
sustainability

Article

Load Balancing Algorithm on the Immense Scale of Internet of
Things in SDN for Smart Cities

Himanshi Babbar 1 , Shalli Rani 1,* , Divya Gupta 1 , Hani Moaiteq Aljahdali 2 and Aman Singh 3,*
and Fadi Al-Turjman 4,*

����������
�������

Citation: Babbar, H.; Rani, S.; Gupta,

D.; Aljahdali, H.M.; Singh, A.;

Al-Turjman, F. Load Balancing

Algorithm on the Immense Scale of

Internet of Things in SDN for Smart

Cities. Sustainability 2021, 13, 9587.

https://doi.org/10.3390/su13179587

Academic Editors: Zubair Baig and

Andrea Colantoni

Received: 28 July 2021

Accepted: 18 August 2021

Published: 26 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India;
himanshi.babbar@chitkara.edu.in (H.B.); divya.gupta@chitkara.edu.in (D.G.)

2 Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 37848, Saudi Arabia;
Hmaljahdali@kau.edu.sa

3 Department of Computer Science and Engineering, Lovely Professional University, Punjab 144411, India
4 Research Center for AI and IoT, Artificial Intelligence Engineering Department, Near East University,

Mersin 10, Turkey
* Correspondence: shalli.rani@chitkara.edu.in (S.R.); amansingh.x@gmail.com (A.S.);

fadi.alturjman@neu.edu.tr (F.A.-T.)

Abstract: Since the worldwide Internet of Things (IoT) in smart cities is becoming increasingly
popular among consumers and the business community, network traffic management is a crucial
issue for optimizing the IoT ’s performance in smart cities. Multiple controllers on a immense scale
implement in Software Defined Networks (SDN) in integration with Internet of Things (IoT) as
an emerging paradigm enhances the scalability, security, privacy, and flexibility of the centralized
control plane for smart city applications. The distributed multiple controller implementation model
in SDN-IoT cannot conform to the dramatic developments in network traffic which results in a load
disparity between controllers, leading to higher packet drop rate, high response time, and other
problems with network performance deterioration. This paper lays the foundation on the multiple
distributed controller load balancing (MDCLB) algorithm on an immense-scale SDN-IoT for smart
cities. A smart city is a residential street that uses information and communication technology (ICT)
and the Internet of Things (IoT) to improve its citizens’ quality of living.Researchers then propose
the algorithm on the unbalancing of the load using the multiple controllers based on the parameter
CPU Utilization in centralized control plane. The experimental results analysis is performed on the
emulator named as mininet and validated the results in ryu controller over dynamic load balancing
based on Nash bargaining, efficient switch migration load balancing algorithm, efficiency aware load
balancing algorithm, and proposed algorithm (MDCLB) algorithm are executed and analyzed based
on the parameter CPU Utilization which ensures that the Utilization of CPU with load balancing is
20% better than the Utilization of CPU without load balancing.

Keywords: Internet of Things (IoT); Software-Defined Networking (SDN); MDCLB algorithm;
mininet; ryu controller

1. Introduction

With the rising development of smart cities, the needs for SDN resource distribution
mechanisms are rapidly increasing. Many areas in smart cities, such as automobiles,
aviation, smart buildings, and factory equipment, rely on SDN. Different networking
system environments have been designed and implemented in smart cities over the last
twenty years in order to realize so-called smart cities. Dedicated IoT devices, as well as
ubiquitous but non-dedicated devices like smart phones and car sensors, are used in such
networks. The IoT is an innovative concept that facilitates diverse networks to be leveraged
by adaptive ecosystems. In [1] specific, RFID-equipped devices, actuators, wireless sensors,
and wireless networking devices are hooked up to the web to build an IoT framework.

Sustainability 2021, 13, 9587. https://doi.org/10.3390/su13179587 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-4580-6617
https://orcid.org/0000-0002-2799-5269
https://orcid.org/0000-0003-1343-2219
https://orcid.org/0000-0001-6571-327X
https://doi.org/10.3390/su13179587
https://doi.org/10.3390/su13179587
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13179587
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13179587?type=check_update&version=2

Sustainability 2021, 13, 9587 2 of 16

As per the rise of the web in the Economic Times report, in India in 2019 the number
of connected devices was increased to 700 million. IoT is an extension of access to the
Internet in daily objects and virtual devices. IoT is the description of a system/network
in such a way that “things” including devices have sensors that are integrated by public
or private networks. According to Cisco’s recent study in [2], 7 billion devices are linked
across the web; however, by 2022 this number will increase to 70 billion. With the massive
intervention of integrated devices, carriers are now facing the complicated regulation
of the elements and the congested systems. If the systems are not equipped, this surge
of Internet-of-Things, in which objects are traffic creators, not just users in the system,
can indeed paralyze the system. Therefore, these integrated devices generate a massive
amount of data that includes the data that is fabricated in the present year. Instead of
the unique capabilities and features, the different challenges in [3] are established that
are scalability, security, privacy, and flexibility. Therefore, managing the networks in the
traditional technology like IoT and cloud is not feasible; therefore, the need of Software-
Defined Networking (SDN) came into existence for the novel approach used for efficient
management of the resources of the network. Software-Defined Networking (SDN) is a
novel and evolving concept that offers growing possibilities and opportunities for effective
and scalable network design [4]. To satisfy the fulfillment of Quality of Service (QoS)
and with the limited network availability, one of the keynotes that have been taken into
consideration is the load balancing issue. It is quite a tedious job to handle the massive
amount of load for a single server. Therefore, we can use many servers with the load
balancers that behave as the front end, although load balancing is an important aspect in
SDN. The essential principle underlying SDN is that forwarding plane and control plane
are isolated. Within dedicated hardware, both the control plane and the forwarding plane
are coupled in conventional networking. Networks are nowadays more programmable
and thus the applications like load balancers do not rely on the dedicated hardware that
can be executed with the association of controller, and OpenFlow switches in the network
can act as a load balancer; for this we do not require dedicated hardware [5].

1.1. Motivation

Load balancing in SDN-IoT is the distribution of load amongst the different servers in
order to refine the resources, degrade the response time, maximize the throughput, and
enhance Quality of Service (QoS) [6]. In conventional load balancing networks, it facilitates
the support of hardware which is very expensive and suffers from a lack of flexibility; with
this it becomes a single point of failure easily. Availability of service is predominant in
aligning the satisfaction of the end-users, which has a higher level of significance on the
achievement of balancing the load amongst the process clusters [7]. The connection of most
of the people with the internet affects the web traffic which causes the congestion of the
network and the loss of packets. With this technique, load balancing refines the efficiency
of the network. Load balancing can be either fixed or variable. In fixed load balancing,
the conditions are predetermined, and the criteria are now to be followed to accomplish
the conditions. However, this form of load balancing is not as effective as the users’
conditions cannot be constant in an environment in real-time [8]. Then the requirement
for handling variable load balancing arises. In variable load balancing, the conditions are
not predetermined and based on the modified conditions the load is segregated. There are
multiple issues associated with reliability, scalability, and flexibility in a single controller for
the large scale SDN-IoT. Therefore, to overcome some of the issues mentioned above, the
researchers have chosen multiple distributed controllers for load balancing on a immense-
scale SDN-IoT using the Ryu Controller [9]. Some items are required to identify the load
balancing in SDN-IoT:

1. In an efficient distributed load balancing approach in SDN-IoT, how the load can
be balanced among the heterogeneous devices and how to adapt our distributed
architecture to various security frameworks.

Sustainability 2021, 13, 9587 3 of 16

2. An efficient switch migration load balancing in SDN-IoT; the problem is how the
framework can be executed in IoT for the large-scale environment and how switch
migration can be done on the traffic demands.

3. As per the survey, the authors found the problem of implementation of Switch
Migration Decision Making (SMDM) on an immense scale IoT with the massive
amount of traffic needed to evaluate the performance.

To interpret the issues for the immense scale SDN-IoT, researchers have thoroughly
undergone the issue of balancing the load of the forwarding plane in the immense scale
SDN-IoT. In this paper, researchers have considered the basic flow of multiple distributed
controllers for load balancing on an immense scale SDN-IoT, and the motive of the proposed
algorithm is to interpret the issues of balancing the load in a distributed manner.

1.2. Problem Definition

The drawback of the existing algorithms is that they did not consider the large scale
networks in multiple controllers which lead to the constraint of fault tolerance and reliabil-
ity. It requires load balancing on all the servers rather then creation of one heavily loaded
server which can be unresponsive during the huge traffic. However, some researchers
have worked upon the combination of alternatives for its solution (TOPSIS) but in load
balancing rather than assigning weights to the different alternatives, things are required to
be handled logically for real-time applications. Consequently, in this article, intra and inter
cluster showing the migration of load from heavily loaded server to the least loaded server
is simulated and tested to make the network stable and reliable. The proposed scheme
focuses on this approach only and functions on the basis of threshold value of the load
for one server. If the load on any server in intra cluster is greater than threshold value
then the load is migrated from the intra cluster to inter cluster which is selected with the
help of the proposed algorithm. The proposed algorithm also considers the efficient use of
resources and hence has shown the optimal results on the existing approaches in terms of
CPU utilization.

1.3. Contributions

The main contributions of this paper are as follows:

• Facilitates the SDN-IoT architecture and survey of the load balancing techniques
in SDN.

• Proposes a Multiple Distributed Controller Load Balancing (MDCLB) algorithm on
an immense scale SDN-IoT. In this, variable load balancing for the controllers in the
control plane is to minimize the network delay and restrict unbalancing the traffic load.

• For this, we have the threshold value to compare with the load on the servers. If the
threshold value is more than the load then the particular switch on the server and the
migration of packets from intra custer to inter cluster will be performed to balance
the load.

• To solve the problem of scalability and reliability, the issue of balancing the load in the
control plane on an immense scale shows the uniformity of the information between
the controllers.

• Tests the proposed algorithm in mininet emulator with python language using
Ryu controller.

• Validates the proposed algorithm based on the QoS parameters, including CPU Utilization.

The remaining paper is structured as follows: Section 2 studies the background of the
papers, Section 3 focuses on the methodology of the proposed multiple distributed con-
trollers algorithm and flowchart, Section 4 evaluates the implementation and performance
of the proposed algorithm, and Section 5 concludes the study.

Sustainability 2021, 13, 9587 4 of 16

2. Background
2.1. Integration of SDN and IoT

The integration of SDN and IoT as shown in Figure 1 is benefited in various ways:
firstly, performing the integration of SDN and IoT is a fundamental problem that can be
solved when one can have intelligent routing decision making that can be deployed using
SDN [10] and secondly, simplification of information collection, analysis, and decision
making [11]. Thirdly, the visibility of network resources and management of the network
is simplified based on user, device, and application-specific requirements; therefore, the
visibility for network resources and simplification concerning these aspects can be done
with the indication of SDN in IoT. Lastly, intelligent traffic pattern analysis and coordinated
decisions are done with the help of SDN IoT [12]. In SDN technology, more intelligence is
proved in the network and improves the efficiency of the network.

Figure 1. SDN Integration with IoT.

Sustainability 2021, 13, 9587 5 of 16

Therefore, this tends to increase the burden and diminishes system extensibility. With
the emergence of SDN in telecommunications, the entire idea of network management
has indeed been modified, thereby attempting to make it the inter-operable platform that
enables the system administrators to modify the flow of traffic from one switch to the next
with few lines of code [13,14]. The necessity for this system is to enable the connection of
tens of millions of devices and fast content providers for traffic routing. The three-layered
architecture of SDN-IoT is defined as the layer is known as the forwarding plane which
consists of many network elements, which has Datapaths of SDN that have explored the
capabilities of Control Data-Plane Interface (CDPI) Agent. The control layer, which is also
coined as SDN Controller, converts the requirements and explores the level control over
the data paths when giving the information to the applications of SDN. The application
layer is the topmost layer that interacts for their requirements with Northbound Interface
(NBI) Drivers that include load balancers, firewalls, IDS, etc.

2.2. Related Research

This section reviews recent research achievements of the published work in a study of
the past five years from 2016 until mid-2020.

Wang et al. [15] proposed the switch migration decision making approach to focus
on the load imbalance by a switch migration trigger factor which will utilize the efficiency
while migrating the switches. To illustrate the feasibility of our idea, the authors introduce
a validation of the concept and provide a quantitative analysis via a Mininet emulator.
In the suggested reference Hai and Kim [16], methodology ensures load balancing to be
done in the control plane by effective utilization of resources, improved system stability,
and durability. Besides, communication latency is greatly decreased compared to existing
methods by the use of a predetermined load threshold. The authors in this paper have
eliminated the single point of failure problem in order to provide the reliable network and
ensure the balancing of load in the control plane for each controller. Simulation results
show that the methodology being proposed is successful in terms of overhead communica-
tion and load performance by using the threshold value. The authors of Babbar et al. [17]
proposed a load balancing algorithms based on the multiple controllers. In this, by selecting
the latency and multiple overheads, this proposed algorithm has improved the latency by
25%. The study of the proposed technique in the Madzharov and Nemkov [18] verified
its quality and productivity in terms of acquiring an optimized solution for achieving a
balanced load of connectivity and enforcing the network management security schemes
needed for rapid re-routing in SDN. The dynamic mapping is done in Cello et al. [19], who
framed the algorithmic approach intended to resolve and lessen load imbalances between
SDN controllers by effective SDN switch migration. Modeling proves that BalCon is com-
putationally compact and lessens the load disparity between SDN controllers (expressed
as variance) by 35% by switching only minimal switching devices.

Memon et al. [20] presented a framework designed to detect a spoofing attack that
investigates the probability distributions of obtained power established for the regions
configured for mobile (moving) users. Consequently, we investigate the effect on the
confidentiality scope of targeted customers in the absence and presence of observer. Au-
thors of Deng and Wang [21] suggest Application-aware QoS routing algorithm (AQRA)
SDN dependent IoT networking to ensure various QoS specifications for high priority
IoT applications and to conform optimal navigation paths to existing network status.
Cui et al. [22] proposed the SMCLBRT approach of various SDN controllers based on the
response time which takes into consideration the modified characteristics of response time
in the real environment in contrast to the load of the controller. Reference [23] adopts
EASM to handle loads of controllers and enhance the capacity of the migration. For eval-
uating load balancing on controllers, authors implement the load difference matrix and
trigger factor. Authors also implement the migration efficiency problem, which effectively
addresses the load balancing rate and the migration cost to efficiently migrate switches.
The authors of Eghbali et al. [24] suggested the distributed approach for the load balance

Sustainability 2021, 13, 9587 6 of 16

between SDN and IoT based devices. The designed model enables the application of
distinct distributed management approaches. Experimental findings demonstrate that
the proposed method gives away tasks equally between devices and shows an average
reduction turnaround time and average waiting time and increased performance process-
ing. In this paper Li et al. [25] developed the Nash game bargaining method to reasonably
enhance the two conflicting objectives of migration costs and load balance. An enhanced
firefly technique is used to overcome the problem, and the optimum network configuration
status is achieved. The test results suggest that this technique should maximize the cost of
migration as well as the load balance simultaneously. Babu et al. [26] illustrates the need for
Cloud and Internet of Things connectivity and agent-oriented and Cloud-assisted Cloud
IoT model built on the multilayered design model. A Cloud-based IoT model applications
paradigm is presented, as well as a reference architecture for agent-oriented vision and
Cloud-assisted vision. Dashtipour et al. [27] proposed the multimodel persian dataset for
more than 800 utterances, as a benchmark resource and the other novel is context aware
proposed for the sentimental analysis. In comparison to unimodal information, experi-
mental results show that contextual integration of multimodal features such as textual,
audio, and visual features delivers greater performance (91.39 percent) (89.24 percent) re-
spectively. Sahoo et al. [28] paper represents ESMLB mechanism which aims to efficiently
allocate switches to an underutilized controller. Amongst many alternatives, a multi-
criteria decision-making approach, i.e., for choosing a goal controller. In this mechanism,
Technique for Order by Similarity to an Ideal Solution (TOPSIS) is used.

Our proposed approach focuses on resolving the issue of balancing the load based on
the multiple controllers that interact with the switch of forwarding layer which thereby
transfers the packet_in packets to the switch and controller responds to the message with
the packet_out packets and acquires the switch information through the packet_in packets.
In this proposed approach the main focus is on the migration of load from the heavily
loaded server to the lightly loaded one by checking the threshold value. If the threshold
value is more than the load assigned to the server then the cluster’s load is balanced, or
else we will migrate from intra cluster to inter cluster between the five SDN controllers.

3. Methodology

In this section, researchers have proposed the MDCLB algorithm for making the
load balance among the various controllers [29]. For this, researchers have proposed the
mathematical model for optimizing the multiple controllers in the forwarding layer to
achieve the maximum CPU utilization amongst the various controllers.

3.1. System Model

The messages which are requested are transmitted by the switch on the control
layer inside the multiple distributed controllers for load balancing because controllers
are vast, which puts a huge workload on the following controller which results in the
packet delay [23]. As a result, controller is failed and network collapse in the worst case
scenario. The researcher demonstrated multiple distributed controllers load balancing
strategy focused on a consistent delay for controllers to configure the identified issues in
the control layer [24]. When a controller crashes or the one controller is overburdened then
the algorithm is being used to encourage the overloaded or defective switches controlled
by the controller. Thereby, optimizing load balancing of the control layer becomes effective
and efficient. The network topology for the control plane shows the interaction between
the switches and controllers. The SDN network in Figure 2 is comprised of 16 switches and
4 controllers. Switches and Controllers are represented as "P" and "S" respectively.

Sustainability 2021, 13, 9587 7 of 16

Figure 2. SDN Architecture.

In the control layer architecture explained in the above Figure 2, every switch is
interconnected to one controller and one or more than one switches are connected to
the controller. Let us say the quantity of SDN-IoT controllers is m; therefore, S = Sa
a = 1, 2, 3, . . . , m S is the collection of controllers, Sa represents the ath controller. Let us
say that the total of SDN-IoT switches in the forwarding layer is n; therefore, P = Pb b
= 1, 2, 3. , n, where P is the collection of switches and Pb represents the bth switch.
Representation of switches taken as "n" and controllers as "m" can create a connection of
control plane; therefore, they are denoted by a Xmn matrix derived from [28] which is
comprised of rows as m and columns as n, as explained in Equation (1):

Xmn =

x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n
x31 x32 x33 . . . x3n
.
.
xm1 xm2 xm3 . . . xmn

 (1)

where, Xmn {
0 ; bth switch Pb is not controlled by the ath controller Sa.
1 ; bth switch Pb is controlled by the ath controller Sa.

}
Let us assume that the packet_in packets speed are passed by the bth switch Pb to the

ath controller Sa at time t1 is uab; therefore, Equation (2) is mentioned below:

uab = xabgab(t1) (2)

Sustainability 2021, 13, 9587 8 of 16

where gab(t1) represents the speed where bth switch Pb passes the packet. In the course of
interim [1, T1] in Equation (3), number of packets passed by bth switch Pb to ath controller
Sa is uab,

Uab =
∫ T1

1
uabwt1

=
∫ T1

1

Xabgab(t1)wt1
totalnumbero f packets

(3)

Therefore, the totality of the speed of the incoming packets are processed by the ath

controller; Uab from n switches P1, P2, P3. . . Pn at time t1 in Equation (4) is:

Ua =
n

∑
b=1

(Xabgab(t1)) (4)

In the course of interval [1, T1], the number of packet_in packets are refined by the ath

controller Uab from n switches that is P1, P2, P3, Pn is described in Equation (5) as:

Ua =
∫ T1

1

n

∑
b=1

(Xabgab(t1)wt1) (5)

Therefore, the number of packet_in packets is refined in Equation (6) as: by m con-
trollers in the control layer from n switches in the forwarding layer is:

U =
m

∑
a=1

Ua

=
m

∑
a=1

(
∫ T1

1

n

∑
b=1

(xabgab(t1))wt1)

=
∫ T1

1

m

∑
a=1

(
n

∑
b=1

(xabgab(t1)))wt1 (6)

In the multiple distributed controllers in the immense scale SDN-IoT referred from [17],
on acquiring the new flow from the switch, the switches transfer the initial flow packet to
the designated controller. Evaluation and decision of the path to transfer the flow are taken
by the controller. Forwarding rules are installed on all the flow paths of the switches. The
controller transmits the new flow request information of the flow path and evaluates them
when the massive amount of flows are put in the IoT and then the controller immediately
acquires. The peak forwarding rules installed on the flow path of the switches create the
hinder/delay in the network, which results in the imbalance of load of the IoT.

The delay in the network consists of processing, queuing, transmission, and prop-
agation delay. In particular, controllers and switches can be assigned as constant in the
processing and propagation delay. Thus, the delay in the network is dependent on queuing
delay. From the queuing model Q|Q|1, researchers have concluded that queuing delay
T1b,y of the packet_in packets are transferred by the bth switch Pb in the ath controller Sa
which can be represented in Equation (7) as:

T1b,y =
βa

γa(γa − βa)
(7)

where βa = Ua/T1 is the entry speed of the packets, thus, the average value of incoming
packets perforate at the ath controller Sa in unit time, βa = Ua/T1w indicates the average
rate of the ath controller Sa refines the incoming packets.

Suppose that the communication delay of packets transferred by the bth switch Pa of
the forwarding layer to the ath controller Sa of the control layer is T1a,c, can be achieved

Sustainability 2021, 13, 9587 9 of 16

by evaluating the maximal delay of the effectual minimal path between the switch Pb and
controller Sa; therefore, in Equation (8),

T1a,c = w(Pb, Sa) where max(Pb) ∈ P; min(Sa) ∈ S (8)

The result obtained for a complete time Ka of the bth switch that acquires a new
flow, the ath controller evaluates the flow path and switches on the path that installs the
forwarding rules are calculated in Equation (9) as:

Ka = T1p + T1w + T1b,y + T1a,c (9)

T1p and T1w represent the processing and transmission delay respectively. Therefore,
the totality of the delay between the control layer and forwarding layer is explained
in equation :

K =
m

∑
a=1

Ka

=
m

∑
a=1

(T1p + T1w + T1b,y + T1a,c

=
m

∑
a=1

(T1p + T1w +
βa

γa(γa − βa)
+ w(Pb, Sa)

where max(Pb) ∈ P; min(Sa) ∈ S (10)

In SDN-IoT, workload from the controllers can be estimated as the number of packet_in
packets requests. Therefore, the system model of the controllers can be calculated in
Equation (11) as:

D = {Xmn, K, U} (11)

where Xmn, K, U are represented by (1), (6), (9) respectively. If the delay in the network can
be decreased it is easy to accomplish the balancing of the load. Thus, the system model in
Equation (12) can be transformed into the least delay model, named as:

D = {Xmn, K} (12)

Whenever the requests for the controller by the switch are very massive or the con-
troller loses, the switch is matched to a specific controller for balancing the delay [30].
Congestion in the network is induced by the expanded load of the controllers that can be
lessened by diminishing the queuing and transmission delay.

3.2. Proposed Multiple Distributed Controllers Algorithm

This technique is based on the balanced delay which represents the multiple dis-
tributed controllers load balancing algorithm. For a sustainable network, load on the
servers needs to be balanced, as per the related research the server in the IoT network
can handle maximum 256 user requests per second and 1 terabyte (TB) of transferring
the data per day. For the light weight requests of the users the normal server can handle
2000–2500 requests per second. It depends upon the requirement of the data transmission
and for the different level of the application and under different scenarios, the value of
threshold will vary. Therefore, in a new algorithm either the threshold of user requests or
threshold of transmitted data can be considered to balance and migrate the load on the
servers. However, in the present article we have assumed threshold of 40 user requests
for a smaller network by keeping in mind the data generated in the smart cities which
can be further enlarged as per the requirement of the application. Let us state that the
threshold value for the packet_in packets that are refined by the controller in intra cluster
at time is Uth can be named as the immense load on the controllers. The quantity of the
incoming packets that the ath controller Sa refines from the n switches is higher than or

Sustainability 2021, 13, 9587 10 of 16

equivalent to the immense load Uth of the ath controller Sa, and the requested quantity
of incoming packets in the intra cluster that the bth switch Sb to the ath controller Sa is Ua
and Ua > Uth/n. The addition of the queuing and transmission delay is higher than the
nodal processing delay and they are thereby used to again transmit the incoming packets
to the unused controllers at the minimum distance and the related controller transforms
from start to end, i.e., x = 1. The fragment of the packet_in packet in intra cluster that goes
beyond the controller is passed to the another controller in the inter cluster that has the
shortest distance. Or else, the packets pursue to hold for the controller to address unless
the iteration is achieved. x = 0 says that the controller is fizzled and the switch through
the G(P, S) signifies the idle slave with the minimum distance as the master, i.e., x = 1, and
the mentioned steps are rehashed. Algorithm 1 is explained by considering the Figure 2
topology, which shows the migration of switches overloaded load from intra cluster to
inter cluster and flowchart proposed in Figure 3 is clarified beneath.

Figure 3. Proposed Flowchart.

Sustainability 2021, 13, 9587 11 of 16

Algorithm 1 Load Balancing in SDN using multiple controllers (MDCLB).

Input: Initial value of Xmn mentioned in equation-1
speed of the packets Uab mentioned in equation-2
Output: Updated the controllers load on CPU
Begin:
1 bth switch Pb is controlled by the ath controller Sa do
2 max(Pb) ∈ min(Sa) do
3 if(Sa decreases) then
4 Xmn = 0, bth switch Pb is not controlled by the ath controller Sa
5 modify Pb −→ Sminw(p,s)
6 Xminw(p,s)b

= 0
7 endif
8 Packet speed if Uab > threshold_value Uth/n, addition of processing delay T1p
9 and propagation delay T1b,y(Uab − Uth/n) > addition of transmission delay
10 T1s(Uab − Uth/n)
11 if Uab > Uth/n and
12 T1p + T1b,y (Uab − Uth/n > T1s(Uab − Uth/n + T1w
13 Insert and manage the controller
14 with the minimal distance in the topology
15 Xminw(p,s)b

= 1
16 messages of incoming packets are higher than the threshold value
17 set by the controller is being processed to the newest controller.
18 endif
19 endfor
End

The above mentioned algorithm denotes that in this section, researchers have con-
verted the balancing of load into network response time which circumvent by diminishing
the queuing and transmission delay. Steps to generate the migrate action for each over-
loaded controller are as follows:

1. Starting value of Xmn given in Equation (1), the rate of packet Uab given in Equation (2).
2. The value of Xmn is defined as:

• if Xmn = 0; bth switch Pb is not controlled by the ath controller Sa.
• if Xmn = 1; bth switch Pb is controlled by the ath controller Sa.

3. if Xmn = 0; modifying the bth switch Pb at the shortest distance to the controller
Sminw(p,s).

4. if Sminw(p,s) = 0 then update the packet rate and addition of processing and propaga-
tion delay.

5. If both are greater then insert and manage the controller with the shortest distance in
the topology for the switch.

6. if Sminw(p,s) = 1 then incoming message packets higher than the threshold value set
by the controller is being processed to the newest controller.

4. Experimentation and Performance Evaluation

To assess the performance of our multiple distributed controllers, load balancing
algorithm for the immense scale SDN-IoT, researchers organized the experimental platform.
This proposed scheme is analyzed by network emulation by the topology of network using
mininet [31] and ryu controller [32]. Ryu is chosen as the most appropriate controller
amongst all the other controllers available which has the finer flexibility and reliability
which is best suited for the immense scale SDN-IoT. The Ryu experimental and simulation
environment comprised of mainly 8th generation Intel@ CoreTM i7 Quad-Core processor,
16 GB RAM with 512 GB hard disk, Oracle Virtual Box 5.2, Processor having 4 CPU’s, the
system is bidirectional in Ubuntu 18.04 LTS. The interaction between the switches and
controllers is performed by the use of the OpenFlow 1.3 protocol in which we have created
the linear topology having the remote controller 127.0.0.1:6653.

Sustainability 2021, 13, 9587 12 of 16

Load Balancing is defined as the distribution of load amongst the different servers in
order to refine the resources, degrade the response time, and maximize the throughput.
Connection of most of the people with the internet affects the web traffic which causes
the congestion of the network and the loss of packets. With this technique, load balancing
refines the efficiency of the network. The dynamic load balancing based on Nash bargain-
ing, efficient switch migration load balancing algorithm, efficiency aware load balancing
algorithm, and proposed algorithm are executed and analyzed based on the parameter
CPU Utilization. The iperf test tool is used to produce the load sent to the respective
controllers. The number of controllers and time are displayed at x-axis and CPU Utilization
by the controllers displayed at y-axis. The iperf test tool calculates the total number of
controllers that took how much time to utilize the CPU without and with load balancing.
The controllers load with load balancing is facilitating better results than controllers load
without load balancing. The proposed algorithm has shown improvement in average-CPU
Utilization with 60%, 62%, 61%, 64%, and 63% over dynamic load balancing based on Nash
bargaining, efficient switch migration load balancing algorithm, and efficiency aware load
balancing algorithm.

The performance can experiment with the proposed algorithm in the large scale SDN-
IoT integration. Researchers explain the Algorithm 1 for the distributed controllers. The
influence of CPU Utilizing for designing the controllers without balancing the load is
represented in the Figure 4. Before balancing the load, the CPU utilization as per the time
duration is assigned to each controller. With regard to 0, 5, 10, 15, 20 s the CPU utilization
for controller 1 is 50%, 40%, 51%, 50%, 45% for DLBNB; 55%, 62%, 56%, 60%, 60% for
ESMLB; 69%, 56%, 35%, 65%, 72% for EASM; 64%, 49%, 45%, 60%, 68% for proposed
algorithm and so on for the different controllers.

Figure 4. Controller load without load balancing.

After balancing the load among the different controllers, the CPU utilization at dif-
ferent time intervals is shown in Figure 5. The controllers are modifying drastically every
time as the influence of configuring with the load balancing algorithm as shown in Figure 5.
The below-represented figure shows the minimum change in the controllers’ fluctuations.
With regard to 0, 5, 10, 15, 20 s the CPU utilization for controller 1 is 66%, 66%, 64%, 66%,

Sustainability 2021, 13, 9587 13 of 16

64% for DLBNB; 67%, 65%, 63%, 65%, 62% for ESMLB; 64%, 68%, 66%, 64%, 68% for EASM;
69%, 70%, 68%, 68%, 69% for proposed algorithm and so on for the different controllers.

Figure 5. Controller load with load balancing.

The average CPU Utilization of the controllers in both the scenarios before and after
load balancing as shown below: the average case of CPU Utilization of the controllers
in both the scenarios are the same. In Figure 6 before balancing the load among the
different controllers the average CPU utilization for controller 1 is 60%; Controller 2 is
40%, Controller 3 is 54%, Controller 4 is 45%, and for Controller 5 is 50%. Maximum CPU
utilized is by Controller 1; therefore, the load is to be balanced for Controller 1 to show
the migration.

In Figure 6 average CPU utilization after balancing the load for Controller 1 is 60%;
Controller 2 is 62%; Controller 3 is 61%; Controller 4 is 64%, and for Controller 5 is 63%.
Therefore, the average of the controllers without load balancing is 5% lesser than average
with load balancing. The load is more balanced in Figure 6 as compared to Figure 6; this is
dependent on the balancing delay of the proposed algorithm which chooses a controller
and accomplishes the aim of balancing the load. Therefore, the aim of load balancing is
fulfilled based on the balanced delay.

MDCLB algorithm has shown the improvement with load balancing on dynamic load
balancing based on Nash bargaining, efficient switch migration load balancing algorithm,
and efficiency aware load balancing algorithm. Figure 6 shows the utilization of memory
by the algorithms implemented in this paper. MDCLB algorithm is again performing better
over the comparative algorithms.

To accomplish the balancing of the load equally among all the controllers, MDCLB
algorithm can be taken. Figure 5 displays the CPU utilization with load balancing of
the dynamic load balancing based on Nash bargaining, efficient switch migration load
balancing algorithm, and efficiency aware load balancing algorithm. CPU is considered to
be the most essential factor for estimating the controllers’ load on the controllers. Therefore,
consideration of utilization of CPU is eminent to compute the load on controllers. CPU
utilization is computed on already existing algorithms which ensures that the time is
unbalanced. To balance the load on the controller, it is mandatory to make better use of the
resources to avoid unbalancing the load on the controllers. Therefore, given comparison of
Multiple Distributed Controllers, the load balancing algorithm has shown improvement
for the utilization of resources.

Sustainability 2021, 13, 9587 14 of 16

Figure 6. Controller load with average CPU utilization.

5. Conclusions

Software-defined networking in Internet of Things is defined as the latest and most
enhancing technology is SDN and is to be considered as one of the most promising solutions
to meet and cater to the demands. The objective of this paper is to resolve the issue of the
unbalancing of the load on an immense scale SDN-IoT. A novel load balancing algorithm
named an MDCLB Algorithm has been proposed to vanquish the load imbalance in the
forwarding plane and control plane. In this paper, a Multiple Distributed Controller Load
Balancing (MDCLB) algorithm is proposed on an immense scale SDN-IoT. In this, variable
load balancing for the controllers in the control plane is to minimize the network delay
and restrict unbalancing the traffic load. For this, we have the threshold value to compare
with the load on the servers. If the threshold value is more than the load, the particular
switch on the server then the migration of packets from intra custer to inter cluster will
be performed to balance the load It is implemented in python using mininet emulator
and iperf test tool. Comparison of the various algorithms for SDN-IoT based applications
including dynamic load balancing based on Nash bargaining, efficient switch migration
load balancing algorithm, and efficiency aware load balancing algorithm with proposed
MDCLB algorithm for the parameter CPU utilization which has proved the validation of the
proposed algorithm. Controllers’ load with load balancing increased the CPU utilization
compared to comparative algorithms for SDN-IoT based applications. The findings are
preliminary and show that load balancing algorithms are successful in the forwarding
plane. This research will facilitate and promote the road network and traffic congestion.

Author Contributions: Conceptualization, H.B., S.R., D.G. and H.M.A.; Methodology, H.B., S.R.
and A.S.; Validation, A.S., F.A.-T. and H.M.A.; Formal Analysis, A.S. and H.M.A.; Investigation,
H.M.A. and S.R.; Resources, H.M.A.; Data Curation, H.B. and S.R.; Writing—Original Draft, H.B.,
S.R. and H.M.A.; Writing—Review Editing, S.R. and A.S., Supervision, F.A.-T., D.G. and A.S.; Project
Administration, H.M.A., D.G. and S.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This project was supported by the Deanship of Scientific Research (DSR), King
Abdulaziz University, Jeddah, under grant No. (KEP-11-611-42).

Sustainability 2021, 13, 9587 15 of 16

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khedkar, S.P.; Aroulcanessane, R. SDN enabled cloud, IoT and DCNs: A comprehensive Survey. In Proceedings of the 2019 5th

International Conference on Computing, Communication Control and Automation, ICCUBEA 2019, Pune, India, 19–21 September 2019.
[CrossRef]

2. Babbar, H.; Rani, S. Emerging Prospects and Trends in Software Defined Networking. J. Comput. Theor. Nanosci. 2019,
16, 4236–4241. [CrossRef]

3. Sood, K.; Yu, S.; Xiang, Y. Software-Defined Wireless Networking Opportunities and Challenges for Internet-of-Things: A Review.
IEEE Internet Things J. 2016, 3, 453–463. [CrossRef]

4. Sondur, S. Software Defined Networking for Beginners. Technical Report. 2014. 3370.4640. Available online: https://www.
researchgate.net/publication/335000866_Software_Defined_Networking_for_Beginners (accessed on 19 August 2021). [CrossRef]

5. Babbar, H.; Rani, S. Software-Defined Networking Framework Securing Internet of Things. In Integration of WSN and IoT for
Smart Cities; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–14.

6. Khan, S.; Ali, M.; Sher, N.; Asim, Y.; Naeem, W.; Kamran, M. Software-Defined Networks (SDNs) and Internet of Things (IoTs): A
Qualitative Prediction for 2020. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 385–404. [CrossRef]

7. Pourghebleh, B.; Hayyolalam, V. A comprehensive and systematic review of the load balancing mechanisms in the Internet of
Things. Clust. Comput. 2020, 23, 641–661. [CrossRef]

8. Horvath, R.; Nedbal, D.; Stieninger, M. A Literature Review on Challenges and Effects of Software Defined Networking. Procedia
Comput. Sci. 2015, 64, 552–561. [CrossRef]

9. Islam, M.T.; Islam, N.; Refat, M.A. Node to Node Performance Evaluation through RYU SDN Controller. Wirel. Pers. Commun.
2020, 112, 555–570. [CrossRef]

10. Tayyaba, S.K.; Shah, M.A.; Khan, O.A.; Ahmed, A.W. Software defined network (SDN) based Internet of Things (IoT): A road
ahead. In Proceedings of the International Conference on Future Networks and Distributed Systems, Cambridge, UK, 19–20 July
2017; p. 15.

11. Kalkan, K.; Zeadally, S. Securing internet of things (iot) with software defined networking (sdn). IEEE Commun. Mag. 2017, 56,
186–192. [CrossRef]

12. Vandana, C. Security improvement in iot based on software defined networking (sdn). Int. J. Sci. Eng. Technol. Res. (IJSETR) 2016,
5, 2327–4662.

13. Mishra, S.; AlShehri, M.A.R. Software defined networking: Research issues, challenges and opportunities. Indian J. Sci. Technol.
2017, 10, 1–9. [CrossRef]

14. Jarraya, Y.; Madi, T.; Debbabi, M. A survey and a layered taxonomy of software-defined networking. IEEE Commun. Surv. Tutor.
2014, 16, 1955–1980. [CrossRef]

15. Wang, C.; Hu, B.; Chen, S.; Li, D.; Liu, B. A Switch Migration-Based Decision-Making Scheme for Balancing Load in SDN. IEEE
Access 2017, 5, 4537–4544. [CrossRef]

16. Hai, N.T.; Kim, D.S. Efficient load balancing for multi-controller in SDN-based mission-critical networks. In Proceedings of
the 2016 IEEE 14th International Conference on Industrial Informatics (INDIN), Poitiers, France, 19–21 July 2016; pp. 420–425.
[CrossRef]

17. Babbar, H.; Rani, S.; Masud, M.; Verma, S.; Anand, D.; Jhanjhi, N. Load balancing algorithm for migrating switches in
software-defined vehicular networks. Comput. Mater. Contin. 2021. [CrossRef]

18. Madzharov, N.D.; Nemkov, V.S. Smith predictor with sliding mode control for processes with large dead times. J. Electr. Eng.
2017, 68, 235–244. [CrossRef]

19. Cello, M.; Xu, Y.; Walid, A.; Wilfong, G.; Chao, H.J.; Marchese, M. BalCon: A distributed elastic SDN control via efficient switch
migration. In Proceedings of the 2017 IEEE International Conference on Cloud Engineering, IC2E 2017, Vancouver, BC, Canada,
4–7 April 2017; pp. 40–50. [CrossRef]

20. Memon, I.; Shaikh, R.A.; Hasan, M.K.; Hassan, R.; Haq, A.U.; Zainol, K.A. Protect Mobile Travelers Information in Sensitive
Region Based on Fuzzy Logic in IoT Technology. Secur. Commun. Netw. 2020, 2020, 8897098. [CrossRef]

21. Deng, G.C.; Wang, K. An Application-aware QoS Routing Algorithm for SDN-based IoT Networking. In Proceedings of the
2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 186–191. [CrossRef]

22. Cui, J.; Lu, Q.; Zhong, H.; Tian, M.; Liu, L. A Load-Balancing Mechanism for Distributed SDN Control Plane Using Response
Time. IEEE Trans. Netw. Serv. Manag. 2018, 15, 1197–1206. [CrossRef]

23. Hu, T.; Lan, J.; Zhang, J.; Zhao, W. EASM: Efficiency-aware switch migration for balancing controller loads in software-defined
networking. Peer-to-Peer Netw. Appl. 2019, 12, 452–464. [CrossRef]

24. Eghbali, Z.; Lighvan, M.Z.; Beheshti, A. An Efficient Distributed Approach for Load Balancing in IoT Based on SDN Principles. In
Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies, ICCCNT
2019, Kanpur, India, 6–8 July 2019; pp. 1–6. [CrossRef]

25. Li, G.; Li, K.; Liu, Y.; Pan, Y. An efficient dynamic load balancing scheme based on nash bargaining in SDN. Future Internet 2019, 11.
[CrossRef]

http://doi.org/10.1109/ICCUBEA47591.2019.9129091
http://dx.doi.org/10.1166/jctn.2019.8506
http://dx.doi.org/10.1109/JIOT.2015.2480421
https://www.researchgate.net/publication/335000866_Software_Defined_Networking_for_Beginners
https://www.researchgate.net/publication/335000866_Software_Defined_Networking_for_Beginners
http://dx.doi.org/10.13140/2.1.3370.4640
http://dx.doi.org/10.14569/IJACSA.2016.071151
http://dx.doi.org/10.1007/s10586-019-02950-0
http://dx.doi.org/10.1016/j.procs.2015.08.563
http://dx.doi.org/10.1007/s11277-020-07060-4
http://dx.doi.org/10.1109/MCOM.2017.1700714
http://dx.doi.org/10.17485/ijst/2017/v10i29/112447
http://dx.doi.org/10.1109/COMST.2014.2320094
http://dx.doi.org/10.1109/ACCESS.2017.2684188
http://dx.doi.org/10.1109/INDIN.2016.7819196
http://dx.doi.org/10.32604/cmc.2021.014627
http://dx.doi.org/10.1515/jee-2017
http://dx.doi.org/10.1109/IC2E.2017.33
http://dx.doi.org/10.1155/2020/8897098
http://dx.doi.org/10.1109/ISCC.2018.8538551
http://dx.doi.org/10.1109/TNSM.2018.2876369
http://dx.doi.org/10.1007/s12083-018-0632-6
http://dx.doi.org/10.1109/ICCCNT45670.2019.8944808
http://dx.doi.org/10.3390/fi11120252

Sustainability 2021, 13, 9587 16 of 16

26. Babu, S.M.; Lakshmi, A.J.; Rao, B.T. A study on cloud based Internet of Things: CloudIoT. In Proceedings of the 2015 Global
Conference on Communication Technologies (GCCT), Thuckalay, India, 23–24 April 2015; pp. 60–65.

27. Dashtipour, K.; Gogate, M.; Cambria, E.; Hussain, A. A novel context-aware multimodal framework for persian sentiment
analysis. arXiv 2021 arXiv:2103.02636.

28. Sahoo, K.S.; Puthal, D.; Tiwary, M.; Usman, M.; Sahoo, B.; Wen, Z.; Sahoo, B.P.S.; Ranjan, R. ESMLB: Efficient Switch Migration-
based Load Balancing for Multi-Controller SDN in IoT. IEEE Internet Things J. 2019, 7, 5852–5860. [CrossRef]

29. Hamdan, M.; Hassan, E.; Abdelaziz, A.; Elhigazi, A.; Mohammed, B.; Khan, S.; Vasilakos, A.V.; Marsono, M.N. A comprehensive
survey of load balancing techniques in software-defined network. J. Netw. Comput. Appl. 2020, 174, 102856. [CrossRef]

30. Valdivieso Caraguay, Á.L.; Benito Peral, A.; Barona López, L.I.; García Villalba, L.J. SDN: Evolution and opportunities in the
development IoT applications. Int. J. Distrib. Sens. Netw. 2014, 2014. [CrossRef]

31. Babbar, H.; Rani, S. Software-Defined Networking Based on Load Balancing Using Mininet. In Proceedings of the Second
International Conference on Information Management and Machine Intelligence; Springer: Singapore, 2021; pp. 69–76.

32. Babbar, H.; Rani, S. Performance Evaluation of QoS Metrics in Software Defined Networking Using Ryu Controller; IOP Conference
Series: Materials Science and Engineering; IOP Publishing: Bristol, England, 2021; Volume 1022, p. 012024.

http://dx.doi.org/10.1109/JIOT.2019.2952527
http://dx.doi.org/10.1016/j.jnca.2020.102856
http://dx.doi.org/10.1155/2014/735142

	Introduction
	Motivation
	Problem Definition
	Contributions

	Background
	Integration of SDN and IoT
	Related Research

	Methodology
	System Model
	Proposed Multiple Distributed Controllers Algorithm

	Experimentation and Performance Evaluation
	Conclusions
	References

