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Abstract: The repercussions of high levels of environmental pollution coupled with the low reserves
and increased costs of traditional energy sources have led to the widespread adaptation of wind
energy worldwide. However, the expanded use of wind energy is accompanied by major challenges
for electric grid operators due to the difficulty of controlling and forecasting the production of wind
energy. The development of methods for addressing these problems has therefore attracted the
interest of numerous researchers. This paper presents an innovative method for assessing wind
speed in different and widely spaced locations. The new method uses wind speed data from multiple
sites as a single package that preserves the characteristics of the correlations among those sites.
Powerful Waikato Environment for Knowledge Analysis (Weka) machine learning software has been
employed for supporting data preprocessing, clustering, classification, visualization, and feature
selection and for using a standard algorithm to construct decision trees according to a training
set. The resultant arrangement of the sites according to likely wind energy productivity facilitates
enhanced decisions related to the potential for the effective operation of wind energy farms at the
sites. The proposed method is anticipated to provide network operators with an understanding
of the possible productivity of each site, thus facilitating their optimal management of network
operations. The results are also expected to benefit investors interested in establishing profitable
projects at those locations.

Keywords: data mining; decision tree; wind speed; renewable energy; system modeling; machine
learning

1. Introduction

Growing global interest in reducing the environmental pollution created by heavy
reliance on oil derivatives for the production of electric power has motivated governments
to take significant steps toward the implementation of renewable energy. One of the
most important renewable energy sources is wind, with the 2019 total world capacity of
wind energy estimated to be 650 gigawatts [1] and the annual global increase in wind
energy calculated at 20% [2]. This expansion has resulted in wind energy technology
becoming a principal source of energy in terms of sales and technical development. In spite
of these advances, this energy resource remains unreliable at high rates, and increasing
dependence on this technology is associated with the emergence of numerous problems
for electrical system operators. Examples of these challenges are the substantial changes
in wind production arising from the random behavior of wind speeds, as well as the
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difficulty of accurately forecasting wind production, which gives rise to many issues
during the operation of the electric grid. Any decision to increase the use of wind energy
hence requires careful planning along with highly reliable methods of making rational and
informed decisions [3,4].

To analyze and evaluate the effects of inconsistent wind behavior on the reliability and
stability of an electrical grid as well as on short-term operation and long-term planning,
several researchers have applied and reported probability-based methods. For example,
in [5,6] a sequential Monte Carlo simulation (SMCS) method was used for representing the
probability distribution and time-series characteristics of wind speed. Another efficient
method is a Monte Carlo Markov chain (MCMC) method [7,8], which is based on the
dependence of the wind speed at a given point in time on the speed during the previous
moment. This feature makes this method effective for preserving the chronological char-
acteristics of wind speed. Some studies [9–11] have also dealt with correlations between
the output levels of wind turbines installed in separate geographical areas or between
those of multiple wind farms in adjacent areas. These studies led to the conclusion that a
determination of the type of correlation (positive, negative, or zero) is related to several
factors, including the way the turbines are arranged on the site and the method employed
for connecting the turbines with one another as well as with the electrical network.

An examination of the correlation between the output levels of distant wind energy
sites is not usually of interest to researchers because the relationship is often a zero or an
inverse correlation. However, we believe that reconsidering this factor is very important,
especially with respect to the correlations among multiple wind energy sites in different
regions of the same country or in different countries, which might be interconnected in an
electrical network. Conducting such studies would offer several advantages: (1) Knowing
the diversity of and variations in wind energy production from different sites would be
beneficial for grid operation in terms of power quantity and time of supply. (2) Prior
knowledge of the amount of variation and the type of correlation, even if negative, would
help network operators achieve effective management of grid operations, such as load flow
and network stability. (3) Identification of the potential of wind energy in each region of a
country is crucial information for investors or decision makers.

The results of such a study would be very important for countries that feature large
areas and substantial regional diversity. With an area of 2.25 million square meters encom-
passing regions that exhibit varied environmental characteristics, the Kingdom of Saudi
Arabia (KSA) is one such country. The KSA is also one of the largest countries in the Middle
East, and most of the nearby countries rely on the KSA for resilient grid interconnections
for ensuring power security and economic benefits. The Saudi government is taking rapid
steps toward diversification of energy sources and is investing heavily in sustainable energy.
This trend is one of the main priorities and objectives of the KSA’s Vision 2030. One of
the most important of these subsidized projects is wind energy, since it is expected that
wind energy capacity will reach 9.5 gigawatts by 2030 [12]. In 2018, the Renewable Energy
Development Office (REDO) nominated about 50 companies to begin implementing the
planned renewable projects [12], which include solar power stations with a capacity of
300 megawatts and wind farms with a capacity of 400 megawatts. These stations are to be
operating and connected to the electric grid before the end of 2021. The Saudi government
recently announced new renewable energy projects estimated at $50 billion, with imple-
mentation expected to be completed in 2023. Establishing such projects requires accurate
technical and economic studies so that suitable construction locations can be determined.

In the past few years, numerous studies dealing with wind energy in Saudi Arabia
have appeared in the literature. As reported in [13–15], several studies involved the analysis
of statistical parameters associated with different wind farm sites and the extraction of
Weibull distribution parameters for each individual site. The limitation of these studies
is that their findings with respect to site productivity were dependent on the overall
assessment of the available wind speed data for each site. Based on this method, the
evaluation might indicate that a site is currently unsuitable for a wind project, but that site
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might in fact be considered a good choice for a specific period. These studies also relied
on the assumption that an appropriate distribution for all sites is a Weibull distribution.
Since such an assumption is neither accurate nor valid for all sites, the results could be
over-approximations, according to [16–18]. To the best of our knowledge, no study has
taken into account either wind speed data collected for different, distanced locations or
the processing of those data as a single package to maintain the characteristics of the
correlations among locations and thus to provide more accurate and detailed standard
measures of wind speed productivity at those locations.

Addressing this point represents the core contribution of the work presented in
this paper. Data mining techniques have recently been used in numerous applications
because of the benefits these techniques offer with respect to developing models and
making decisions.

Several studies have employed artificial intelligence techniques for renewable systems.
For example, artificial neural networks are used in [19] to characterize PV modules. Appli-
cation of data mining procedures that include support vector machines and fuzzy logic
is also applied in several studies. In [20], a new methodology combining both Gaussian-
kernel support vector machine and adaptive fuzzy inference system is developed. This
methodology extracts the fuzzy rules directly from the training data to be used in the
testing stage. In [21,22], EEG signals are analyzed using SVM, ANN, Naïve Bayes, and
decision trees for epilepsy detection. In [23], authors have used the decision tree technique
to detect adverse drug reactions and the system was optimized using a genetic algorithm.
An efficient feature selection method was developed in [24] for enhancing Arabic text clas-
sification. In [25–27], texture classification techniques are developed based on independent
component analysis and naïve base classifier.

In this study, a decision tree algorithm is used and the major contributions of this
study in comparison to existing studies are as follows:

1. A unique and unified method for predicting wind speeds at diversified locations in
the KSA is proposed. The proposed model enables the examination of deviations and
correlations of wind speeds at different locations.

2. A model is developed that deals and examines an extensive range of data for a variety
of sites. In addition, conclusions about the characteristics of these data using the least
possible number of classifications can also be drawn to facilitate the understanding
of the data and to expedite their use. The goal was to help decision makers arrive at
quick, accurate, and informed decisions.

3. Finally, the capability of the assessed locations can be ranked to enable system oper-
ators to ascertain in advance the monthly productivity of each site so that they can
implement appropriate planning and operating actions.

2. System Design and Methodology

This section provides details about the developed prediction system, which is based
on a decision tree algorithm. Numerous decision tree algorithms are currently available,
including random forests, random trees, the J48, and classification and regression trees
(CART). A decision tree algorithm employs training data to build a tree model that is used
for classification purposes. The developed classification algorithm involves three phases:
data gathering, data preprocessing, and learning and classification. In the data-gathering
phase, the training and test set is collected from wind station databases. The second phase
involves the preprocessing of the data, including outlier detection and elimination, missing
data treatment, and averaging. In the learning and classification phase, the goal is to
develop an intelligent decision mechanism. A test set is then applied for determining the
accuracy of the developed model.

2.1. Data-Gathering Phase

The five locations whose wind speed data were examined in this study were carefully
selected to include all regions of the KSA [28]. Five sites were chosen to be representative
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of each region: center, east, west, south, and north. The selection corresponds to the
operational divisions of the Saudi Arabian electrical system. Figure 1 shows the sites where
the data were collected.
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Table 1 provides a statistical summary of the data collected for each site. These statistics
are a collection of indices that provide meaningful information regarding the location and
variability of the data. To facilitate their interpretation, brief definitions of some of the
statistics are given here [29]. The most common indicator of the central tendency of a
random variable is the mean, which represents the average number of data points. For the
selected sites, it can be noted that the means are about 3 m/s to 4 m/s, with the exception
of the east region, where 1.9 m/s is the recorded mean. The standard error (SE) is the
measure that indicates how close the mean of the sampled data is to the true population
mean. An SE of 0.05 or less implies that the sample data are quite similar to those for the
whole population, with a confidence level of 95%. As can be observed from a review of the
results, the SE values for all sites are less than 5%, so the data sample for each site is thus
large enough to represent the true population. The median is another measure of central
tendency, and the mode refers to the most frequently or commonly occurring number in the
data. Standard deviation and variance denote the spread of the data distribution. Kurtosis
identifies whether the tails of a given distribution contain extreme values. Skewness is the
measure of the symmetry of distribution, and it differentiates extreme values in one versus
the other tail. The minimum is the smallest value in the data set while the maximum is
the largest value in the data set. The sum shows the summation of the wind speeds of all
data sets. The count shows how many items the data have. The results listed in Table 1
reveal noticeable differences among the statistical values associated with different sites.
These discrepancies were expected due to the divergent distances between the sites and
the diverse nature of the local weather.



Sustainability 2021, 13, 9340 5 of 17

Table 1. Data set statistics.

Statistics Center East West North South

Mean 3.935 1.923 3.623 3.270 3.001

Standard
Error 0.008 0.006 0.011 0.013 0.014

Median 3.800 1.800 3.300 3.000 2.600

Mode 3.300 1.700 2.900 2.700 0.000

Standard
Deviation 1.572 0.999 1.939 1.688 1.891

Sample
Variance 2.470 0.998 3.758 2.849 3.577

Kurtosis 0.548 0.711 0.563 1.257 −0.338

Skewness 0.541 0.713 0.813 0.901 0.516

Minimum 0.000 0.000 0.000 0.000 0.000

Maximum 12.20 7.600 13.70 15.20 11.10

Sum 97,878 39,455 77,928 57,344 57,031

Count 24,871 20,523 21,511 17,539 19,007

The data is a part of the Renewable Resource Monitoring and Mapping (RRMM)
program prepared by King Abdullah City for Atomic and Renewable Energy (KACARE).
KACARE monitored and recorded the wind speed data at different installed stations in
the Kingdom of Saudi Arabia at 3 m height. Table 2 provides an example of data for
one of the five sites. The size of the sample is associated with the amount of information
provided and the determination of the precision or level of confidence about the desired
estimate. Wind speed estimate always has an associated level of uncertainty, which depends
upon the underlying variability of the data as well as the sample size: the smaller the
sample size, the greater the uncertainty in the estimate. Similarly, a larger sample size
can provide more information, thus the uncertainty is reduced. In this study, the sample
size in all selected sites ranges from 19,000 to 25,000 data points. We tried to collect this
large sample size to reduce the amount of uncertainty associated with the estimate and
achieve reasonable results. The steps involved in the proposed model through the Weka
tool consider different concepts of data mining, which are as follows. First, the Weka
software allows preprocessing step for raw data to detect the outliers and irrelevant data by
cleaning and clustering the data using the k- means technique. In addition, the data mining
techniques cater to the uncertainty. This is noticed in the used decision tree methodology
when applying the Gini impurity measure to decide the optimal split from a root node
and subsequent splits. The Gini impurity measures the frequency at which any element
of the dataset will be mislabeled when it is randomly labeled. The entropy is another
way of measuring that is based on the selection of the optimum split for the features with
less entropy.

Table 2. Sample from the south site database.

Site Latitude Longitude Date Wind Speed (m/s) Irradiance (Wh/m2)

Jazan University 16.96035 42.545865 14/01/2015 07:00:00 1.5 2.1

Jazan University 16.96035 42.545865 14/01/2015 08:00:00 2.2 83.4

Jazan University 16.96035 42.545865 14/01/2015 09:00:00 3.1 249.5

Jazan University 16.96035 42.545865 14/01/2015 10:00:00 3.9 452.7

Jazan University 16.96035 42.545865 14/01/2015 11:00:00 4 366.6

Jazan University 16.96035 42.545865 14/01/2015 12:00:00 4.9 519
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A subset of the combined database is shown in Table 3. The data were collected from
9 January 2013, to 31 December 2016. The subset consists of 34,872 records. The information
in Table 3 is only a small subset of the available database. Zero irradiances for the north
region in this table were recorded at 4 and 5 am; this is normal at sunset time when the
sun disappears.

Table 3. A subset from the combined database.

Region Latitude Longitude Date Wind Speed at 3 m
(m/s) Irradiance (Wh/m2)

West 21.49604 39.24492 29/05/2013 10:00:00 2.6 674.3

West 21.49604 39.24492 29/05/2013 11:00:00 4 840.5

North 27.39 41.42 1/1/2015 4:00 2.9 0

North 27.39 41.42 1/1/2015 5:00 2.5 0

East 25.34616 49.5956 29/05/2013 08:00:00 3 471.6

East 25.34616 49.5956 29/05/2013 09:00:00 3.5 671.7

Center 24.52958 46.43635 9/1/2013 11:00 4.9 611.3

Center 24.52958 46.43635 9/1/2013 12:00 3.8 697.9

South 16.96035 42.545865 5/11/2014 8:00 0.6 206.9

South 16.96035 42.545865 5/11/2014 9:00 1.5 411.5

2.2. Data Preprocessing Phase

Data preprocessing includes data cleaning and missing data treatment. In this phase,
information not needed for the wind speed model, such as the irradiance and the latitude
and longitude, are removed from the database. Wind speed data missing for a specific date
are then replaced by the average value of the wind speeds for that day [30–33]. That date is
eliminated and simply replaced by the corresponding month; i.e., 29/05/2013 10:00:00 is
replaced by May, as shown in Table 4.

Table 4. Database following preprocessing.

Region. Date Wind Speed at 3 m (m/s)

West May 2.6

West May 4

West May 2.5

North January 2.9

North January 2.5

North January 2.8

East May 3

East May 3.4

East May 3.7

Center January 4.9

Center January 3.8

Center January 3.7

South November 0.6

South November 1.5

South November 2.6
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The combined database is then rearranged to add an output label to a new set of input
attributes. The new set of input attributes are defined as indicated in Table 5: month, center
wind speed, south wind speed, east wind speed, north wind speed, and west wind speed.
The output attribute consists of multi-labeled data: case 1 to case 120. Since the number of
locations is five, the resultant possible number of output cases is 5! = 120 possibilities.

Table 5. Attribute list sample for developing the decision tree model.

Month
Center South East North West

Output
Wind Speed (m/s)

Jan 4.00 3.36 1.79 3.30 2.77 case 1

Feb 3.96 3.04 0.91 3.83 2.98 case 2

Mar 4.64 3.21 2.25 3.67 3.51 case 2

Apr 4.17 3.18 2.09 4.08 3.45 case 3

May 3.77 3.15 2.03 3.62 3.97 case 4

Jun 3.95 3.44 2.36 3.04 4.84 case 5

Jul 3.64 3.28 1.99 2.61 3.55 case 6

Aug 3.70 3.38 2.11 2.96 4.08 case 5

Sep 3.73 2.84 1.75 2.87 4.60 case 4

Oct 3.95 2.17 1.76 3.17 3.64 case 7

Nov 3.89 2.81 1.79 3.85 3.01 case 3

Dec 3.48 2.77 1.66 3.34 2.89 case 3

With the use of an association rule algorithm [34–37], the number of possible cases
can be decreased to eight. The association rule algorithm caters for the correlation between
wind speeds in different areas.

The association algorithm can be summarized in the following steps:
Step 1: Generate all association rules in the form if {A,B,C,D,...} then {E,F,G,...}, where

A, B, C, D, E, F, G,... are items.
Step 2: Calculate confidence of the generated rules, i.e., if A then B using:

Confidence =
number of records containing both A and B

number of records containing A

Step 3: Calculate support of the generated rules, i.e., if A then B using:

Support =
number of records containing both A and B

total number of records

Step 4: Check if support is less than a pre-defined threshold, i.e., minsup.
Step 5: Check if confidence is less than a pre-defined threshold, i.e., minconf
Step 6: Prune rules that fail the minsup and minconf thresholds.
The wind speed of each location is labeled using a rank-based system. The developed

ranking system distributes wind speeds evenly, measuring them only relative to a given
location, but not according to the real value of any given speed. The developed ranking-
based system includes five labels that identify the level of the wind speed: very high (VH),
high (H), medium (M), low (L), and very low (VL). The database resulting after the labels
have been assigned based on the wind speed ranking is shown in Table 6.
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Table 6. Attribute list with assigned labels.

Record Center South East North West Output

1 VH H VL M L case 1

2 VH M VL H L case 2

3 VH M VL H L case 2

4 VH L VL H M case 3

5 H L VL M VH case 4

6 H M VL L VH case 5

7 VH M VL L H case 6

8 H M VL L VH case 5

9 H L VL M VH case 4

10 VH L VL M H case 7

11 VH L VL H M case 3

12 VH L VL H M case 3

To minimize the number of output attributes, an association rule algorithm is applied
for analyzing all of the relations between the cases. Table 7 shows the resulting cases and
the corresponding locations of the rules that produce support and confidence levels greater
than a given minimal support threshold (minsup = 0.01) and a given minimal confidence
threshold (minconf = 0.5).

Table 7. Cases ordered according to location preferences.

Region 1 Region 2 Region 3 Region 4 Region 5

case 1 Center South North West East

case 2 Center North South West East

case 3 Center North West South East

case 4 West Center North South East

case 5 West Center South North East

case 6 Center West South North East

case 7 Center West North South East

case 8 West Center North East South

Table 8 provides a sample of association rules with their support and confidence levels.
The table shows the minimum number of cases that can be achieved using the association
algorithm with a unity confidence level.

Table 8. Support and confidence levels of sample rules.

Rule Support Confidence

Center = VH, South = H, East = VL, North = M, West = L→ Case 1 1/12 = 0.083 1

Center = VH, South = H, East = VL, North = M, West = L→ Case 2 2/12 = 0.16 1

Center = VH, South = H, East = VL, North = M, West = L→ Case 3 3/12 = 0.25 1

Center = VH, South = H, East = VL, North = M, West = L→ Case 4 2/12 = 0.16 1

Center = VH, South = H, East = VL, North = M, West = L→ Case 5 2/12 = 0.16 1

Figure 2 summarizes all of the steps described above for the data-gathering and
preprocessing stages.
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2.3. Learning and Classification Phase

Figure 3 displays a flowchart of the developed classification algorithm, which governs
the processing of the data through three stages: training, testing, and validation. First, the
training data are applied to the decision tree algorithm to obtain the initial model. For
each iteration, the accuracy and precision are then calculated as a means of achieving the
optimal model; the test data are applied so that the performance and efficiency of the model
can be verified; and in the final step, the remaining verification data are employed to ensure
that the results produced by the model have a high degree of accuracy and precision.
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Figure 3. Developed classification algorithm.

A decision tree partitions the input space of the dataset into mutually exclusive regions
by assigning each region a label. The decision tree begins with a root node and ends with
a leaf node [23]. Multiple branches are formed between the root and the leaf nodes. The
decision tree algorithm is performed based on splitting data into multiple regions and
each region is divided into small parts. Furthermore, splitting continues until the terminal
node reaches leaf nodes. The splitting is formed based on an impurity measure. Two
common measures are used to obtain impurity values, Gini index, and entropy. In this
paper, entropy is used as impurity measure that evaluates the homogeneity of the partition
nodes too. The following steps summarizes the decision tree algorithm.

Step 1: the entropy of the root node with n branches is calculated as

E(root) = −∑n
i=1 pi log2 pi (1)

where p is the fraction of records that belongs to class i at the node.
Step 2: the entropy of each partition with J sub classes is calculated as

E(partition ) = −∑J
i=1 pi log2 pi (2)
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Step 3: The branch entropy is calculated using the individual k partition entropies as

E(branch) =
k

∑
i=1

ni

n
E(partition i) (3)

where ni is the number of records at partition i,
n is number of records at branch, and
E is the entropy.
Step 4: The GAINSplit which is used to decide the best partition is the best. The

partition that produces the most reduction is chosen The GAINSplit is shown below

GAINSplit = E(root)− E(branch) (4)

where E is the entropy.
If all input attributes are used, the algorithm for decision tree induction is as shown in

Figure 4.
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If the prediction order is requested for a specific month and the wind speeds are
unavailable at that moment, the decision tree induction model shown in Figure 5 is used.
This model is based on a single input attribute: “month”.
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Figure 5. Decision tree model based on the month.

A new model, Model 2, is implemented based on the output of the previous model,
Model 1, as shown in Figure 6. The implementation involves a comparison of the output for
the five cases generated from the first model with that of the eight cases from the original
training data. The output from these five cases along with the output from the original
cases is then used as input to a similarity algorithm.
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Figure 6. Development phases of Model 2.

Next, the similarity algorithm measures the similarity score between the five cases
and each case from the original data, i.e., Case 8 is similar to Case 4, Case 7 is similar to
Case 3, and Case 6 is similar to Case 5. The algorithm relies on edit distance, which is a
technique for quantifying how dissimilar two strings (e.g., words) are to one another based
on a count of the minimum number of operations required to transform the first string
into the second. The edit distance between two cases for the five locations is the minimum
number of operations required for transforming one case into another case. For example,
the edit distance between “case 1 case 2 case 3 case 4 case 5” and “case 1 case 3 case 2 case 4
case 5” is two. A flowchart of the similarity algorithm is shown in Figure 7.
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The resulting similarity pairs are employed for reprocessing the original training data
through the replacement of the original cases with the similar cases, as shown in Table 9
compared with Table 6. The final step is that the resulting training data are applied for
teaching Model 2, with the use of the decision tree as previously performed for developing
Model 1. The degree of accuracy of Model 2 is then increased to 100%.
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Table 9. The resulted database after similarity algorithm.

Record Center South East North West Output

1 VH H VL M L case 1

2 VH M VL H L case 2

3 VH M VL H L case 2

4 VH L VL H M case 3

5 H L VL M VH case 4

6 H M VL L VH case 5

7 VH M VL L H case 5

8 H M VL L VH case 5

9 H L VL M VH case 4

10 VH L VL M H case 3

11 VH L VL H M case 3

12 VH L VL H M case 3

3. Experiments and Results

For this study, Waikato Environment for Knowledge Analysis (Weka) software was
employed [38] for constructing decision trees according to the training set, using the
standard J48 algorithm [39–42]. This algorithm has been selected as one of the top 10 al-
gorithms in data mining [43]. Java was used as the development language with J2SDK
version 1.6.0_22. Weka version 3.8.4 was employed for the experimental component of the
model development.

The first use of Weka software is to do data pre-processing before applying machine
learning algorithms on it. The wind speed data for selected sites are recalled from CSV
files. This can be done by clicking the “Open file” button and loading the data file. The
loaded dataset is then processed to Cross-validation to randomly partition the data into
k subsamples for training and testing. The number entered in the Fold section is used
to divide the dataset into the number of Folds specified. Then classifier J48 is used as a
decision tree to create a pruned tree. The Classifier Model part illustrates the model as a
tree and gives some information about the tree, like the number of leaves, size of the tree,
etc. Next is the stratified cross-validation part and it shows the error rates. It shows how
successful the model is. By right-clicking “Visualize tree”, the developed model’s tree can
be visualized.

The performance measurements for this work were recall, precision, the classifier
F1-score, and accuracy. Examining the data for accuracy and precision establishes the
credibility of the results. Accuracy refers to how closely the measurements match the
desired “true” value. Precision indicates how well repeated measurements agree with and
are approximate to one another. As with the order of decisions about wind speed location,
it is important that the values be close, i.e., a high level of precision, and at the same time,
that the decisions be correct, i.e., a high degree of accuracy. The accuracy and the precision
is defined in (5) and (6)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where TP is true positive, TN is true negative, FP is false positive and FN is false negative.
The true positive and true negative is the outcomes where the developed model correctly
predicts the cases. By contrast, a false positive and a false negative are the outcomes for
which the model incorrectly predicts the cases.

Precision(P) =
TP

TP + FP
(6)
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Recall (R) is the ratio of the accurate data to the total relevant data. Its formula is
shown in (7).

R =
TP

TP + FN
(7)

where TP is true positive and FN is false negative.
The classifier F1-score is calculated based on the harmonic mean. It is given as

F1 =
2∗P ∗ R
P + R

(8)

where P is the precision and R is the recall.
The performance measurement results are listed in Table 10.

Table 10. Overall performance results (training and validation set).

Model Model 1 Model 2

Total number of instances 11.43 11.43

Correctly classified instances 95.26% 100%

Kappa statistic 0.93 1

Mean absolute error 0.027 0.07

Root mean squared error 0.11 0.12

Relative absolute error 5.64% 25.03%

Root relative squared error 24.36% 31.60%

Measurements from another performance indicator established with the use of a
confusion matrix are presented in Table 11. The confusion matrix was built based on the
data testing, and a confusion matrix was constructed for each class in the form shown in
Table 12.

Table 11. Recall, precision, and F1-score measurements for each class.

Recall Precision F1-Score
Class

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

96.89% 100% 98.19% 100% 0.97541 1 case1

92.84% 100% 90.96% 100% 0.91895 1 case2

92.36% 100% 88.80% 100% 0.90546 1 case3

93.80% 100% 95.58% 100% 0.94681 1 case4

97.43% 100% 98.45% 100% 0.97941 1 case5

Because of the limited number of training cases, exercising care when minimizing
and reserving the number of training samples for testing purposes is extremely important.
Cross-validation was employed for testing, checking, and verifying the generalizability of
the model. In training any model, a frequent tendency is to overfit, and cross-validation
was applied as a means of avoiding this effect. The best way to improve the performance
of a system is to reserve a small portion of the training data itself for use in validating
the model since this approach provides an idea of the ability of the model to predict the
previously unseen reserved data. K-fold cross-validation is a technique commonly used
for this purpose. In a 10-fold version of k-fold cross-validation, the training set is randomly
split into groups of 10 that have approximately the same size. The classifier is then trained
using eight subsets. One of the two remaining subsets is used for validation and the last,
for testing. This process is repeated until all folds, one by one, have an opportunity to
be the assigned test version. This technique establishes the generalizability of the model,
especially when limited data makes it difficult to break the data down into test data and



Sustainability 2021, 13, 9340 14 of 17

training data. Table 13 shows the average degree of accuracy for 2-fold, 4-fold, 6-fold, and
8-fold cross-validation and for the 10-fold cross-validation used in this paper.

Table 12. Confusion matrix (training and validation set).

Real System

Model 1

case 1 case 2 case 3 case 4 case 5

case 1 2500 28 13 0 5

case 2 18 1803 74 13 74

case 3 2 91 1475 89 4

case 4 16 20 33 1665 8

case 5 44 0 2 8 3450

Model 2

case 1 2578 0 0 0 0

case 2 0 1942 0 0 0

case 3 0 0 1597 0 0

case 4 0 0 0 1775 0

case 5 0 0 0 0 3541

Table 13. Degrees of accuracy for 2-fold, 4-fold, 6-fold, 8-fold, and 10-fold cross-validation.

K-fold Accuracy (%)

Model 1 Model 2

2-fold 68.654 69.38

4-fold 65.145 88.62

6-fold 78.224 95.64

8-fold 87.325 98.32

10-fold 95.26 100.00

In this research, a unique system was developed to arrange places according to wind
speed. The process was carried out through three stages, i.e., the data collection stage, the
processing stage, and the design stage. In the first stage, data are collected from different
places, for example in the center, north, south, east, and west of the region. These data
contain wind speed and other additional information such as location data from longitude
and latitude and the date of collected samples. The data are collected in a central database
and this database contains all the information deduced from the databases spread in
different places. In the second stage (data processing stage), the information that is not
useful in this research, such as longitude and latitude, is discarded and the date is replaced
by the month. Then the central database is rearranged and the number of cases is reduced
by using the association rules (a famous method of finding relationships) and this is done
by studying all cases and their relationship to each other. This developed theory can be
used for other places and other databases, and the developed method does not exist before
in the literature. Machine learning methods depend on a set of algorithms, and these
algorithms are applied to a set of data to build models that help in making decisions. This
model is not limited to these data. This model can be used as a solid foundation to address
similar problems in different areas. Other factors such as the direction of the wind, the
maximum and minimum wind speed per day are important and might serve different
applications. In this paper, however, the focus was on the wind speed to achieve a specific
goal of providing the network operators with an understanding of the possible productivity
of each wind site location, thus facilitating the optimal management and installation of
wind plants and network operations. Such other factors open the door for great future
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work. The wind direction especially will play an important role in determining the place of
the wind plants and the layout of wind turbines.

The proposed model shows great promise, so that two locations are sufficient for
obtaining the order of preference of the locations. For example, if it is known only that the
wind speed in the east region is below 3.05 m/s, then this scenario follows Case 2. Once the
cause is known, the order of the wind speed values at all locations can be determined. If
the wind speed in the east region is greater than 3.5 m/s but less than 3.72 m/s, the status
of the wind speed at the other locations can be extracted from the Case 4 scenario. If the
wind speed in the east region is greater than 3.77 m/s, the status of the wind speed at the
center location and whether it follows Case 6 or Case 7 can be determined. Indeed, this
feature of the proposed model saves the time and effort that would otherwise be required
for predicting the wind speed at multiple locations. This model can thus be very helpful to
system operators who desire an easy, quick, and accurate method of determining the status
of the wind speeds at different locations.

4. Conclusions

This paper has presented a machine learning-based decision-making method for the
assessment of potential wind speed productivity in different locations. To preserve the
characteristics of the correlations among these sites, the new method employs wind speed
data from multiple sites as a single package. Machine learning using Weka software is
then employed to test the correlations among the sites to rank the sites into different cases.
Wind speed becomes the primary classification factor for prioritizing the sites in order. The
implementation of training tests for big data sets improves the prediction of appropriate
locations for wind farms. Using real data, the decision model has been constructed, tested,
and verified. The data is a part of the Renewable Resource Monitoring and Mapping
(RRMM) Program prepared by King Abdullah City for Atomic and Renewable Energy
(KACARE). KACARE monitored and recorded the wind speed data at different installed
stations in the Kingdom of Saudi Arabia at 3 m height. 10-fold cross-validation was used
in the experimental part. The proposed model shows great results, so that the information
about two locations is sufficient for obtaining the order of the remaining locations. The
developed model shows high accuracy (up to 95.26%) in the test data. The final performance
of Model 1 has been improved by developing Model 2, where the accuracy has increased
to 100%. Electric network planners could use the proposed model as a means of enhancing
their ability to conduct feasibility studies for any plans for establishing wind farm projects
at different distanced locations. A system operator could also use this method for assessing
likely wind power productivity at each site so that network operational activities can be
managed effectively. The results of this study also offer electricity market investors helpful
input for making appropriate investment decisions.

Author Contributions: The authors’ conributions are as follows: data mining, data analysis and
software, A.M.M.; Concepulazation and methodology, A.A. and S.A.; investigation, M.A.O.; writing—
original draft preparation, D.A. and J.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received funding from the Deputyship for Research and Innovation, Ministry
of Education, Saudi Arabia under project number (IFP-2020-02).

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author.

Acknowledgments: The authors extends their appreceiations to Deputyship for Research and Inno-
vation, Ministry of Education, Saudi Arabia, for funding this research work through project number
(IFP-2020-02).

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2021, 13, 9340 16 of 17

References
1. Statista. Installed Wind Power Capacity—Worldwide, 2001–2019. Available online: https://www.statista.com/statistics/268363

/installed-wind-power-capacity-worldwide (accessed on 28 April 2020).
2. Renewables Information 2019—Analysis. Comprehensive Historical Review and Current Market Trends in Renewable Energy,

IEA. Available online: https://www.iea.org/reports/renewables-information-overview (accessed on 1 July 2020).
3. Georgilakis, P.S. Technical challenges associated with the integration of wind power into power systems. Renew. Sustain. Energy

Rev. 2008, 12, 852–863. [CrossRef]
4. Albadi, M.H.; El-Saadany, E.F. Overview of wind power intermittency impacts on power systems. Electr. Power Syst. Res. 2010,

80, 627–632. [CrossRef]
5. Billinton, R.; Wangdee, W. Reliability-based transmission reinforcement planning associated with large-scale wind farms. IEEE

Trans. Power Syst. 2007, 22, 34–41. [CrossRef]
6. Billinton, R.; Karki, R.; Gao, Y.; Huang, D.; Hu, P.; Wangdee, W. Adequacy assessment considerations in wind integrated power

systems. IEEE Trans. Power Syst. 2012, 27, 2297–2305.
7. Chao, H.; Hu, B.; Xie, K.; Tai, H.-M.; Yan, J.; Li, Y. A Sequential MCMC Model for Reliability Evaluation of Offshore Wind Farms

Considering Severe Weather Conditions. IEEE Access 2019, 7, 132552–132562. [CrossRef]
8. Almutairi, A.; Ahmed, M.H.; Salama MM, A. Use of MCMC to incorporate a wind power model for the evaluation of generating

capacity adequacy. Electr. Power Syst. Res. 2016, 133, 63–70. [CrossRef]
9. Gao, Y.; Billinton, R. Adequacy assessment of generating systems containing wind power considering wind speed correlation.

IET Renew. Power Gener. 2009, 3, 217–226. [CrossRef]
10. Chen, F.; Li, F.; Wei, Z.; Sun, G.; Li, J. Reliability models of wind farms considering wind speed correlation and WTG outage.

Electr. Power Syst. Res. 2015, 119, 385–392. [CrossRef]
11. Sun, M.; Feng, C.; Zhang, J. Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation.

Appl. Energy 2019, 256, 113842. [CrossRef]
12. Hasan, S.; Al-Aqeel, T.; Peerbocus, N. Saudi Arabia’s Unfolding Power Sector Reform: Features, Challenges and Opportunities

for Market Integration. ResearchGate 2020. [CrossRef]
13. Baseer, M.; Meyer, J.; Rehman, S.; Alam, M. Wind power characteristics of seven data collection sites in Jubail, Saudi Arabia using

Weibull parameters. Renew. Energy 2017, 102, 35–49. [CrossRef]
14. Rehman, S.; Halawani, T.; Mohandes, M. Wind power cost assessment at twenty locations in the Kingdom of Saudi Arabia. Renew.

Energy 2003, 28, 573–583. [CrossRef]
15. Bassyouni, M.; Gutub, S.A.; Javaid, U.; Awais, M.; Rehman, S.; Hamid, S.M.-S.A.; Abdel-Aziz, M.H.; Abouel-Kasem, A.;

Shafeek, H. Assessment and analysis of wind power resource using weibull parameters. Energy Explor. Exploit. 2015, 33, 105–122.
[CrossRef]

16. Qin, Z.; Li, W.; Xiong, X. Generation system reliability evaluation incorporating correlations of wind speeds with different
distributions. IEEE Trans. Power Syst. 2013, 28, 551–558. [CrossRef]

17. Almutairi, A.; Nassar, M.E.; Salama, M.M.A. Statistical evaluation study for different wind speed distribution functions using
goodness of fit tests. In Proceedings of the IEEE Electrical Power and Energy Conference (EPEC) 2016, Ottawa, ON, Canada,
12–14 October 2016.

18. Ouarda, T.; Charron, C.; Shin, J.-Y.; Marpu, P.R.; Al-Mandoos, A.; Al-Tamimi, M.; Ghedira, H.; Al Hosary, T. Probability
distributions of wind speed in the UAE. Energy Convers. Manag. 2015, 93, 414–434. [CrossRef]

19. Almonacid, F.J.M.F.; Rus, C.; Hontoria, L.; Munoz, F.J. Characterisation of PV CIS module by artificial neural networks. A
comparative study with other methods. Renew. Energy 2010, 35, 973–980.

20. Khait, J.A.; Mansour, A.M.; Obeidat, M. Classification based on Gaussian-kernel Support Vector Machine with Adaptive Fuzzy
Inference System. Margin 2018, 5, 16–24.

21. Mansour, A.M.; Alaqtash, M.M.; Obeidat, M. Intelligent Classifiers of EEG Signals for Epilepsy Detection. WSEAS Trans. Signal
Process. 2019, 15, 2224–3488.

22. Obeidat, M.A.; Mansour, A.M. EEG Based Epilepsy Diagnosis System using Reconstruction Phase Space and Naïve Bayes
Classifier. WSEAS Trans. Circuits Syst. 2018, 17, 2224–2266.

23. Mansour, A.M. Decision Tree-Based Expert System for Adverse Drug Reaction Detection using Fuzzy Logic and Genetic
Algorithm. Int. J. Adv. Comput. Res. 2018, 8, 110–128. [CrossRef]

24. Hawashin, B.; Mansour, A.; Aljawarneh, S. An Efficient Feature Selection Method for Arabic Text Classification. Int. J. Comput.
Appl. 2013, 83, 17. [CrossRef]

25. Ayman, M.M. Texture Classification using Naïve Bayes Classifier. Int. J. Comput. Sci. Netw. Secur. 2018, 18, 112–120.
26. Al Nadi, D.A.; Mansour, A.M. Independent Component Analysis (ICA) for texture classification. In Proceedings of the 5th

International Multi-Conference on Signals and Devices, IEEE SSD, Amman, Jordan, 20–23 July 2008.
27. Hawashin, B.; Mansour, A.; Abukhait, J.; Khazalah, F.; Alzubi, S.; Kanan, T.; Obaidat, M.; Elbes, M. Efficient Texture Classification

Using Independent Component Analysis. In Proceedings of the IEEE Jordan International Joint Conference on Electrical
Engineering and Information Technology (JEEIT), Amman, Jordan, 9–11 April 2019; pp. 544–547.

28. Renewable Resource Atlas. King Abdullah City for Atomic and Renewable Energy. Available online: http://rratlas.kacare.gov.sa
(accessed on 10 June 2020).

https://www.statista.com/statistics/268363/installed-wind-power-capacity-worldwide
https://www.statista.com/statistics/268363/installed-wind-power-capacity-worldwide
https://www.iea.org/reports/renewables-information-overview
http://doi.org/10.1016/j.rser.2006.10.007
http://doi.org/10.1016/j.epsr.2009.10.035
http://doi.org/10.1109/TPWRS.2006.889126
http://doi.org/10.1109/ACCESS.2019.2941009
http://doi.org/10.1016/j.epsr.2015.12.015
http://doi.org/10.1049/iet-rpg:20080036
http://doi.org/10.1016/j.epsr.2014.10.016
http://doi.org/10.1016/j.apenergy.2019.113842
http://doi.org/10.30573/KS--2020-DP01
http://doi.org/10.1016/j.renene.2016.10.040
http://doi.org/10.1016/S0960-1481(02)00063-0
http://doi.org/10.1260/0144-5987.33.1.105
http://doi.org/10.1109/TPWRS.2012.2205410
http://doi.org/10.1016/j.enconman.2015.01.036
http://doi.org/10.19101/IJACR.2018.836007
http://doi.org/10.5120/14666-2588
http://rratlas.kacare.gov.sa


Sustainability 2021, 13, 9340 17 of 17

29. Navida, W. Statistics for Engineers and Scientists, 3rd ed.; McGraw-Hill: New York, NY, USA, 2011; ISBN 978–0-07–337633-2.
30. Zhang, Z. Missing data imputation: Focusing on single imputation. Ann. Transl. Med. 2016, 4, 1.
31. Curley, C.; Krause, R.M.; Feiock, R.; Hawkins, C.V. Dealing with Missing Data: A Comparative Exploration of Approaches Using

the Integrated City Sustainability Database. Urban Aff. Rev. 2019, 55, 591–615. [CrossRef]
32. Ordiano, J.; Ángel, G.; Waczowicz, S.; Reischl, M.; Mikut, R.; Hagenmeyer, V. Photovoltaic power forecasting using simple

data-driven models without weather data. Comput. Sci. Res. Dev. 2017, 32, 237–246.
33. Khan, S.I.; Hoque, A.S.M.L. SICE: An improved missing data imputation technique. J. Big Data 2020, 7, 3. [CrossRef]
34. Angulakshmi, M.; Deepa, M.; Sudha, S.; Brindha, K. Association Rule Modeling using UML and Apriori Algorithm. In

Proceedings of the International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore
Institute of Technology, Vellore, India, 24–25 February 2020; pp. 1–5.

35. Agapito, G.; Milano, M.; Guzzi, P.H.; Cannataro, M. Mining Association Rules from Disease Ontology. In Proceedings of the
2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 November 2019; pp.
2239–2243.

36. Kharya, S.; Soni, S.; Swarnkar, T. Weighted Bayesian Association Rule Mining Algorithm to Construct Bayesian Belief Network.
In Proceedings of the 2019 International Conference on Applied Machine Learning (ICAML), Bhubaneswar, India, 25–26 May
2019; pp. 27–33.

37. Chen, C.; Chou, H.; Hong, T.; Nojima, Y. Cluster-Based Membership Function Acquisition Approaches for Mining Fuzzy Temporal
Association Rules. IEEE Access 2020, 8, 123996–124006. [CrossRef]

38. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM
SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]

39. Bhargava, N.; Sharma, G.; Bhargava, R.; Mathuria, M. Decision tree analysis on j48 algorithm for data mining. Int. J. Adv. Res.
Comput. Sci. Softw. Eng. 2013, 3, 1114–1119.

40. Kaur, G.; Chhabra, A. Improved J48 classification algorithm for the prediction of diabetes. Int. J. Comput. Appl. 2014, 98, 13–17.
[CrossRef]

41. Ruggieri, S. Efficient C4.5 [classification algorithm]. IEEE Trans. Knowl. Data Eng. 2002, 14, 438–444. [CrossRef]
42. Hssina, B.; Merbouha, A.; Ezzikouri, H.; Erritali, M. A comparative study of decision tree ID3 and C4.5. Int. J. Adv. Comput. Sci.

Appl. 2014, 4, 13–19. [CrossRef]
43. Wu, X.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 algorithms

in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [CrossRef]

http://doi.org/10.1177/1078087417726394
http://doi.org/10.1186/s40537-020-00313-w
http://doi.org/10.1109/ACCESS.2020.3004095
http://doi.org/10.1145/1656274.1656278
http://doi.org/10.5120/17314-7433
http://doi.org/10.1109/69.991727
http://doi.org/10.14569/SpecialIssue.2014.040203
http://doi.org/10.1007/s10115-007-0114-2

	Introduction 
	System Design and Methodology 
	Data-Gathering Phase 
	Data Preprocessing Phase 
	Learning and Classification Phase 

	Experiments and Results 
	Conclusions 
	References

