50.91% for vertical, indicating that the vertical one had a higher variation
by 6.08%.

For the 6 × 6 type, the capacity efficiency was 20.3~98.4% with a first quartile of
42.75%, a median of 69.92% and a third quartile of 83.67% in horizontal drop conditions,
and 22.6~99.4% with a first quartile of 43.25%, a median of 70.25%, and a third quartile
of 82.25% in vertical drop conditions. The range of difference in the capture efficiency by
inflow characteristics was from −1.42 to 0.50%, where the first quartile value and median
were higher in the vertical one, and the third quartile value was higher in the horizontal
one. The quartile values that had less effect on outlier of capture efficiency were 40.92% for
the horizontal one and 39.00% for the vertical one, indicating that the horizontal one had a
higher variation by 1.92% point.

For the 8 × 8 type, the capacity efficiency was 45.7~100.0% with a first quartile of
66.17%, a median of 86.58% and a third quartile of 93.75% in horizontal drop conditions,
and 45.8~100.0% with a first quartile of 64.33%, a median of 85.33% and a third quartile
of 93.58% in vertical drop conditions. The range of difference in capture efficiency by
inflow characteristics was −1.84 to −0.17%, where all the quartile values were higher in the
horizontal one. The quartile values that had less effect on the outlier of capture efficiency
were 27.58% for horizontal and 29.25% for vertical, indicating that the horizontal one had a
higher variation by 1.67%.
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The difference in capture efficiency between the horizontal and vertical drop con-
ditions was found to be from −10~10%, depending on the experiment conditions. This
difference reduced with the increase in flow rate, and Figure 8 shows that these differences
obtained by regression analysis are from 2.54 to 1.05% in a positive value and from −3.92
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to −1.42%. The difference in capture efficiency by inflow characteristics was higher in the
negative range compared to the positive range, while for the increase in flow rate from 0 to
0.16 m3/s the occurrence rate was higher in the negative range compared to the positive
one by 135~155%.
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Figure 8. Error Range by Inflow Characteristics of Reduction Facilities.

The difference in capture efficiency by flow rate was from −3.92% to 2.54% as shown in
Table 6. The ranges were from 1.05% to 2.54% in the positive one and from −1.42% to −3.92
in the negative one, the mean and the range of capture efficiency by inflow characteristics
were 6.5–4.5%. The error range of capture efficiency for inflow characteristics by flow rate
is 6.5~4.5% for 0.00 m3/s to 0.05 m3/s, 4.5~3.3% for 0.05 m3/s to 0.10 m3/s, and 3.3~2.5%
for 0.10 m3/s to 0.16 m3/s.

Table 6. Error Range Analysis by Inflow Characteristics and Flow Rate.

Flow Rate (m3/s)
Error Range of Capture Efficiency (%)

Positive Negative Error Range

0.000 2.54 −3.92 6.47
0.010 2.34 −3.69 6.03
0.014 2.24 −3.58 5.83
0.019 2.15 −3.48 5.63
0.024 2.06 −3.37 5.43
0.029 1.98 −3.27 5.24
0.034 1.89 −3.17 5.06
0.038 1.82 −3.07 4.89
0.043 1.74 −2.97 4.72
0.048 1.67 −2.88 4.55
0.058 1.54 −2.70 4.24
0.067 1.42 −2.54 3.96
0.072 1.37 −2.45 3.82
0.077 1.32 −2.38 3.70
0.086 1.23 −2.23 3.46
0.096 1.16 −2.09 3.25
0.101 1.13 −2.02 3.15
0.115 1.06 −1.84 2.90
0.120 1.04 −1.79 2.83
0.134 1.02 −1.64 2.65
0.144 1.02 −1.55 2.56
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4.2. Deveopment of Capture Efficiency Equation for Debris in Reduction Facility

The capture efficiency was experimentally measured by inflow rates and the reduction
facility types. The ranges of capture efficiency were 4.1~98.8% for 4 × 4 type, 20.3~99.4%
for 6 × 6 type and 45.7~100.0% for 8 × 8 type. An appropriate reduction facility to reduce
debris should be constructed by considering the drainage area or importance of agricultural
drainage and following planned reduction. Figure 9 shows a 2D regression analysis to
compute the capture efficiency by flow rates, considering all the inflow characteristics. This
analysis showed that the capture efficiency decreased with the increasing flow rate, and
increased or maintained under a flow rate over 0.12 m3/s. The minimum and maximum
capture efficiencies obtained in the regression analysis were 20% and 80% for 4 × 4 type,
40% and 95% for 6 × 6 type, and 70% and 100% for 8 × 8 type, respectively. The regression
analysis also considered the inflow characteristics by flow rate in Section 3.2.
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In this study, the capture efficiency equation for reduction effect by flow rate was
proposed through hydraulic experiments under various conditions for a reduction facility
of agricultural drainage. It was shown that the design standard for the reduction facility
is applicable when the cross-sectional area is under 0.16 m3/s. The capture efficiency
and error ranges by flow rate were analyzed, and Table 7 shows the proposed capture
efficiency for the reduction facility in agricultural drainage, where CE refers to the Capture
Efficiency (%) and Q refers to the flow rate (m3/s).

Table 7. Development of Capture Efficiency Equation by Reduction Facility.

Reduction Facility Equation

4 × 4 CE = 87.38 − 1028.86 × Q + 4487.68 × Q2

6 × 6 CE = 103.50 − 944.53 × Q + 3763.47 × Q2

8 × 8 CE = 103.01 − 459.38 × Q + 1707.52 × Q2

Application Criteria Q ≥ 0.16 m3/s

Error Range Q ≤ 0.05 m3/s = 4.5%~6.5%, 0.05 m3/s ≤ Q ≥ 0.10 m3/s
= 3.3%~4.5%, 0.10 m3/s ≤ Q ≥ 0.16 m3/s = 2.5%~3.3%
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5. Discussion

Agricultural drainage facilities are installed to manage the production of crops through
water supply and drainage. Flow-rate control, cultivation methods and drainage systems
were studied in various ways to improve crop production [2–17]. In spite of these efforts, if
crops are flooded because of overflow damage due to the accumulation of debris in agricul-
tural drainage, a huge amount of production is damaged. However, many studies have
not been conducted on reduction facilities, design methods and management standards for
disaster reduction in agricultural drainage.

In general drainage channels, related studies were performed on hydraulic experi-
ments and numerical modeling for flow characteristics. Drainage mainly addressed the
stability of the flow or change in the flow rate, but neglected damage reduction [19–23].
Disaster reduction of debris on sediment disaster and river disasters was studied through
hydraulic experiments rather than small-scale drainage channels. Recently, the hydraulic
experiment on a debris-reduction facility proposed by FHWA was performed, and the
performance was tested by analyzing the aggregation level of debris [25–37,39].

In this study, a reduction facility was developed to reduce the accumulation of debris
in agricultural drainage. The hydraulic experiment of a 1:1 scale, the best size to identify
the hydraulic effect in agricultural drainage. The quantitative performance of the reduction
facility as evaluated by measuring the capture efficiency in various inflow conditions. A
reduction facility of agricultural drainage was constructed in three types according to the
grid size, and experiments were conducted on various velocity and water levels.

The regression equation for capture efficiency was developed by including flow rate
as an experiment condition to apply to various drainage areas. In addition, the regres-
sion equation was provided to construct a reduction facility that considers topography
and debris characteristics by setting the design criteria and target-capture efficiency in
agricultural drainage. Target-capture efficiency can be calculated based on the flow-rate
condition according to the grid size of the reduction facility. However, the limit of the
installation standard was made under the condition that the flow rate was 0.16 m3/s or
less. The condition is to secure transportation capabilities and operate the reduced facilities
safely even if transportation debris is deposited on farmland drains.

In this study, there are limitations in that it can be applied only to some subject areas
due to the limitation of a reduction facility for agricultural drainage and the limitation of
hydraulic experiments. In addition, conditions such as soil and gravel flowing into the
agricultural drainage canal were not considered. In future studies, it is expected that the
applicability of the reduction facility will be expanded if additional studies such as various
reduction facilities and slope control of agricultural drainage are carried out.

6. Conclusions

In this study, a facility for the reduction of disasters caused by sedimentation of
debris in agricultural drainage was developed, and its applicability was evaluated. The
reduction facility was developed with reference to the FHWA and design criteria for a
400 mm agricultural drainage. Debris of crops, branches and other things were replaced
by circular bars of various sizes and lengths. Three types of reduction facilities, 4 × 4,
6 × 6 and 8 × 8, were developed by considering the vertical and horizontal net distance of
the agricultural drainage through which the debris passes and the hydraulic experiments
performed on 216 conditions from velocity (six cases), depth (six cases) and drop conditions
(two conditions).

The measured captures were 4.1~98.8% in 4 × 4 types, 20.3~99.4% in 6 × 6 types,
and 45.7~100.0% in 8 × 8 types, respectively. The range of difference in capture efficiency
depending on the inflow characteristics of the debris was found to be 1.67~6.08%. The
error range of capture efficiency for all reduction facilities was −3.92~2.54%, which was
calculated by the flow rate.

The regression equations were developed to construct the reduction facilities de-
pending on the drainage area or importance, by considering all the inflow characteristics.
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The reduction facilities of the equation were CE = 87.38 − 1028.86 × Q + 4487.68 × Q2

for the 4 × 4 type, CE = 103.50 − 944.53 × Q + 3763.47 × Q2 for the 6 × 6 type, and
CE = 103.01 − 459.38 × Q + 1707.52 × Q2 for the 8 × 8 type. The installation is possible
only when the flow rate is over 0.16 m3/s and the error range of 2.5~6.5% should be
considered depending on the inflow characteristics.

This study developed three types of reduction facilities to reduce the debris entering
the agricultural drainage, tested the performance and developed the equation. Although
the application of debris using hydraulic experiment has some limitation, the application of
reduction facilities appropriate for various topographic characteristics and target-capture
efficiency is expected.
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