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Abstract: Visibility is a critical factor for drivers to perceive roadway information, and fog is an
inclement weather condition that directly impacts their vision, since it reduces both overall contrast
and visibility of the driving scene. Visual attention has been considered a contributing factor to traffic
crashes, and fog-related accidents are prone to be more severe and involve multiple vehicles. The
literature lacks studies on the influence of fog on drivers’ visual performance and environment’s
infrastructure design. This article investigates the effects of fog on drivers’ performance in a Brazilian
curved road segment through a driving simulator experiment – more precisely, whether the presence
of fog (foggy scenario) or its absence (clear scenario) significantly affects the visual profile. In the
foggy scenario, the results showed the tracked area was concentrated in a smaller region, despite an
increase in the number of fixations compared with the clear scenario. The fixation duration did not
change between the scenarios and the pupil dilation was shorter in the foggy one. The study shows
the influence of environmental conditions on the driver’s performance and is one of the first on the
use of driving simulators with realistic representations of the road infrastructure and its surrounding
for the understanding of driving under fog in the Brazilian scenario. Besides roadway geometry
elements, driving simulator studies enable analyses of features related to the interaction between
route environment and driver’s answer, and can improve safety in places with visibility problems
caused by fog, reducing their environmental impact and preserving drivers’ lives.

Keywords: fog; reduced visibility; eye-tracking; visual profile; driving simulator

1. Introduction

Adverse weather conditions significantly impact roadway conditions, vehicle perfor-
mance, visibility distance, driver’s behavior, travel demand, traffic flow characteristics,
and traffic safety. Visibility is fundamental for the driving task, and its reduction influences
drivers’ behavior, which must be understood towards the design of appropriate mitigation
strategies [1,2].

1.1. Visibility Reduction

Ni et al. [3] claim fog is a climatic condition that directly impacts driver’s vision. Its
presence reduces both contrast and visibility of the scene in which it is directed, hence,
details, as the distance view increases. The absence or reduction of long-range visual
information are dangerous, since, under normal visibility situations, drivers tend to look
further ahead on the road they are traveling than at its edges [4]. Therefore, fog increases the
risk of accidents because it hides long-range visual information, hampering the prediction
of the path to be taken and the anticipation of events such as pileups or vehicle decelerations
ahead [5].
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Ahmed et al [6] explored the viability of using weather information collected from
airports in real-time crash-risk assessments on highways. A Bayesian logistic regression ap-
proach estimated the probability of crash occurrence, and the results showed the reduction
in visibility reported by airports’ weather stations is associated with crash occurrence.

Previous studies have demonstrated that, although the percentage of accidents under
fog is small compared to normal visibility conditions, they tend to be more severe and
involve multiple vehicles [7–9]. Abdel-Aty et al. [7] concluded head-on and rear-end
crashes are the two most common crash types under fog condition. In Brazil, fatal crash
statistics from the federal highway patrol indicate fog contributed as a major factor to
11,753 accidents from 2011 to 2020 [10].

Chen et al. [11] described the influence of adverse weather on the perceived risk for
drivers during car-following based on a driving simulation experiment. They used an
entropy weight method and multiple linear regression to explore the effects of different
weather conditions on the perceived risk level of drivers and observed such levels increase
in function of fog intensity due to the reduction in visibility.

A study with a driving simulator conducted by Yan et al. [12] confirmed drivers
reducing speed under low-visibility conditions is not enough for their responding in time
to impending changes in road geometries and speed of vehicles ahead, or to an emergency
event. Although some drivers would keep longer headway distances, rear-end crashes
may occur, since they may not be able to see the breaking lights of the front vehicle [13].

Effects of foggy climate during driving have been widely studied; however, gaps
on the understanding of driver’s visual search strategy in low visibility sections have
been identified. The use of an eye-tracking system for a deep understanding of driving
behavior in low visibility can guide researchers and designers towards improving road
safety through more effective measures.

1.2. Eye Tracking

Visual attention, which is closely related to eye movements, refers to the way informa-
tion is processed in an environment, and has been a contributing factor to traffic crashes.
The recording of eye movements, considered by Velichkovsky et al. [14] an appropriate tool
for identifying drivers’ visual attention, has drawn the interest of the academic community.

Studies have evidenced the region to which the eyes are pointing is closely related to
what is being coded and processed by the driver, and the duration of a look reveals the
processing difficulty faced. Chapman and Underwood [15] demonstrated drivers require
longer durations in complex scenarios, thus, potentially leading to a crash.

According to Zhang et al. [16], the eye movement behavior can be analyzed from
glance measures or fixations measures supported by an eye-tracker of sufficient accuracy
and precision. Fixation analyses are commonly associated with cognitive processing and
applied for evaluations of mental efforts. The length of fixation duration has been found to
be connected with the complexity degree of a visual scene, and shorter, but more frequent
fixations may reduce processing time.

Eye tracking information is essential for the understanding of the way climatic vari-
ations in an external environment impact the driving task. Konstantopoulos et al. [17]
recorded the eye movements of driving instructors and learner drivers while they drove
three virtual routes that included day, night, and rain routes in a driving simulator. The
results showed rainy weather significantly affected drivers’ eye movements, and more
frequent and shorter fixations indicate faster drivers’ information processing.

1.3. Use of Driving Simulators

Driving simulators are essential in different fields of study and have been widely
used for investigations on the impact of individual driver’s differences, vehicle tech-
nology, driver support systems, road projects, and effectiveness of road safety interven-
tions [18]. They have become versatile towards achieving different objectives [19–21],
and enable analyses of several factors that influence drivers’ behaviors (e.g., emotional
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state [22–24], and use of hallucinogenic substances [25–27] and distracting devices such as
cell phones [28–30]).

According to Bella [31], the advantages of driving simulators include better exper-
imental control, higher efficiency, low cost, safety, and ease of data collection, i.e., they
provide sustainability and safety to investigations on infrastructure design associated with
drivers’ behavior under fog. Drivers can be repeatedly confronted to different circum-
stances, including specific climatic conditions, such as fog and heavy rain, with no risk to
life and reduced costs, which is a great advantage regarding field tests [32]. Studies with
driving simulators under foggy conditions have focused mainly on kinematic aspects of the
vehicle guided by the driver, analyzing variables such as average speed, speed variation,
acceleration, collision time, and lane position [33–37]. However, few have analyzed the
influence of those climatic conditions on driver’s eye movement behavior.

This article studies the driver’s behavior under environmental conditions, specifically
regarding the influence of fog. It describes a controlled experiment in a driving simula-
tor, a strategy that offers significant benefits for research on road safety and geometric
design - test arrangements are shifted to a virtual environment, thus saving time and
costs, and providing safety to volunteers. The logistical effort reception of volunteers at
the simulator facilities and the production of a wide variety of road scenarios associated
with eye track system are significantly reduced. The fog conditions analyzed refer to a
curved road segment of a highway with one of the highest worldwide daily volumes of
trucks and characterized by a high fog formation. The conditions were faithfully recreated
in the driving scenarios employed in the experiments, where the drivers’ visual profile
was analyzed.

2. Methods
2.1. Apparatus

The Sustainable Road Safety Project of the Department of Transportation Engineering
from the São Carlos School of Engineering, University of São Paulo, has developed a
fixed-base driving simulator from human, vehicle, and traffic research. It is equipped with
a driving cockpit with a car seat, a steering wheel with paddle shift and force feedback,
and accelerator, brake, and clutch pedals. The simulated environment was projected
on a 1.40 × 0.80 m flat panel of 1080p resolution and 60 Hz projection rate. Rear and
lateral mirrors and a speedometer in a head-up display (HUD) were also projected on
the panel. Speakers reproduced sounds similar to vehicle engines and wind for deeper
immersion (Figure 1). The simulator has been employed in other studies developed in the
department [19,20,29,38–40].
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Two computers processed the real-time simulation. The first, responsible for envi-
ronment rendering and simulation running, was strengthened with two GPUs, whereas
the other modeled the vehicle’s dynamics, which included a road-vehicle interaction and
mechanical answers to the driver’s actions. The vehicle’s dynamics were similar to a
Brazilian ordinary vehicle version, thus enabling participants to perceive a medium-fidelity
immersion with visual and auditory stimuli similar to a real driving experience, due to the
high computational capacity that modeled and rendered a virtual environment in real time.

Appropriate equipment—model Pro 5.10® Smart Eye - attached to the simulator
recorded the eyes’ movements. Pro 5.10 is comprised of three front cameras that perform
the driver’s eye-tracking, and an additional rear camera, which records the scenes seen by
the driver. The equipment provides raw data reliability and 3D filtered data, and remotely
tracks the direction of the gaze, head position, eyelid opening, blinks, attachment points,
pupil size, among other monitoring and measurements. Figure 2 shows an example of the
software interface, which detects the intersection of the driver’s gaze with objects created
in the environment for better determining the response time and maps the areas on the
screen most viewed by the driver. MAPPS 3.3 software, developed by EyesDX, analyzed
data on the eyes’ movement.
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2.2. Study Segment

The rural road simulated was a 10 km stretch of a Brazilian highway that connects Sao
Paulo to Curitiba and is the main connection between Brazil and other South American
countries. The stretch is located in a mountainous region with fog incidence in certain
periods. The highway administrator provided the stretch geometric design necessary for
virtual modeling, the AADT (Average Annual Daily Traffic), as well as the location, type,
and severity of accidents occurred in recent years.

The stretch is comprised of 20 curves (Figure 3), and the fog analysis was performed
in a segment selected according to the fog car crash statistics of the road from 2011 to 2020.
The hypothesis is the accidents are related to drivers’ inability to react properly under
fog conditions at those spots. Considering geometry and crash statistics, the fog analyses
were performed between the 6th (C6) and the 7th curves (C7) (Figure 4). Both position and
intensity of the fog were fixed in all foggy trials, and passenger vehicles and trucks were
distributed proportionately.
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2.3. Simulator Scenario

The scenarios were modeled and simulated by Virtual Test Drive (VTD) package
developed and marketed by Vires®, according to the data collected (see Figure 5), and then
analyzed by Python programming codes. They were designed for analyses in the selected
stretch of the test highway, with a heavy x passenger car proportion of the traffic flow re-
specting the results from National Traffic Counting Plan (PNCT). The only changes between
the scenarios were independent variables presence and absence of fog for ensuring no dif-
ference would be confused with other factors. Field surveys for the fog visibility calibration
in the studied region were not part of this research. Based on previous studies [11,13,41,42],
the heavy fog condition was considered a critical scenario (visibility distance is shorter
than or equal to 200 m); therefore, fog position (settled in the tangent between C6 and C7)
and fog intensity according to visibility (50 m) were fixed in all foggy trials.
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A valid interpretation of the results depends on a series of factors related to proper
design, execution, and analysis. As suggested by Fisher et al. [18], the scenarios were
randomized for each participant towards avoiding bias. Randomization ensures an equal
distribution of all characteristics among the treatment groups, thereby diminishing the
potential for confounding. A pilot data collection was conducted prior to the definitive
experiment for saving resources and subjects.

2.4. Experimental Design and Procedure

Thirty-eight volunteers were required to have had a driver’s license for at least one
year and normal or corrected-to-normal vision. The group was formed by 23 men and
15 women, aged between 20 and 36 years old (M = 26.9, SE = 4.0).

A within-subjects’ design (repeated measures) was employed, and each subject exper-
imented two visibility conditions, namely clear and foggy, totalizing two trials/scenarios
for each one. The scenario under clear conditions represents the control group in which the
participant drives with no influence of reduced visibility, and will be useful for analyses
of the default behavior of each participant. A scenario under fog is expected to enable
analyses of the way the environment outside the car changes the drivers’ behavior. The
order of the scenarios was randomly sorted for each participant towards avoiding bias, as
well as accommodating the limited time each participant would spend in the simulator
and minimizing possible simulator sickness.

A Protection of Human Subjects in Research approval was obtained from the Brazilian
National Health Council prior to the experiments. Upon arrival at the laboratory, each
participant signed an informed consent and filled a personal information questionnaire.
They were also instructed on procedures and mechanical operations of the simulator.
The instructions did not include any detailed information on the experiments that might
potentially influence the driving behavior. The participants were instructed to drive as
normally as they usually do in a real car. Subsequently, they drove an adaptation scenario
until they had felt adapted to the simulator and comfortable with the simulation. The
adaptation simulation lasted at least 5 min for each participant and could be repeated
as many times as necessary. A profile for the eye-tracking system was then created and
calibrated by Smart Eye® software, and the participants drove for approximately 5 min in
each of the two experimental scenarios, with a 2 min interval between them. They were
instructed to pull over and stop after they had driven along the data collection segments.
The experiment lasted approximately 20 min.

2.5. Data Analysis

The dependent variables analyzed were number and duration of fixations, pupil di-
ameter, and area tracked by the participants’ eyes. Their individual and combined analyses
aimed at finding relevant incorporations for the dealing with such a weather situation.
Therefore, the drivers’ visual performance patterns in fog weather must be uncovered
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as a function of the different visibility conditions towards the development of technolo-
gies, optimization of the systems’ application effectiveness, and correct improvements
in the visualization of signaling on highways. The following variables were analyzed in
both scenarios: (i) Number of fixations, which provides information on sampling rate,
i.e. frequency at which the information is collected from the screen; (ii) Mean fixation
duration, as an indicator of processing time (shorter mean fixation duration means shorter
processing times); (iii) Pupil Diameter, according to which the presence of fog increases
contrast visibility, thus decreasing the pupil diameter; and (iv) Screen’s area tracked, which
reflects the visual search spread, i.e., effectiveness of the visual search strategy adopted by
the driver.

The lack of visibility can significantly affect a driver’s visual strategies before driving
in a foggy area. The number of fixations in a foggy zone is expected to be greater, whereas
the fixation duration is shorter, thus indicating the drivers’ ability to react properly.

A paired t-test analysis was computed by SigmaPlot (v.12) with paired t-test tool.
However, a Wilcoxon test was applied when normality was violated by Shapiro-Wilk test.
The analyses were organized into number of fixations, mean fixation durations, pupil
diameter, and area tracked.

3. Results and Discussion
3.1. Number of Fixations

Table 1 and the Boxplot in Figure 6 show the results of the Wilcoxon test. The number
of fixations was calculated for each subject in the two scenarios. Wilcoxon test compared
the average number of fixations during driving with and without fog regarding how fog
influences such a number. The foggy scenario showed a significantly higher number of
fixations (Median = 23.00) than the no fog one (Median = 18.50), z = 3.958, p < 0.001, r = 0.45,
thus indicating the presence of fog increased the average number of fixations and was
statistically significant.

Table 1. Wilcoxon Signed Rank Test for number of fixations.

Group N Missing Median 25% 75%

No Fog 38 0 18.500 14.000 22.000
Fog 38 0 23.000 18.750 27.000
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the foggy scenario and around 18.5 in a clear one. The change occurred was greater than expected by
chance; a statistically significant difference (p ≤ 0.001) was detected.
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3.2. Mean Fixation Durations

A paired t-test compared the average duration of the fixations during driving with
and without fog. Shapiro-Wilk test for normality revealed data were normally distributed
(P = 0.559), and the descriptive analysis indicated the average durations of fixation were
0.634 s (EP = 0.0744) under fog and 0.617 s (EP = 0.0525) with no fog. The test results
(Table 2 and Figure 7) showed no significant difference in the fixation durations between
the scenarios (t (37) = −1.254 and p = 0.218 > 0.05).

Table 2. Paired t-test for mean fixations durations.

Treatment Name N Missing Mean Std Dev SEM

No Fog 38 0 0.617 0.0744 0.0121
Fog 38 0 0.634 0.0525 0.0085

Difference 38 0 −0.0169 0.0833 0.0135

Figure 7. Boxplot for mean of fixations durations—0.617 s in clear scenario and 0.634 under fog. The
change from the treatment was not great enough for excluding the possibility of the difference being
due to chance (p = 0.218). Power of performed test with alpha = 0.050: 0.107, which is below the
desired power of 0.800, indicating lower probability of detecting a difference when one actually exists.

3.3. Pupil Diameter

Table 3 and the Boxplot in Figure 8 show the results of the Wilcoxon test, which
compared the average pupil diameter during driving with and without fog. It was signif-
icantly lower (Median = 0.00411 m) in the foggy scenario in comparison with that of no
fog (Median = 0.00458 m). z = −3.676. p < 0.001. r = −0.42, indicating the presence of fog
decreased the average pupil diameter and was statistically significant.

Table 3. Wilcoxon Signed Rank Test for pupil diameter.

Group N Missing Median 25% 75%

No fog 38 0 0.00458 0.00390 0.00491
Fog 38 0 0.00411 0.00369 0.00490
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Figure 8. Boxplot for pupil diameter. The participants’ pupil diameters were approximately 0.411 cm
in the foggy scenario and around 0.458 cm in the clear one. The change from the treatment was
greater than that expected by chance, showing a statistically significant difference (p ≤ 0.001).

According to Ni et al. [3], the presence of fog reduces the overall contrast and visibility
of the driving scene, resulting in reduced visible details as a function of increasing distance.
Contrast reduction is evident when a decrease in the pupil diameter is verified in the foggy
scenario, limiting the amount of light reaching the retina.

3.4. Area Tracked

Figure 9 shows a comparison of clear (red) and foggy (blue) scenarios. Changes were
expected in the distribution of visual attention as a direct consequence of the degree of
visual information available to drivers. Since the purpose of the study is to compare the
regions of the external environment tracked, the points of interest internal to the vehicle,
i.e., mirrors and head-up display, were excluded from the analysis area. The figure shows
scatter graphs for a volunteer in each scenario and an overview of the visual spatial
distribution for each condition.
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scenarios for one of the participants, and the picture behind indicates the regions where the illustrated fixations might
be allocated.
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Despite the similarity of the fixation patterns, the clear area tracked showed broader
regions than the foggy scenario, hence, statistical differences. As exemplified in Figure 10
below, for one of the participants, the polygon’s area shaped by the extreme points in blue
(foggy) is 0.061 m2 and the area shaped by the extreme points in red (clear) is 0.090 m2.
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Figure 10. Example of polygons shaped by points tracked in clear (red) and foggy (blue) scenarios
for one of the participants.

A paired t-test compared the area tracked during driving in clear and foggy scenarios
(see Table 4 and Figure 11 for the results). Shapiro-Wilk test for normality revealed data
were normally distributed (p = 0.080), and the descriptive analysis indicated the average ar-
eas tracked were 0.0789 m2 (EP = 0.0404) under clear condition, and 0.0561 m2 (EP = 0.0234)
under fog. The test results showed a significant difference in the area tracked between the
scenarios (t (37) = 3.548) and a statistically significant change (p = 0.001).

Table 4. Paired t-test for area tracked.

Treatment Name N Missing Mean Std Dev SEM

No fog 38 0 0.0789 0.0404 0.00655
Fog 38 0 0.0561 0.0234 0.00380

Difference 38 0 0.0228 0.0396 0.00642
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Figure 11. Boxplot for area tracked. The participants tracked approximately 0.0561 m2 of screen in
the foggy scenario and around 0.0789 m2 in the clear one. The change from the treatment was greater
than expected by chance, showing a statistically significant change (p = 0.001).
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4. Conclusions and Future Research

Apart from the knowledge of differences in a driver’s eyes’ behaviors while driving
under clear and foggy conditions, the reasons for such differences must also be known
towards the design of interventions in highway projects that provide safety for drivers
driving under foggy conditions.

Fixation duration is a good indicator of difficulties in a driver’s processing some
information. Although no statistical difference has been found for the mean fixations
duration, this can also be understood as a result, since under foggy conditions, the duration
of drivers’ fixations, i.e., their information processing time is the same of that in a scenario
with no fog.

On the other hand, if the processing time remains the same, the amount of information
processed leads to a significant difference, clearly shown by the increased number of
fixations in the foggy scenario over the clear one. Despite a smaller field of vision, the
driver searches for more visual information and spatial references in a foggy scenario for
either staying on the track, or better understanding the situation.

Regarding differences in the spread of view, the drivers’ areas tracked are reduced
under foggy conditions, and a great number of visualizations is provided in the center of
the screen, indicating drivers do not see much beyond the shoulders.

Our results can enable designers to reconsider the design of edge lines for assuring
they are visible in fog, or even design fog warnings with short messages on gantries over
the roadway. Such possibilities can improve both drivers’ processing capacity and variables
(e.g., processing time of autonomous vehicle algorithms), since they will be able to know
the image’s locations to be focused on when analyzing a scene under fog weather.

Although some studies have addressed driving under foggy conditions, the literature
lacks research on eye tracking as a dependent variable. This is one of the first studies that
use driving simulators for the understanding of the driving infrastructure’s environment
under fog in the Brazilian scenario.

The driving simulator guarantees realistic experiences for a safe driving under differ-
ent dangerous conditions such as fog. Its potential has been confirmed for testing under
controlled road virtual environments, since it enables repeatability of specific combinations
of features, and cost reduction. Investigations on driving in a specific scenario can also
be more effective than that in the real world, as well as safer, because of the absence of
physical risk, regardless of the driver’s performance. The eye track system association
provided a realistic extract of a driver’s behavior, and data from almost forty drivers who
covered 760 kilometers in a virtual scenario could be analyzed in a sustainable manner.
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