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Abstract: In order to analyze the anti-reflective cracking performance of a full-depth asphalt pave-
ment and study the propagation process of a reflection crack and its influencing factors, a mechanical
model of pavement structural crack analysis was established based on the ABAQUS finite element
software and the extended finite element method (XFEM). Based on two different loading modes
of three-point bending and direct tension, the propagation process of a reflection crack is analyzed.
The results show that the anti-reflective cracking performance of a full-depth asphalt pavement is
better than that of a semi-rigid base pavement structure, and the loading mode II based on direct
tension is more consistent with the propagation mechanism of pavement reflection cracks, while
the loading mode II is more suitable for analyzing the anti-reflective cracking performance of the
pavement structure. Appropriately reducing the elastic modulus of the stress-absorbing layer can
significantly improve the anti-reflective cracking performance of the full-depth asphalt pavement.

Keywords: full-depth asphalt pavement; stress-absorbing layer; reflective cracking; extended finite
element method

1. Introduction

Most of the asphalt pavement of high-grade highways in China adopts a semi-rigid
base structure with enough strength and rigidity, good integrity, strong diffusion stress
ability and good water stability, which can ensure the stability of the base [1–3]. But a
semi-rigid base is prone to shrinkage crack and low temperature shrinkage crack [4–7].
Under the repeated action of the traffic load and temperature load, the asphalt surface
layer tends to expand and form reflection cracks [8–11], which seriously affects the road’s
performance and shortens its life. At the same time, the performance of commonly used
road cementing materials is greatly affected by the environment, and their mechanical
properties are relatively complex, which further aggravates the occurrence of pavement
crack disease [12–14]. As a kind of thick asphalt concrete pavement structure with a broad
development prospect in recent years, the full-depth asphalt pavement [15–18] has unique
advantages compared with other types of pavement, which are generally made of modified
asphalt and recycled asphalt [19–21] as pavement asphalt materials. The full-depth asphalt
pavement is not easily damaged, and the cracks have a small influence depth; no major
structural repair is required, which saves costs; the road life is long, and the maintenance
cost is reduced. More importantly, the full-depth asphalt pavement can effectively prevent
and control reflection cracks.

As early as the 1960s, North America began to build full-depth and thickened asphalt
pavement, and put forward the concepts of permanent pavement and long-life pavement.
Donath M. Mrawira and Joseph Luca [22] studied the thermal and physical characteristics
of full-depth asphalt pavement earlier and numerically analyzed the transient temperature
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response by using the energy balance principle and a Fourier heat transfer equation. Halil
Ceylan et al. [23] used the artificial neural network as the pavement structure analysis
tool to calculate the modulus of full-depth asphalt pavement considering the nonlinear
stress-dependent subgrade characteristics, and verified its accuracy; Pekcan O et al. [24]
developed a calculation method called SOFTSYS, which can use the test results of a drop
hammer deflection meter to calculate the performance of full-depth pavement structure
layers, and check it with concrete examples. Emad Kassem et al. [25] evaluated the
construction of a full-depth asphalt pavement by using X-ray computed tomography and
ground-penetrating radar technology. Some scholars have also studied the performance
and response of recycled full-depth asphalt pavement [26]. Compared with traditional
maintenance methods, this method has advantages in the cost and life cycle [27].

The main advantage of a full-depth asphalt pavement is its good cracking resistance.
At present, many scholars have simulated the cracking process of asphalt pavement. Seong
Hyeok Song et al. [28] developed a cohesive regional model using the finite element soft-
ware ABAQUS, and simulated the mixed-mode cracks’ propagation process of a single-edge
notched beam test using the calibrated cohesion parameters. The results were compared
with the experimental results, which proved that the crack trajectory predicted by the nu-
merical simulation was in good agreement with the experimental results. Yekai Chen and
Jinchang Wang [29] used the extended finite element method (XFEM) to simulate the crack
propagation process of asphalt concrete and successfully predicted the low temperature
cracking behavior of an asphalt pavement. Aiming at the problem of early cracks in asphalt
pavement, Zhong Yanhui et al. [30] conducted a three-dimensional numerical simulation of
an asphalt pavement with ABAQUS, based on the fracture mechanics theory, and analyzed
the corresponding and propagation characteristics of cracks in an asphalt pavement under
moving loads. Sang Luo et al. [31] established the finite element model of crack propa-
gation of an epoxy asphalt concrete pavement and carried out the numerical simulation
combined with the virtual crack extension approach. They analyzed the cracking process
by stages and provided the equation describing the relationship between the J-integral and
displacement. According to the basic theory of fracture mechanics and the finite element
model, Hongbing Guo and Shuanfa Chen [32] simulated the propagation path of a reflec-
tion crack on an Open-graded Large Stone asphalt Mix (OLSM) pavement, analyzed the
influencing factors of the path and proposed a method to prolong the life of this pavement.
Xiaochun Zhang et al. [33] established a three-dimensional finite element model of an
asphalt pavement’s hydraulic crack, analyzed its propagation process under vehicle load
and discussed the influence of various parameters on the crack. Shangyang Yang used [34]
the finite element method to simulate a semi-rigid asphalt pavement under temperature
change and studied the influence of some parameters on the stress intensity factor. Pengfei
Liu et al. [35] applied the Cohesion Zone Model (CZM) approach to ABAQUS to analyze
crack propagation in asphalt layers. The results show that the developed CZM approach
can effectively supplement the traditional design method and improve the computational
efficiency and accuracy.

In addition to the full-depth asphalt pavement, the use of a stress-absorbing layer [36–39]
can also prevent the base reflection crack disease. At present, the materials commonly used
for the stress-absorbing layer of an asphalt pavement include a warm mix rubber modified
asphalt mixture [40,41], the intelligent composite materials [42] and geosynthetics [43]
such as fabrics, grids and composites. These materials have proved to be able to improve
the cracking resistance of pavement structures. However, in the numerical simulation,
the difference between the stress-absorption layer and other structural layers can only be
characterized by changing some parameters.

It can be seen that great progress has been made in the simulation of asphalt pavement
cracks, but there is no relevant simulation for the crack propagation process of a full-depth
asphalt pavement. Therefore, the simulation research on this aspect is very necessary. In
this paper, based on the ABAQUS finite element software, the extended finite element
method (XFEM) is used to analyze the anti-reflective cracking performance of a full-depth
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asphalt pavement. This paper analyzes the formation and propagation process of reflection
cracks in a full-depth asphalt pavement and studies the influencing factors of the anti-
reflective cracking performance of a full-depth asphalt pavement. The influence of different
pavement structure types on anti-reflective cracking performance is compared. At the same
time, the effect of the modulus of the stress-absorbing layer on the cracking resistance of
the structure is studied. This paper has a guiding significance for the selection of full-depth
asphalt pavement structures and the mix design of the stress-absorbing layer.

2. Reflection Crack Analysis Model of a Full-Depth Asphalt Pavement
2.1. Full-Depth Asphalt Pavement Structure

In order to analyze the influence of a pavement’s structure on its anti-reflective
cracking performance and to compare and analyze the difference of anti-reflective cracking
performance between a full-depth asphalt pavement and a general semi-rigid base asphalt
pavement, five different pavement structure types are selected, as shown in Figure 1.
Structures I, II and III refer to a full-depth asphalt pavement, and structures IV and V refer
to a general semi-rigid base asphalt pavement. The thickness and material of each layer of
the five pavement structures are shown in Figure 1, and the material parameters are shown
in Table 1.

Figure 1. Pavement structure and materials.

Table 1. Relevant parameters of various pavement materials.

Material Name Elastic Modulus (MPa) Poisson’s Ratio

SMA-13 1500 0.25
AC-13 1450 0.25
AC-20 1400 0.25
AC-25 1350 0.25
ATB-25 1200 0.40

Lime-ash soil 800 0.35
Cement stabilized macadam 1600 0.25

Low content cement stabilized macadam 1300 0.25
Modified soil 400 0.40

Soil 50 0.40

In the numerical simulation, the different materials are mainly reflected by the different
parameters. Cement stabilized macadam is a semi-rigid material, so its elastic modulus is
larger and its Poisson’s ratio is smaller. For several asphalt mixtures, there is little difference
in the use of modulus values. In order to distinguish them, some adjustments have been
made to the value.
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2.2. Numerical Analysis Model

According to the above pavement structure scheme, the mechanical model of cracking
analysis is established. The width of the model is 2 m, the thickness of the cement stabilized
macadam layer of the five pavement structures is 10 cm and the total thickness is 60 cm,
48 cm, 52 cm, 64 cm and 38 cm, respectively. In order to analyze the cracking process of
reflection cracks, two different loading modes are adopted.

Loading mode I: Analytical model based on the three-point bending mode. Supports
are placed on the left and right sides of the lower part of the model, and the distance
between the supports is 1800 mm. A indenter is set in the middle of the top of the model
to apply the load downward. The indenter and supports are defined as analytical rigid
bodies with infinite stiffness. The displacement is 6 mm by applying a vertical downward
displacement at the indenter position. Prefabricated cracks are set in the middle of the cement
stabilized macadam layer 10 cm below the model. Loading mode I is shown in Figure 2.

Figure 2. Loading mode I.

Loading mode II: Analytical model based on the direct tension mode. The lower side
of the model is a free boundary, and the boundary conditions are set on the left and right
sides of the bottom cement stabilized macadam layer. The left side is completely fixed, the
right side is fixed with vertical displacement and the transverse tensile displacement is
1 mm. Prefabricated cracks are set in the middle of the cement stabilized macadam layer
10 cm below the model. Loading mode II is shown in Figure 3.

Figure 3. Loading mode II.

The extended finite element method (XFEM) is used to establish the finite element
model. The CPS4R element—namely, the four-node bilinear plane stress quadrilateral
element—is used as the mesh. The vertical side length of the mesh is 10 mm, and the
finite element model is shown in Figure 4. It is assumed that the pavement material is
homogeneous and isotropic, and the layers are completely continuous.
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Figure 4. Finite element model for crack analysis.

3. Analysis and Discussion
3.1. Reflection Crack Propagation Process

At present, there is no relevant research on the numerical simulation of the anti-
reflective cracking performance of a full-depth asphalt pavement. By comparing the
research results of this paper with similar references [44], the crack propagation path is
the same, which preliminarily proves the correctness of this research method. Based on
loading mode I, the propagation process of reflection cracks in five pavement structures is
obtained. When the loading displacement of the indenter on the model is 1.5 mm, 3 mm,
4.5 mm and 6 mm, respectively, the transverse stress nephogram of the five pavement
structures is shown in Figure 5. It can be seen from Figure 5 that the cracking process of
different pavement structures is basically the same. During the whole cracking process, the
stress is concentrated at the crack tip and the upper part of the structure, and the absolute
value of the stress at the contact point of the indenter is larger, while the stress at the lower
support is smaller, and thus closer to the other parts of the structure. At the initial stage of
loading, the stress at the indenter diffuses to all sides, and the stress at the crack tip diffuses
to the left and right oblique downward. When the displacement load is half loaded, the
stress at the bottom of the crack tip decreases and the crack propagation speed increases.
When the displacement load increases from 3 mm to 4.5 mm, the crack expands rapidly,
and the stress concentration range at the crack tip shrinks and becomes oblate. Because
the crack tip is close to the upper load application position, the stress diffusion area at
the indenter to the left and right sides increases, and the diffusion range to the lower side
decreases. Finally, when the displacement load is fully applied, the crack expands to the
loading point, the stress area at the crack tip is in the shape of an inverted heart and the
stress is concentrated at the crack tip and the indenter. The stress in other parts of the
structure is small and evenly distributed.
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Figure 5. Cont.
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Figure 5. Cont.
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Figure 5. Propagation of a reflection crack in a pavement structure.

3.2. Load-Displacement Curve

The cracking process of five pavement structures is obtained based on loading mode I.
Through further analysis, the vertical displacement of the contact position between the
indenter and the model can be obtained, and then the load-displacement curves of five
pavement structures can be obtained. Based on the load displacement curve, the anti-
reflective crack performance of different pavement structures can be analyzed. The load-
displacement curves of five pavement structures are shown in Figure 6. It can be seen from
Figure 6 that the trend of load-displacement curves of different pavement structures is
basically the same.

Figure 6. Load-displacement curves of five structures.

According to the variation law of the load-displacement curve, the fracture process of
the structure can be divided into three stages. The first stage is the complete elastic stage, in
which the load increases linearly with the increase of displacement and the growth rate of
the five structures is different. At this stage, the curve is similar to the elastic deformation
stage, when the crack growth rate is slow. The curves of the five structures reach the peak
value when the displacement reaches about 2 mm, and then the load decreases rapidly
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with the increase of displacement, entering the stage of crack initiation and the propagation
stage. At this stage, there are some differences in the curves of the five structures: the load
of the other four structures, except for structure V, is reduced by nearly half, while the load
of structure V is decreased gently. At this time, the crack propagation rate is faster and the
structure cracks rapidly. Finally, with the increase of displacement, the structure enters the
complete fracture stage, in which the load is small and the curves of the five structures
roughly coincide. The whole structure is nearly destroyed, but not completely cracked.

Although the forms of the load-displacement curves of different pavement structures
are basically the same, the corresponding displacements and load peaks of the five pave-
ment structures are different when the load reaches the maximum. When the different
pavement structure curves reach the peak, the corresponding displacement is between
1.5 mm~2.2 mm, and the difference is not very big. The maximum load values of the five
pavement structures are 177.33 n, 103.20 n, 124.24 n, 168.67 n and 56.81 n, respectively. The
distance between the two supports under the model is 1800 mm. It can be seen that the
maximum load value of the model is relatively small, which is due to the large distance
between the supports of the model. However, from the relative value of the maximum
load, the anti-cracking performance of structure I is the best, followed by structure IV,
structure III and structure II, and structure V is the worst.

3.3. Contrastive Analysis of Fracture Parameters

Loading mode II is different from loading mode I in the crack propagation mechanism.
The crack propagation of loading mode I is driven by road load, which is different from
the mechanism of reflection crack. Reflection crack is the upward expansion of the crack
caused by the tensile effect of the deformation of the underlying material after the cracking
of the pavement’s bottom layer. Based on this point, loading mode II can better analyze
the formation process of reflection cracks and the anti-reflective cracking performance of
different pavement structures.

In the simulation analysis of loading mode II, the output parameter PHILSM is the
specified displacement function describing the crack surface, namely the hierarchical set
value, which can be understood as displaying the contour surface of the crack. When the
crack passes through an element, the value of PHILSM will appear on all four nodes of
the element. The PHILSM value of the node on the same side of the crack is the same.
The position where the value of PHILSM between nodes is 0 is the point where the crack
passes through the element. Therefore, the length of the crack can be determined by the
position of the crack (excluding the length of the prefabricated crack) in the output PHILSM
nephogram, and the width of the crack can be determined by the lateral displacement of
the left and right elements at the specified position. Figure 7 shows the nephogram of
PHILSM at the cracking location of structure I, which has been enlarged. As shown in
Figure 7, the gray part is the area without the PHILSM value, while the colored part has
the PHILSM value, that is, the cracking position. As can be seen from the caption, the
part where the value is 0 is orange, so the location of the crack can be more intuitively
determined, and the crack’s length and width can be obtained.

Based on the analysis of loading mode II, when the lateral loading displacement is
1 mm, the comparison of the width and length of the cracks in the different pavement
structures is shown in Figure 8. Under this loading mode, the crack widths generated
by the five structures are 0.1107 mm, 0.1323 mm, 0.1236 mm, 0.1569 mm and 0.7142 mm,
respectively, and the crack lengths are 30 mm, 37.5 mm, 35 mm, 63 mm and 50 mm,
respectively. It can be seen from Figure 8. that the length and width of the cracks in
pavement structures I, II and III are relatively close, and they are smaller than those of
pavement structure IV and pavement structure V. The crack width of pavement structure V
is the largest, while the crack length of structure IV is the largest. It can be seen that the
anti-reflective cracking performance of a full-depth asphalt pavement structure is better
than that of a general semi-rigid base pavement structure, and through the comparative
analysis of loading mode I and loading mode II, it can be seen that loading mode II is the
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direct tensile loading mode, which can better simulate the cracking process of reflection
cracks. Compared with the commonly used three-point bending loading mode I, loading
mode II is more suitable for analyzing the propagation process of reflection cracks, and it is
more suitable to analyze the anti-reflective cracking performance of a pavement structure.

Figure 7. PHILSM nephogram (Structure I).

Figure 8. Crack length and width of five pavement structures.

3.4. Influence Analysis of Material Parameters

In the actual pavement structure, in order to improve the ability of anti-reflective
cracks, a stress-absorbing layer is set in the lower layer of the pavement structure to delay
the expansion of reflection cracks to the pavement structure layer through the deformation
of the stress-absorbing layer. The above analysis shows that pavement structure I has the
best anti-reflective cracking performance among the five pavement structure types. In
pavement structure I, the upper layer of the precast crack is AC-13. The material properties
of this layer have a great influence on the upward propagation of the precast crack, which
is equivalent to that of the stress-absorbing layer. Through the reasonable setting of the
material properties of this layer, the upward propagation of the crack can be delayed.

In order to analyze the influence of the stress-absorbing layer on pavement structure
cracking, in pavement structure I, the elastic modulus of the stress-absorbing layer is
changed by controlling the variable method, and the values of the elastic modulus are
1000 MPa, 1200 MPa, 1400 MPa, 1600 MPa, 1800 MPa and 2000 MPa, respectively. The
influence of the material parameters on the reflection crack’s propagation is analyzed.
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Based on loading mode I, the load-displacement curves of pavement structure I under
different elastic modulus are obtained, as shown in Figure 9. It can be seen from Figure 9
that the elastic modulus of the stress-absorbing layer has a certain influence on the load-
displacement curve of the structure. The larger the elastic modulus, the larger the slope of
the curve at the initial stage of loading, and the smaller the load peak that can be reached.
Therefore, when considering the use of a stress-absorbing layer, a material with a lower
elastic modulus can effectively improve the cracking resistance of the pavement structure.

Figure 9. Influence of the modulus of the stress-absorbing layer on the load-displacement curve.

Based on loading mode II, the anti-cracking performance of pavement structure I
under the change of the modulus of the stress-absorbing layer can be further analyzed.
Under loading mode II, the change of the crack’s width and length with the elastic modulus
is shown in Figure 10. As can be seen from Figure 10, when the elastic modulus of the
stress-absorbing layer varies between 1000 MPa and 2000 MPa, the crack width varies
little. With the increase of the elastic modulus, the crack width is basically unchanged at
the beginning, and then slightly increases. However, the fracture length undergoes an
obvious variation with the elastic modulus of the stress-absorbing layer. The larger the
elastic modulus, the larger the corresponding crack length. This is consistent with the
conclusion based on the analysis of loading mode I, according to which the anti-cracking
performance of pavement structure can be enhanced by reducing the elastic modulus of
the stress-absorbing layer.

Figure 10. The influence of the modulus of the stress-absorbing layer on the fracture parameters.
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4. Conclusions

Based on the above analysis, the following conclusions can be drawn.
(1) Based on the mechanism of reflection cracks in a full-depth pavement structure,

two different analysis models are established. Based on the three-point bending loading
mode and the direct tensile loading mode, five mechanical models for the cracking analysis
of different pavement structures were established, respectively.

(2) The stress distribution characteristics and crack propagation process of the pave-
ment cracking process are analyzed. The anti-cracking performance of different pavement
structures is studied. During the whole cracking process, the stress is concentrated at
the crack tip, and the crack propagation of the pavement structure includes three stages:
complete elastic stage, crack initiation and propagation stage, and complete fracture stage.
The crack resistance of the pavement structure can be improved by using the full-depth
pavement structure.

(3) Loading mode II, under a direct tensile condition, can better simulate the cracking
process of reflection cracks. Compared with three-point bending loading mode I, loading
mode II is more suitable for analyzing the expansion process of reflective cracks and the
anti-reflective cracking performance of the pavement structure.

(4) The crack length varies obviously with the elastic modulus of the stress-absorbing
layer. The larger the elastic modulus, the longer the corresponding reflection crack. By
setting the stress-absorbing layer and appropriately reducing the elastic modulus of the
stress-absorbing layer, the anti-reflective cracking performance of the pavement structure
can be significantly improved.
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