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Abstract: Kraft mill effluents are characterized by their content of suspended solids, organic matter
and color due to the presence of lignin, lignin derivatives and tannins. Additionally, Kraft mill
effluents contain adsorbable organic halogens and wood extractive compounds (resin acids, fatty
acids, phytosterol) and show high conductivity due to the chemical compounds used in the digestion
process of pulp. Currently, Kraft mills are operating under the concept of a linear economy and,
therefore, their effluents are generating serious toxicity effects, detected in daphnia, fish and biosen-
sors. These effluents are treated by activated sludge and moving bed biofilm systems that are unable
to remove recalcitrant organic matter, color and biological activity (toxicity) from effluents. Moreover,
under climate change, these environmental effects are being exacerbated and some mills have had
to stop their operation when the flows of aquatic ecosystems are lower. The aim of this review is to
discuss the treatment of Kraft pulp mill effluents and their impact regarding the current practices
and future perspectives towards sustainability under climate change. Kraft pulp mill sustainability
involves the closure of water circuits in order to recirculate water and reduce the environmental
impact, as well as the implementation of advanced technology for these purposes.
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1. Introduction

Latin America is leading the installed capacity of Kraft pulp mills, surpassing the
installed capacity in North America. The continents that have a greater supply of cellulose
fiber are Latin America and the Nordic countries, while the largest demand for cellulose
fiber comes from China. The developing countries that install this type of Kraft pulp
mill generate processes with the best available technology (BAT) in the market, that is,
with continuous pulp digestion systems and elemental chlorine-free (ECF) bleaching pulp.
Additionally, developing countries have conventional treatment systems installed and then
discharge their effluents to surface ecosystems (i.e., rivers or sea). Developed countries
face growing conservationist pressures that limit or make it more difficult to obtain raw
materials for industry. Furthermore, in these countries, there are still very competitive
locations for the development of plantations; the requirements for forest management
certifications and sustainability codes are universal for all countries that produce and
export pulp. On the other hand, Europe is no longer the most important regional market,
being displaced by China, and pulp based on eucalyptus continues to lead the market
growth, adding 3.1 million tons of annual growth.

In this article, for a better understanding of the difficulty that the Kraft pulp mills have
in order to implement cycle closure, the origin of the effluent, its generation under BAT, and
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adequate procedures that all industries that export pulp have implemented, as required by
international markets, are explained. Due to the raw material and the chemical conditions
of the process, it generates a series of environmental impacts that have been evaluated by
means of different bioindicators at different trophic levels. The conventional treatment
technologies that are currently installed in all Kraft pulp mills are of the conventional,
biological type and all discharge their effluents to surface water bodies. However, the
water crisis that is affecting many countries that produce Kraft pulp requires sustainability
option to increase the level and type of effluent treatment using advanced technology, so as
to be able to close certain parts of the production process and, with them, reduce the use of
fresh water.

The aim of this review is to discuss the treatment of Kraft pulp mill effluents and
their impact regarding the current practices and future perspectives towards sustainability
under climate change.

2. Kraft Mill Process and Effluents

Wood is known to be the most abundant and renewable source of lignocellulosic
material in the world. It has three main components: cellulose (40–45%), hemicelluloses
(20–30%), and lignin (20–30%) [1]. Additionally, other organic compounds (2–5%) can be
extracted from digestion processes, including terpenes, polar phenols, fatty acids, resin
acid, and sterols. These are known as resins, extractive compounds, or wood extractives [2].

Long fiber wood, such as pine (i.e., Pinus radiata), presents a greater quantity of
wood extractives (0.5–7.0%), while short fiber wood (eucalyptus, i.e., Eucaliptus globulus,
Eucaliptus nintens) present a lower quantity (0.2–3.5%) [3]. Long fiber wood is rich in resin
acid [4], while sterols are abundant in short fiber wood [5]. However, the effluents of both
long and short fiber woods contain sterols, resin acid, long chain fatty acids, and other
compounds. Processes that use short fiber or mixed fiber wood produce a greater extractive
compound load in their effluents [4,5]. On the other hand, studies have demonstrated that
compounds with log Kow (octanol–water partition coefficient) values higher than 4 have
accumulation properties and, because of this, probably biological activity. Specifically, Kraft
pulp mill effluents generate micropollutants with high Kow, as is the case of stigmasterol
(10.2), β-sitosterol (9.6), abietic acid (4.6–7.5), and dehydroabietic acid (5.7–7.2), among
others [6].

On the other hand, the production process of Kraft pulp mills generates different efflu-
ents whose physicochemical characteristics depend on the raw material, technology, and
processes used. The processes that generate most of the pollutant effluent are digestion and
bleaching. Due to this, the best available technologies are installed to increase properties in
the pulp and to reduce the absorbable organic halogen (AOX) concentration in the effluent,
due to the bleaching process.

Figure 1 summarizes the main compounds that are produced during the main stages
of the process of obtaining Kraft cellulose [7].

The main strategies for minimizing effluent generation and its effect are: (a) increased
delignification efficiency in earlier stages, which represents a longer bleaching stage, and
(b) improved technical conditions for pulp bleaching. The following procedures have
been proposed: (1) substituting chloride for another oxidating agent, such as oxygen or
chloride dioxide [8,9], (2) water recycling, (3) modifying the washing system [10], and (4)
performing the bleaching stage with pulp of greater consistency in order to save water.

All the technological improvements mentioned above will help to improve biodegra-
dation in the effluents, reducing their environmental impact due the biological activity of
micropollutants, among others. However, the micropollutants in the generated effluents
need to be studied. For example, bleaching technology that does not use chlorates as oxi-
dants (total chlorine-free (TCF)) generates effluents with a smaller contamination load than
the effluents produced by elemental chlorine-free (ECF) bleaching processes [11] due to
the organic compounds and the highly oxidized compounds present in these effluents [12].
However, the TCF process effluents require chelants such as ethylenediaminetetraacetic
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acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) which show low biodegrada-
tion in treatment plants and, consequently, high incidence in the environment [13,14].
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compounds; EOX: extractable organic halogens.

3. Recalcitrant Organic Compounds in Kraft Pulp Mill Effluents

Kraft pulp mill effluents contain a variety of recalcitrant compounds, such as lig-
nosulfonic acid, chlorinated resin acids, chlorinated phenols, dioxins, and chlorinated
hydrocarbons. Figure 2 shows a type of classification of organic matter and the possible
compound removal by physicochemical, chemical, and biological technology.

Although in most cases the toxicity is low, pulp bleaching effluents are characterized
by a high concentration of chemical oxygen demand (COD) (1000 to 7000 mg/L), a low
biodegradability ratio (biological oxygen demand, BOD5/COD) of 0.02 to 0.07, and a
moderate concentration of suspended solids (500 to 2000 mg/L). Compounds, especially
those containing chlorine (measured by the parameter AOX) are recalcitrant because they
contain chemical structures that are rare in nature, such as the carbon–chlorine bond. It
has been widely reported that high molecular weight organic matter (HMW >1 kDa) in
bleaching effluents is more recalcitrant to biological treatment than low molecular weight
organic matter (LMW <1 kDa) [15,16]. Dissolved lignin and its degradation products,
hemicelluloses, resin acids, fatty acids, diterpenic alcohols, juveniles, tannins, and phenols
are responsible for the dark color and toxicity of the effluent [17].

Lignin and its derivatives are recalcitrant and highly toxic compounds responsible
for the high BOD5 and COD values of the effluents, as well as the dark brown color of
the pulp effluents formed during pulping. Lignin is one of the most difficult substances
to break down [18]. For example, lignosulfonates have been found to inhibit various
biological systems, such as enzyme, toxin and antibiotic functions, and the chlorinated
derivatives of lignin are poorly degraded by conventional wastewater treatment processes.
During the biological and chemical degradation of chlorinated lignin, small (MW <1 kDa)
harmful compounds can be formed, such as chloroanisoles and chloroveratrols, which,
when accumulated in fish, can cause a bad taste. In addition, the concern is that chlorinated
lignins release toxic or bioaccumulative compounds or are transformed into biologically
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active compounds [19]. Table 1 shows the physical–chemical characterization of some
wood extractives present in effluents from the Kraft pulp industry.
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Table 1. Physicochemical properties of some wood extractives with biological activity contained in the Kraft pulp mill effluents.

Compound Structure Molecular Weight (g/mol) Solubility (mg/L) 20 ◦C Log Kow Reference

Abietic acid
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4. Evaluation of Biological Activity Effects of the Kraft Mill Effluents in
the Environment

The compounds present in Kraft mill effluent discharges in the environment that
can potentially interrupt the normal functioning of endocrine systems of the biota in
an ecosystem have motivated numerous investigations because the effects on human
beings are not yet evident [29]. The traditional method of evaluating these compounds
in industrial effluents is by using chemical methods, such as spectrometry (UV–visible,
IR) and chromatography (thin layer chromatography (TLC), high-performance liquid
chromatography (HPLC)), and gas chromatography–mass spectrometry (CG-MS), which
are analytical techniques of great detection power for chemical compound quantification
and identification, but their operation is very complex and expensive [30]. On the other
hand, potential biological effects of Kraft mill effluents have been studied in experimental
exposure experiments in fish [29,31] or Daphnia magna [6,32,33]. Specifically in this case,
the research group has detected estrogenic activity of Kraft mill treated effluent by a
recombinant Saccharomyces cerevisiae yeast. The results indicate that the estrogenic activity
values were relatively low, between 1.475 and 0.383 ng/L of estrogenic equivalent of 17
a-ethynylestradiol (EE2 eq.), where the highest value corresponds to the Eucaliptus globulus
effluent and the lowest value to the Pinus radiata effluent [30,34]. However, previous works
have found toxic effects in treated Kraft mill effluents due to dioxin-like compounds; in
other words, ligands of the aryl hydrocarbon receptor (AhR) constitute a significant fraction
of the biological activity of Kraft mill effluents [35]. Ectopic activation of AhR constitutes
the initial step of the metabolic chain, leading to toxic effects of a variety of different harmful
pollutants, such as 2,3,7,8-tetrachlorodibenzo-(p)-dioxin (TCDD) and benzo[a]pyrene (BaP).
Immune dysfunction, endocrine disruption, reproductive toxicity, developmental defects,
and cancer in vertebrates are some of these effects [36]. Therefore, assays to detect AhR
activation and subsequent signal transduction are becoming an extremely useful approach
to monitor pollution loads in environmental samples. The advantage in using this biosensor
is that yeast is easy to grow and detects chemical compounds rapidly and at a low cost.
The application of this test in the field of wastewater treatment is in full expansion. To date,
it has been used widely in the evaluation of wastewater treatment plants [3,30,37].

Depending on the effects that these tests need to detect, organisms, cells, and/or
tissues can be used. The simplest and best known are the acute toxicity tests that have
been developed and standardized by US agencies such as the United States Environmental
Protection Agency (USEPA). These toxicity tests can be used to determine a contaminant’s
capacity (whether a pure substance or effluent) to produce toxic effects in live organisms
when they are exposed for a certain time at certain concentrations. The most used organisms
in aquatic biotests are daphnia, mainly due to their wide distribution (cosmopolitan),
their ecological importance, their sensitivity to disrupted environments, and their short
life cycle. As a result, they are considered indicator species for adverse environmental
conditions [38]. The adequate survival, growth, and reproduction of daphnia are crucial
for success in the environment. Moreover, studies on this species could give information
on the effluent quality in terms of the ecosystem trophic chain [39]. Some studies have
focused on evaluating the effects of endocrine-disrupting chemicals on daphnia. Thus,
Xavier et al. [32] found that Kraft mill effluents induce sexual maturation in female daphnia.
The development of secondary sex characteristics has been demonstrated to be altered
by endocrine-disrupting chemicals. On the other hand, Olmstead and Le Blanc [40]
observed that diethylstilbestrol stimulates the development of the secondary abdominal
process in female daphnia. Moreover, studies showed that the effluent factors capable of
modifying the body proportions of daphnia have the same effect in pine and eucalyptus.
Additionally, they found that micropollutants like β-sitosterol and stigmasterol contribute
to the allometric growth rate (determined as % of the growth rate of the body length and
body width). The phytosterols per se are responsible for 12.9 and 8.1% of the deviation
from the natural shape, while the Kraft mill effluents account for 25.6 to 27.8% of shape
deviation. They concluded that the estrogenic activity of Kraft mill effluents is dependent
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on the species processed for wood pulp, but the effluent treatment and the operation
strategy were not evaluated in this work.

A second biological response widely found in fish exposed to bleached Kraft mill
effluents is increased detoxification activity in the liver and other tissues [41–43]. The
most widely used marker for this biological activity is the activation of cytochrome P450
1A (cyp1a), monitored through the associated enzymatic activity of ethoxyresorufin O-
deethylase (EROD) [44,45] or analyzing changes in the transcription of the cyp1a gene
using real-time polymerase chain reaction techniques [46–48]. This activity, also called
“activity similar to dioxins”, is not considered an adverse outcome as such, although it
constitutes the initial step in the metabolic chain leading to the toxic effects of a variety
of harmful contaminants, such as 2,3,7,8-tetrachlorodibenzo-(p)-dioxin (TCDD), coplanar
PCBs, and benzopyrenes, among others [36]. It is important to emphasize that this re-
sponse is mediated by the interaction of contaminants with a specific nuclear receptor, the
aryl hydrocarbon receptor (AhR), also known as the “dioxin receptor”, with which mice
lacking the corresponding gene become resistant to the tumorigenic effects of dioxins or
benzopyrenes [49,50].

Table 2 summarizes some effects on the biological activity of some species exposed
to effluents or compounds from Kraft pulp mills. Additionally, the means of detection
are indicated.

Table 2. Effects on the biological activity of some species exposed to effluents or compounds from Kraft pulp mills.

Exposed Species Effluent/Compound Toxicity Effect Detection Reference

Gambusia affinis BKME Gonopod formation (female) Body measurements [51]
Oryzias latipes Genistein (1000 µg/L) Intersex at 12%. Large ovarian lumen Histological analysis [27]

Trichomycterus areolatus
and Percilia irwini

Bío-Bío river: downstream and
upstream pulp mill effluent

discharges

Higher level of VTG and EROD in
fish exposed to downstream pulp

mill effluent discharges.
Additionally, gonad alterations and

intersex juvenile fish

Western blot, Northern
blot. VTG, EROD, LSI,

GSI, GC-MS, ELISA
[29]

Coregonus lavaretus BKME-ECF (5 mg/fish) Induction of VTG mRNA Northern blot [52]
Daphnia magna BKME (6.25, 12.5, 25, 50, 100%) Abdominal growth Toxicity tests, CG-MS,

microscopy [32]

Carassius carassius β-sitosterol (200 mg/g) Reduction in the size of the gonads VTG, GSI, HSI and
histological analysis [53]

Danio rerio DHAA (50 µg/L) (F0 y F1) VTG increase (F1 males); low VTG
levels (F0 males)

VTG, ELISA, and
histological analysis [54]

Sprague Dawley rats Genistein (12.5, 25, 50,
100 mg/kg)

VTG increase (F1 males); low VTG
levels (F0 males)

Females: irregularities in the heat
cycle, histopathological changes in

the ovaries and uterus, loss of
fertility (100 mg/kg)

Histological analysis [55]

Selenastrum capricornutum,
Lemna aequinoctialis BKME-ECF 7-day growth 7-day growth [56]

VTG: vitellogenin; EROD: ethoxyresorufin-o-deethylase; ELISA: enzyme-linked immunosorbent assay; BKME: bleaching kraft mill effluent;
ECF: elementary chlorine free; GC-MS: gas chromatography–mass spectrometry; GSI: geological strength index; HSI: heat stress index;
DHAA: dehydroabietic acid. Adapted from Monsálvez et al. [28].

Table 2 shows the toxicity of the effluents from the Kraft pulp industry. Many studies
have found toxicity in the effluents that are discharged to surface bodies. This means
that there are bioactive compounds that are not eliminated by the conventional secondary
treatments that are currently installed in the production processes. Table 1 shows examples
of extractive compounds of difficult biodegradability that may be present in effluent
discharges (i.e., campesterol, stigmasterol, β-sitosterol, genistein). All these compounds
share basic phenolic structures that are difficult to biodegrade, joined by double bonds.

In addition, biological potential studies on these effluents have used the recombinant
Saccharomyces cerevisiae biosensor (yeast estrogen assay, YES). Therefore, if this strain is
genetically modified with the human estrogen receptor (hER), a recombinant yeast assay
(ER-RYA) bioindicator can be obtained and if YES is genetically modified with the human
aryl hydrocarbon receptor (AhR), it is possible to detect compounds with structures similar
to dioxins and furans (YCM-RYA) [30]. Chamorro et al. [57] studied three Kraft mill
effluents with different raw materials (P. radiata, E. globulus, and their mixture: mixed),
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detecting estrogenic activity expressed as 17-α-ethinylestradiol equivalent (EE2 eq.) of
0.383 ng EE2 Eq/L, 1.475 ng EE2 Eq/L, and 0.849 ng EE2 Eq/L, for effluents of P. radiata, E.
globulus, and mixed, respectively, Fernández et al. [58] obtained values of 42–83 ng EE2
Eq/L. In the case of ER-RYA (estrogenic activity) and YCM-RYA (“dioxin-like” activity)
studies, carried out by Monsálvez et al. [28], estrogenic activity values expressed as 17-β-
estradiol (E2 eq.) were from 0.19–0.68 ng E2 Eq/L and 0.28–0.67 ng E2 Eq/L for effluents
of P. radiata and E. globulus, respectively, and for dioxin-like activity, values of 21.35 ng E2
Eq/L and 753.80 ng E2/L were found for effluents of P. radiata and E. globulus, respectively,
while Chamorro et al. [30], in sediment samples near Kraft cellulose discharges, detected
low levels of responses for YES and RYA.

In addition to this, the effects of aquatic toxicity generated by Kraft mill effluent dis-
charges may produce a direct or indirect influence on the food chain related to productive
activities, such as agriculture and fishing. Moreover, toxic compound discharges are unsuit-
able for the growth and development of microbes, plankton, and small fish. This further
affects the growth of larger fish. Furthermore, the accumulation of toxic materials, such as
polyhydroxybutyrates and persistent organic pollutants, makes them toxic to secondary
and tertiary consumers, causing health problems.

5. Kraft Pulp Mill Effluents Treated by Conventional Technologies

The biological aerobic treatments with suspended biomass most commonly used
in Kraft mills are: aerated lagoons, activated sludge (AS) [59], and moving bed biofilm
reactors (MBBRs) [60,61].

Aerated lagoons are easy to operate but require a long hydraulic retention time (HRT)
and elevated land extensions. Additionally, aerated lagoons have problems in separating
the generated excess of solids. Furthermore, the operating conditions strongly influence
the degradation of aromatic compounds [62]. Xavier et al. [59] demonstrated that in anoxic
areas, intermediate compounds of resin acid biodegradation (e.g., retene) can produce
disruption activity. However, in optimal operating conditions, the biodegradation of these
compounds can be greater than 90% [22]. Aerobic treatment of Kraft mill effluents by
aerated lagoon systems reduces COD from 35–50%, BOD5 up to 90%, and suspended solids
80% [22,59]. However, organic compounds with high molecular weight and recalcitrant
compounds are partially transformed by aerobic bacteria (biotransformation) without
reaching complete mineralization of organic matter to CO2 and H2O [62]. However, at an
organic load rate (OLR) greater than 2 g COD/L·d (food/microorganisms (F/M) = 0.56 g
COD/g VSS·d), phytosterol removal was 66.5%, although there was no removal of either
acute toxicity (median lethal concentration, LC50, 48 h = 88.22%) or chronic reproduction
and growth toxicity (lowest observed effect concentration, LOEC = 20%), whereas genotox-
icity increased 16% [59]. Optimal operation of aerobic treatment systems depends on the
adequate control of operational parameters, such as: organic load rate, pH, temperature,
and aeration [59–61,63].

On the other hand, activated sludge systems used to aerobically treat Kraft mill efflu-
ents at the industrial scale remove 50% of COD in effluents from softwood processing and
more than 65% of COD in effluents from hardwood processing industries [63]. However,
some treatments do not remove the effluent color efficiently, and in other cases they even
increase it. Successful removal of extractive compounds (up to 97%) can be verified in
activated sludge, but it is not totally clear if the removal of specific compounds, such as
resin acid (43–94%) and phytosterols (41–99%), is due to biotransformation or adsorption in
the sludge [64]. However, the treatment of eucalyptus effluent removes almost 64% of the
total sterol content in the primary treatment, while 36% is passed to the activated sludge
reactor. Of these contents, between 41 and 67% were biodegraded or biotransformed in the
biological system, and between 31 and 57% were removed by adsorption in the sludge and
then subsequently thickened and disposed of [64]. Mahmood-Khan and Hall [26] observed
that β-sitosterol and β-sitostanol are the most removed phytosterols when Kraft cellulose
effluents are biologically treated (60–80%).
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In the effluents coming from processes using eucalyptus as raw material, a higher
sterol concentration is found, in which β-sitosterol presents the highest proportion (up
to 34 g ptp) [34]. The secondary treatments of the nine plants in this study presented
an elevated efficiency in resin acid and sterol degradation. However, the final system’s
removal efficiency can vary between 53 and 99%. This study also demonstrated that
the resin acid and saturated and unsaturated acid concentrations found in the effluent
depend on the type of wood used as raw material. From the point of view of the treatment
of these compounds, the volatile unsaturated fatty acids present a higher degradation
percentage than the saturated fatty acids. Xavier et al. [32], in a comparative study, show
that an activated sludge system presents greater elimination efficiency for compounds
with estrogenic activity in an aerated lagoon. Similarly, the removal of phytosterols in
conventional activated sludge systems operating at an OLR of 9.0 gCOD/L·d and HRT of
3 h was 70.3%. Still, even though the acute and chronic toxicity were completely removed,
the genotoxic effect increased 6%. At low F/M ratios, the biomass sedimentation in
activated sludge was affected [60].

On the other hand, MBBR systems can operate at an HRT of less than 2 h and their
operation can be extended to nitrogen and phosphorus removal. As a result, an MBBR
system can use 1/5–1/10 of the space occupied by a conventional sludge system [60]. The
biofilm used in this type of system plays an essential role in the system efficiency. The
transfer of oxygen and/or nutrients can be a limiting factor for biofilm growth and for
system robustness. Numerous studies have been performed in which the best operational
conditions are evaluated for systems using this type of technology, depending on the
substrate used, and there have been studies that evaluate the support together with the
operating conditions [63]. Specifically, AnoxKaldnes studied the behavior of a biofilm that
grows on a support for systems that operate in the first stage of the biological treatment
system (higher BOD5 load), and hybrid systems or systems that use it as a polishing
stage [60,61]. Table 3 shows the removal performance of conventional technologies for
organic matter and active compounds contained in the Kraft pulp mill effluents.

Table 3. Performance of the organic matter and active compounds contained in the Kraft pulp mill effluents treated by
conventional technologies.

Technology HRT
(h)

OLR
(kgBOD5/m3·d)

BOD5
(%)

COD
(%)

Resin Acid
(%)

Phytoesterols
(%)

Aerated lagoon 480–48 0.01–0.2 85–96 42–55 50-97 61–78
Activated sludge 48–4.5 0.4–1.4 85–99 42–93 80-99 50–98

MBBR 1.7–3 0.3–10 75–99 60–90 85-99 98–99

MBBR: moving bed biofilm reactor; HRT: hydraulic retention time; OLR: organic load rate; BOD5: biological oxygen demand; COD:
chemical oxygen demand; AOX: adsorbable organic halogens [3,22,57,59–61].

6. Advanced Treatments Used in Kraft Pulp Mill Effluent Treatments

Advanced oxidation processes (AOPs) and membrane technologies have emerged as
an alternative to conventional technologies for the oxidation of recalcitrant compounds.
These processes are based on the generation of hydroxyl radicals, which are strong oxidants
for the complete mineralization of the target compounds.

Table 4 summarizes studies carried out both in physical and physical–chemical treat-
ment systems, such as chemical precipitation and chemical treatments, such as AOPs, all
of them compared regarding COD, TOC, and AOX removal in Kraft mill effluents. Thus,
for chemical precipitation, the removal of COD is 63–77%, while for TOC it is 30–70%,
with very few studies regarding active compounds, such as phytosterols, with a removal
greater than 90% for β-sitosterol and stigmastanol [65]. In the case of AOPs, the COD and
TOC removal range from 20–94% and 8–96%, respectively [66]. In addition to this, the
removal efficiencies of resinic acids, linoleic acid, and β-sitosterol were 36–93%, 84%, and
87%, respectively, by the technologies of UV/H2O2/Fe+2 and O3 [65].
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Table 4. Efficiencies in different physicochemical and chemical treatment technologies used with Kraft pulp mill effluents.

Technology COD
(%)

TOC
(%)

Color
(%)

Phenolic
Compounds

(%)

Active
Compounds

(%)
Reference

Physicochemical technology

Chemical precipitation 63–77 30–70 96 n.r. >90 a,b [65,67,68]

Chemical technology

UV/H2O2 74 8–45 41 24–91 n.r. [69,70]
H2O2/Fe+2 >60 20–90 85 32–100 n.r. [69,71]

UV/H2O2/Fe+2 n.r. 60–96 82 n.r. 93 a, 84 c, 97 d [65,69,71]
O3 29–76 19–51 81–97 85–100 36–90 c [33,72,73]

O3/H2O2 31 n.r. 81 58–93 n.r. [69,74]
O3/UV 20 n.r. 30 81–93 n.r. [70,75]
UV/Zn 69–94 80 n.r. n.r. n.r. [76]

UV/TiO2 75–80 n.r. n.r. 42–78 n.r. [70,77]
O3/UV/ZnO; O2/UV/Zn 50 n.r. 40 n.r. n.r. [75]

Physical technology

Reverse osmosis 89 n.r. 100 n.r. n.r. [78]
Ultrafiltration n.r. n.r. 92 n.r. 72 e [79]
Nanofiltration n.r. n.r. 72 n.r. 82 e, 100 f [79,80]

n.r: not registered; a: β-sitosterol; b: stigmastanol; c: resinic acids; d: linoleic acid; e: AOX: adsorbable organic halogens; f: endocrine-
disrupting activity. COD: chemical organic demand; TOC: total organic carbon.

On the other hand, ozonation as a unit treatment has proven to be a strong disinfectant
and capable of eliminating color and oxidizing recalcitrant compounds without altering
the toxicity of the treated effluent, due to the total mineralization of the compounds [65,81].
Mainardis et al. [82] showed that ozone treatment could effectively replace tertiary physico-
chemical treatment in terms of COD and TSS elimination, which would mean an economic
saving of EUR 300,000/year and the investment could be recovered in approximately
7 years.

Furthermore, within the AOPs are photoelectrocatalysis (PEC) processes, which arise
from the combination of photocatalysis (PC) and electrochemical (CE) processes. This
technology has been evaluated little for Kraft mill effluents, while it is sustainable because
it can compensate for the high electrical energy consumption of the EC processes and the
input of external current in the PEC systems. In these systems, TiO2 is one of the most
widely used and most studied photoanode materials due to its non-toxicity, low cost, and
strong oxidizing capacity [17,83]. Rajput et al. [84] found that TiO2 electrodes together
with Au improve the photoelectrocatalytic activity of TiO2 electrodes, producing a 63.5%
reduction in COD and 44.4% in TOC.

Systems based on membrane filtration have been shown to have a high removal of
color, COD, AOX, salts, heavy metals, and total dissolved solids. These processes can
range from microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) to reverse
osmosis (RO) [19]. Through reverse osmosis, it was possible to obtain a maximum removal
of 88% of BOD5 and 89% of COD [78], with the typical efficiency of membrane technolo-
gies being 50 to 90%. On the other hand, regarding organochlorinated compounds, the
highest removal of AOX and color achieved by ultrafiltration was 72 and 92%, respectively.
Meanwhile, the total removal of color and more than 90% removal of AOX are achieved
by nanofiltration [79]. Moreover, Salvaterra et al. [80] show that nanofiltration is able to
prevent endocrine-disrupting activity. The membrane used as a tertiary treatment could
contribute to removing organic compounds contained in the bleaching effluents with the
possibility to reuse the effluent within the process, thus reducing discharges with active
micropollutants to aquatic ecosystems.

7. Towards a Circular Economy and Sustainability in Kraft Pulp Mills: Perspectives

The pulp and paper industry has received much criticism from all over the world,
particularly from environmentalist groups. Lumber harvesting for the paper industry has
been linked to increased deforestation in the world’s forests. On the other hand, when
a monoculture of pine and/or eucalyptus plantations is introduced, water stress occurs
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in the disrupted hydrographic basins, generating great social conflicts due to pressure
on the drinking water sources. This type of industry generates two different types of
pressure on the water of an ecosystem. On the one hand, due to the consumption of large
amounts of water by metabolism due to the requirements of the plant, the water that
is taken underground is evapotranspired by the plants and then the amount of surface
water is reduced. On the other hand, the small amount of surface water available is not
enough to then dilute the components of the effluents that are discharged from Kraft pulp
mill processing.

Under a climate change scenario, water is a scarce resource and an element of social
conflict due to the various uses that an ecosystem must provide. Currently, the Kraft pulp
industry is working in an open circuit. That is, it takes water from ecosystems, uses it in
the technological process and then discharges the treated effluent to surface ecosystems.
However, the sustainability of the industry in terms of water resources can be a problem in
the short and medium term for two reasons: (a) insufficient water in the ecosystem to feed
the production process and (b) insufficient flow for aquatic ecosystems to promote dilution
of the effluents to be discharged.

For this reason, it is very important to evaluate quaternary treatment systems that
allow a final effluent quality that mean it can be reused while maintaining the stable
operation of the process. The recirculation of water, under a closed cycle, in the Kraft
pulp industry must include not only the removal of organic compounds by conventional
technology, but also ions dissolved (non-process elements) in a concentration such that
they do not generate problems, such as incrustations, corrosion, and quality problems
in the final product due to their accumulation. Therefore, it is desirable to explore the
coupling of various biological, physical, and chemical technologies, thinking about the
recovery of water, energy, and valuable or undesirable compounds for these production
processes. Figure 3 shows the projection of the operation of a Kraft pulp mill operating in
an open circuit to a closed cycle. Currently, this considers the scientific evidence of current
impacts on ecosystems. On the other hand, it shows the possibility that these processes
can close the cycle, changing to closed-cycle systems due to the introduction of quaternary
technologies of a physicochemical type.

Currently, there are no (or not publicly known) bleached Kraft pulp plants that reuse
all of their effluents [85]. However, reverse osmosis (RO) is the most versatile desalination
method for the treatment of water of any salinity, from brackish water to high-salinity water,
linking non-process elements from Kraft pulp mill effluents [86]. The main weaknesses
are the fouling of the membranes due to the action of organic substances, which can be
solved with an adequate pre-treatment, and the formation of crystals that are embedded
in the membranes, which affect their performance and limit the recovery achieved [87].
None of these options have been applied on an industrial scale to treat bleached Kraft pulp
mill effluents.

On the other hand, electrodialysis (ED) is an electrochemical separation process
which employs electrically charged ion exchange membranes with an electrical potential
difference as a driving force. In electrodialysis, ions in solution migrate through ion-
selective membranes in an electric field [86,87]. The membranes are impervious to water,
so, unlike RO, ED is based on promoting selective ion transport rather than selective
transport of water. However, the energy consumption is mainly due to the electric field,
while in RO, energy is used to pump the water through the membranes. A variation of
ED is EDR, in which the polarity of the electrodes is periodically reversed (the hydraulic
polarity is also reversed), generating an exchange of the concentrated cells for the diluted
cells and vice versa. This technology promotes the separation of particles deposited on the
membranes, automatic cleaning of the system, and greater resistance to fouling by organic
contaminants or salt scale, compared to RO. This makes it a better option in the face of
adverse conditions, such as Kraft mill effluents. Regarding the energy consumption, it is
similar to RO, although it depends on the concentration of salts in the solution.
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The circular economy will promote the biorefinery of lignocellulosic compounds. In
developing countries, where the raw material has low value, the biorefinery of lignocellu-
losic compounds has not had a decided impact on basic and applied research regarding
biorefinery of lignocellulosic compounds. The market has only given space to the main
bleached Kraft pulp product. However, under climate change and the new production
scenarios of water scarcity, the research of the current biorefinery concepts should be
elaborated and optimized for the integrated utilization of all products in high-value appli-
cations rather than focusing on bioethanol, biofuels, or sugars only, as is still common to
date [88]. In particular, the engineering of lignin is not studied. Nevertheless, considering
the crucial role of lignin and other biomass components, the development of the different
biotechnologies of biomass and lignin, in particular, are very promising research fields,
in light of the multiple future applications, such as fibers, nanofibers, nanoparticles, and
products, among many others not yet known. In addition to that, parallel development of
the biotechnological potential of plant-associated microorganisms will be carried out [89].

These include technical issues associated with integrating operation units with each
other, integrating production of individual products into a multi-product biorefinery, and
integrating biorefineries into the broader resource, economic, and environmental systems
in which they function. We anticipate that coproduction of multiple products, for example,
production of fuels, chemicals, power, and/or feed, is likely to be essential for economic
viability. Lifecycle analysis is necessary to verify the sustainability and environmental
quality benefits of a particular biocommodity product or process. We see biocommodity
engineering as a legitimate focus for graduate study, which is responsive to an estab-
lished personnel demand in an industry that is expected to grow in the future. Graduate
study in biocommodity engineering is supported by a distinctive blend of intellectual
elements, including biotechnology, process engineering, and resource and environmental
systems [90].
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8. Conclusions

The consequences of climate change and water scarcity are forcing Kraft pulp com-
panies to investigate alternatives to managing water, moving from an open cycle to a
closed cycle. Due to the chemical characteristics of these effluents and as the currently
installed technology generates final effluents with a fraction of recalcitrant organic matter,
it is important to investigate technology that is coupled to the currently installed biological
technologies. The separation of some effluents at the source, as well as the intensification
of the treatment of the final effluent of the Kraft mill, promotes the idea of coupling more
advanced membrane-type technologies (i.e., reverse osmosis or electrodialysis) and/or
chemical technology (i.e., advanced oxidation processes) which may be the key to gener-
ating perspectives of sustainability of the Kraft pulp mills that are operating in countries
strongly affected by climate change.

The coupling of technology to make the Kraft pulp mill processes sustainable will
cause a closing of the cycle, enhancing the value of the raw material and giving space to
the integration of the operation units with each other, integrating production of individual
products into a multi-product biorefinery. This productive change will generate incentives
for the development of biotechnology of lignocellulosic compounds in general, promoting
an integration between natural resources, economy, and the environment.
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