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Abstract: Many private and public actors are incentivized by the promises of big data technologies:
digital tools underpinned by capabilities like artificial intelligence and machine learning. While many
shared value propositions exist regarding what these technologies afford, public-facing concerns
related to individual privacy, algorithm fairness, and the access to insights requires attention if the
widespread use and subsequent value of these technologies are to be fully realized. Drawing from
perspectives of data science, social science and technology acceptance, we present an interdisci-
plinary analysis that links these concerns with traditional research and development (R&D) activities.
We suggest a reframing of the public R&D ‘brand’ that responds to legitimate concerns related to data
collection, development, and the implementation of big data technologies. We offer as a case study
Australian agriculture, which is currently undergoing such digitalization, and where concerns have
been raised by landholders and the research community. With seemingly limitless possibilities, an up-
dated account of responsible R&D in an increasingly digitalized world may accelerate the ways in
which we might realize the benefits of big data and mitigate harmful social and environmental costs.

Keywords: digital transformation; research and development; reputational risk; interdisciplinary sci-
ence; big data; innovation systems; digital agriculture; responsible innovation; responsible prediction

1. Introduction

It is clear that the scarcity of both nonrenewable and renewable resources requires
new approaches to provide the essential services for human health and sustainable societal
development [1]. Part of the solution may lie in digital applications using ‘big data’ that
help stakeholders prevent further degradation of ecosystems, manage finite resources,
and track their transitions to sustainability targets (e.g., carbon neutrality). Big data tech-
nologies such as artificial intelligence and machine learning provide greater insights than
were previously possible [2]. By combining large datasets with advanced modeling ap-
proaches, big data technology extracts patterns, performs time-series analyses, and makes
predictions that assist problem solving in new ways. Affordances of data-driven logistics
and forecasting models may help to alleviate global sustainability pressures like food
security, climate resilience and efficient transportation [3]. Developments in natural capital
accounting propose new knowledge systems related to ecological functions and open new
markets [4]. There is little doubt that advanced data science innovations will enable the
measurement and valuation of environmental assets alongside existing production systems
and supply chains.

Solutions leveraging big data typify much of today’s work occurring within innovation
systems, i.e., collections of technology, information and institutions that are transforming
the world digitally [5]. Publicly funded research and development (R&D) organizations
are important actors here, providing essential domain expertise and focus on leveraging
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technology for the betterment of society. The dual interest of R&D firms to develop reliable
technology and implement it for the global good is needed when considering that there is
potential for both positive and negative consequences once technologies are introduced [6].
In the context of big data innovation specifically, there is evidence suggesting that the
traditional role of R&D is changing [7]. As individual actors, businesses and supply chains
adopt new forms of data-driven support, the public entities associated with these ad-
vancements must be prepared with clear placement and purpose in a digitally enabled
innovation system. There are growing levels of concern that individual freedoms and
securities are potentially compromised, and thus contribute to the public’s salient distrust
of the technologies making these advancements possible [8,9]. At a broader societal level,
applications of big data technologies may introduce power imbalances and inequities
across groups of people, and may reinforce concerns about ‘big brother’ [10]. When consid-
ering the intrinsic role of natural resource management in agricultural productivity and
livelihoods, and the influence of R&D on the technological developments within this space,
we believe it is time to reconsider how public R&D operates in relation to private and
public interests.

In this paper, we revisit the components of public trust and fairness associated with the
ways in which traditional R&D is perceived and managed [11,12]. In parallel, we consider
the propositions for a “digitalization of everything” that use the continuous measurement
and monitoring of systems with increasingly powerful forms of automation supported
by advances in robotics, signal processing and computer vision [13,14]. We draw from
technical and social disciplines to illustrate the disconnect between the value propositions of
technology and the social contexts that they are likely to affect. In doing so, we suggest that
this contribution can be integrated with other views of how to support the adaptive capacity
of R&D for new types of business models and efforts of cross-industry innovation [15,16].
This paper contributes to the goal of innovation in a mature, scientifically robust and
responsible manner.

2. Background

First, the asset of trust is used to characterize the ‘brand’ of publicly funded R&D.
This is brought alongside research on public perceptions related to risk and technology
acceptance. Then, a mapping of big data properties to decision complexity demonstrates
the potential for big data solutions to support landscape-wide assessments. The combi-
nation of public-facing tensions and value propositions of the technology form the basis
for rethinking the reputational risk associated with traditional R&D in the context of
technological innovation.

2.1. The Brand of ‘Trust’ in R&D

Historically, publicly funded R&D organizations have played an important role in
delivering scientific insights as a neutral party within multi-stakeholder projects [12,17].
In order to capture the overlap between the historic brand and new forms of technol-
ogy, we draw from the work of Shin and Park [18], who identified three desirable but
‘thorny’ properties of algorithms—Fairness, Accountability and Transparency, or FAT.
These properties are inspired by the traditional trusted brand, as represented in Figure 1.
First, fair behaviors are performed impartially, without favoritism or bias. Second, being
accountable is consistent with dependability, and is associated with responsible conduct.
Third, the principle of transparency refers to actions which are considered open and honest,
and are performed with integrity. When the three principles are practiced, a reputation of
trust may be built, perceived as upholding the public good, and considered a foundation
for equitable policy and practice. In this way, we propose trust as both an important
element in the reputation of publicly funded research and as a quality that resonates as
confidence in action [19].
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Figure 1. Notional account of ‘trust’ based on the qualities of fairness, accountability and transparency.
Figure based on Shin and Park [18], modified by the authors.

2.2. Public Perceptions of Technology Risk and Science Innovation

Public perceptions affect whether an organization or an industry can maintain its
social license to operate [20]. A body of supporting evidence based on behavioral research
suggests that events once considered ‘extreme’ are becoming more frequently reported
and common in public debate (e.g., cloning and synthetic biology) [21]. The relationship
described by the behavioral research literature is a positive, linear relationship whereby
public perceptions are affected by the degree of perceived uncertainty and dread risk
associated with the technology [22]. The factor of dread risk refers to those risks perceived
as uncontrollable, globally catastrophic, inequitable, and risky for future generations.
The factor of uncertainty is based on observable risk, whether it has delayed effects or
poses a new risk unknown to society. The failure to address or the active dismissal of the
emotions and anxieties of the public in the face of scientific advancements that affect society
can contribute to risks not being identified or mitigated appropriately [22]. The failure
to acknowledge the varied interests and value systems of research partners is part of this
responsibility to the public.

In the broad context of big data technologies, the negative perceptions correspond
to privacy violations, a loss of autonomy, and general distrust of data-driven insights.
Evidence presented in Lee [23] showed that managerial decisions performed by machine
learning algorithms were perceived as less fair and less trustworthy when compared to
human performance on the same task. The report of data anxieties [19] and negative
emotional affect when judging algorithm performance [23] suggests that data-driven
technologies are currently perceived as having a high technology risk.

The public perceptions of technology risk can be at odds with scientific innovation
processes that push the boundaries of current knowledge and technological capability.
Historically, there has been a societal dependency on institutions like R&D to solve issues
related to sustainability, with the resulting solutions often being technocentric and under-
developed at the intersection of science, policy and practice [24,25]. The challenge facing
impact-focused R&D related to agriculture and natural resource management is to help
reconcile the tensions between the perceived technology risk and business motives for
innovation. Uncertain or potential dread risks would include programs of land use change
with irreversible negative outcomes, or which would exacerbate disadvantaged popula-
tions (humans and otherwise), e.g., in the consideration of forest restoration projects [26],
hydropower projects [27] and water market creation [28]. Turning now to a specific technol-
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ogy central to digital transformation and open innovation systems—big data—we highlight
linkages between the affordances of the technology and decision-making capabilities.

2.3. The Relationship between Big Data and Decisions at a Landscape Scale

Big data and the data that underpin these technologies are envisioned to support the
decisions of how natural resources and land will be managed in the future. Big data is
characterized by qualities of data consumption, e.g., its volume, velocity, variety and verac-
ity [29,30]. Big data may also be characterized by the ways in which data are manipulated,
through which large amounts of raw measurements are transformed into structured units
using software code, machine learning algorithms and computational models.

The data–information–knowledge–wisdom (DIKW) hierarchy is commonly used
to describe the transition from raw data to organized information sets to data-driven
insights [29]. We apply the DIKW hierarchy to provide context for understanding the
decision support possible from big data technologies. Figure 2 shows the association
between the levels of the DIKW hierarchy and the types of decision support (modified
from [29,30]).
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The movement up the hierarchy begins with aggregated data that attribute mean-
ing to information at the next level; then, insights are drawn at the level of knowledge,
and so on. The levels of decision support follow a similar progression as the data-driven
outputs reduce uncertainty and improve decision confidence about future states. Move-
ment up the DIKW hierarchy (from raw data towards wisdom) reflects an increase in
technical complexity, and with it the types of increasingly complex decisions that may
be supported. When supported by higher-level insights (at the level of knowledge and
wisdom), the decision maker can (in principle) evaluate options over longer timescales
and in response to patterns that are not observable in conventional terms. The DIKW
decision mapping in Figure 2 forms a basis for understanding the affordances motivating
technology development and the ways in which digital innovations might mature over
time [31,32].

With the potential to support decision making at a scale that was not previously
possible, big data technologies may create new ways of operating within the world [31].
The propositions of the transformation of natural resource management with big data
solutions have the potential to combine information and operations at a relatively small
(farm-level) scale with large entities operating at a broader (landscape-level) scale. When ag-
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gregated with datasets of land cover, historical productivity data and soil information,
advanced modeling approaches provide data-driven outputs that support new ways of
understanding the location, movement and significance of natural resources. The implica-
tions are that the technology can simultaneously probe the biological, social and economic
aspects of any system, and as a result the technologies can be applied in ways to optimize
decision making [32]. Because they offer insights into different temporal (past and future)
and spatial (local and global) scales, there is increasing demand for these technologies
from actors working in private, public and government agencies [33]. Notwithstand-
ing, they might incentivize new types of data-driven digital economies, including green
innovation [34].

In order to synthesize the technical, social, and economic perspectives presented,
we present a case study of the ways in which the issues are being realized in agriculture.
The domain application example illustrates the social context of how the technologies (and
systems they support) reshape the realities of landholders, communities, and the physical
landscape. We also look at how the risks within the domain application appear across the
stages of technology development. This synthesis frames our discussion of how actors
within R&D may anticipate reputational risk while at the same time supporting innovation
and more responsible prediction.

3. Case Study

The digitalization of the agricultural sector demonstrates the affordances of big data
solutions and the responsiveness needed to maintain public trust in R&D. Historically,
agriculture has been transformed by technology and is currently going through what
has been labeled the fourth revolution, culminating from a series of earlier technological
disruptions: the introduction of animal power (Agriculture 1.0), the combustion engine
(Agriculture 2.0), and precision agriculture (Agriculture 3.0) [25]. If realized, Agriculture
4.0 will transform the economic sustainability of agribusiness and farm productivity as it is
known today.

For the optimization of farm productivity and profitability, a range of decisions are
being targeted for big data solutions. Basic insights can inform land managers of poten-
tial problems, thus providing improved responsiveness to on-farm conditions [35–37].
When integrated with farm modeling systems, data-driven outputs may support seasonal
decisions, including crop selection and other applications of precision agriculture [36].
Moving further up the DIKW hierarchy, predictive analytics support longer-term planning
related to expansion opportunities and financial security. At a national and international
scale, the predictive analytics afforded by digitalized agriculture might increase the food
supply, increase logistic efficiency, and provide insights into food availability and qual-
ity [38–40]. Coordination around this knowledge could reduce food price volatility and
increase the likelihood of meeting sustainable development goals [39]. The management
of natural resources supported by big data technologies has the potential to assist with
climate adaptation strategies and innovative agribusiness planning [40].

The immediate and aspirational application areas of big data to digital agriculture
appear limitless and compelling. In 2018, it was estimated that Australian AgTech provides
the digital infrastructure and insight to help earnings from agriculture almost double to
$100 billion as soon as 2030, making it a competitive and rapidly evolving sector [41]. There
has been significant interest from actors across the supply chain in the value capture and
exploitation of data captured from farms: applications will be picked up by actors operating
in the field as well as outside the farm-gate. As a result, digital agricultural innovation
systems are crowded with players (including startups and incubators), each hoping to
bring a product to the market first [5]. There is little doubt that digital transformation will
bring significant change to the people and practices operating within these systems [42].
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3.1. Sources of Reputational Risk in Agriculture

Agriculture is a domain where public concerns are held by individual landholders and
rural communities. Landholders may feel unprotected or unable to negotiate the informed
consent process [43,44]. Therefore, when data collected in an R&D context are shared with
parties unknown to them or without context, the trust between farmers and researchers
may be threatened [45,46]. Social scientists have raised concerns that the existing consent
arrangements are vague and may contribute to unfair benefit structures [45,47,48]. Relat-
edly, data ownership has become a contentious issue between equipment manufacturers,
service providers and landholders. For example, companies can collect vast amounts of
data from equipment being operated on individual farms. Companies consider themselves
the owners of such data because without their equipment it would not be collected, al-
though the farmers that pay for and operate these machines may have different views [47].
When the value associated with this data is restricted to companies and kept from farmers,
traditional notions of consent are violated. There is the potential for this data to be used in
products that contribute to the marginalization of farms in the same locations. Without
mechanisms in place to protect farm(er)s, the technologies become threatening and are no
longer perceived as a helpful innovation.

In order to maintain integrity as a trusted entity for on-farm actors and their commu-
nities, publicly funded R&D organizations must operate with the recognition that off-farm
and private actors can leverage big data, exploit informational asymmetries, and increase
their profit by marginalizing others. These diverging perceptions are tied to uneven power
dynamics, unclear (and changing) motivations, and cultural clashes between agricultural
(and broader societal) perceptions and startup communities [49,50]. Finally, while the
proposition to connect smallholders into export markets is promising, this is not likely to
be realized in a competitive data-driven digital economy [49]. Within agriculture where
digitalization is quickly advancing, the public- facing concerns related to data ownership,
integrity, and how big data solutions present a new form of competitive advantage are
examples of the ways in which the trusted reputation of R&D may be at risk. With greater
awareness of how issues of fairness, accountability and transparency are being addressed
in agriculture, forthcoming R&D related to natural resource management can be better
prepared to manage the issues arising within the public debate. In the next section, we sum-
marize the ways in which reputational risk is currently being managed across the phases
of technology development.

3.2. Reputational Risk across Phases of Technology Development

In the early activities of technology development, data are collected from various
sources. Traditionally, a written consent agreement specifies the terms and conditions for
the ways in which the data are collected from individuals, stored, and made available.
Data collection and reuse is a legitimate handling of data in most standard agreements.
The prevailing legal perspective in Australia, for example, prescribes that the acquisition of
data requires basic consent from its owner, and that the data may be reused in any way,
subject to the provisions of the Privacy Act 1988 [50]. Similar governance mechanisms
are covered in the European Union’s General Data Protection Regulation (GDPR) [51].
While an organization’s reuse of the collected data may enjoy legal protection, it does
not provide insulation from the reputational backlash of inadequately informed data
contributors. The users of common data-as-payment services, relying on ‘notice and
choice’ permissions, are rarely fully informed about the intended or potential reuse of
their data and the implications for their privacy in exchange for ‘free’ access [52,53]. These
conventional arrangements have led to questionable data reuse, such as the Facebook–
Cambridge Analytica incident, in which the reputational damage was significant and may
be long-lasting [52].

Technology developers have ways to prioritize assurances of individual privacy
and security in the way technologies are designed, deployed and used [53–56]. Multiple
technical solutions help to protect privacy, including anonymization techniques that replace
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personal identifiers with random numbers. Data aggregation techniques can protect by
blurring the location of a data source. A third solution includes federated systems that
provide data access in a more tightly controlled fashion, such as OPAL (Open Algorithms
for better decisions) [57]. Nowadays, differential privacy has become the de facto standard
for preserving data privacy by mixing personal data with artificial white noise which
theoretically prevents actors from identifying the details of the source data [58]. While
anonymization, aggregation, federated systems and differential privacy represent tangible
solutions for the protection of static data, they fail to completely anonymize data and
establish transparency. There are instances where the reverse engineering of algorithms to
their source data has been reported [59].

In the engineering of digital solutions, labeled data are used for model training and
evaluation. While algorithms may eliminate types of human bias, they are subject to
their own bias when the data are not adequately representative or contextually accurate.
From minor embarrassment to more concrete negative backlash, the trust in organizations
can be compromised if they are perceived to be developing or using a biased product [60].
Providing a record of the provenance of how insights are generated can demonstrate
accuracy, but it can be difficult or impossible to explain how an algorithm reached a spe-
cific outcome. Issues of model transparency, i.e., how particular models work or how
data-driven insights are reached, are being addressed by the Artificial Intelligence (AI) com-
munity using a concept of explainability that encompasses detailed model documentation,
transparent “white-box” models, global models (finding out influential input variables),
and local models (finding out reasons for the prediction of a particular outcome). There has
been a shift towards developing models that allow predictions to be interpreted, and where
relationships can be extracted and tested.

Issues related to transparency—in terms of promoting data collection and develop-
ing explainable algorithms—are present in the current debates in AI, specifically about
how AI models manage the various sources of uncertainty. Model uncertainty might be
related to noisy inputs or labels (aleatoric uncertainty, see [61], under review) or embedded
in the model itself (epistemic uncertainty). As is consistent with public-facing concerns
related to uncertainty in technology, there is unrealized potential in estimating and com-
municating uncertainty to users and developers. Accommodating for uncertainty in the
design of tools could unlock new value propositions and improve usability. For instance,
uncertainty estimates could lead to more principled decision making and allow models to
(semi)automatically abstain on overly uncertain samples [62]. Alternatively, expressing
the uncertainty could encourage a trade-off whereby humans use intelligent automation
while remaining empowered to provide feedback [63]. Above all, communicating uncer-
tainty effectively can provide a critical layer of transparency and trust, which is crucial
for improved AI-assisted decision making. Therefore, models which provide a confidence
level associated with the prediction based on the quality of the available data [64] as
well as open-source toolboxes for uncertainty quantification [65] are good steps towards
reconciling uncertainty.

There are social and behavioral factors during development that affect whether data-
driven insights are considered ethically fair and unbiased when considered in the broader
context of implementation [66]. There are concerns that biases within these products can
(and do) exacerbate existing power asymmetries [67]. Originating from legal analysis to
determine unintentional discrimination, disparate impact analysis is gaining momentum
as a practical tool to discuss and handle observational fairness, i.e., how model predictions
affect different groups of people [68]. Ethical AI has begun to attract attention from
governmental bodies such as the European Commission [69], and commercial solutions
are being brought to the market. However, designing algorithms with sensitivity to what
constitutes public fairness remains a challenge.

In the context of deploying big data technologies at a scale of landscapes and shared
natural resources, publicly funded R&D organizations must work with commercial, private
and government entities. As these entities have varying motives, the role of R&D as a
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neutral stakeholder becomes increasingly important [12]. The social sciences have long
highlighted the rural–urban divide through which communities are marginalized due to a
lack of literacy, access and the skills required to maximize their use of data and the Internet
of Things [70]. Armed with this knowledge of undesirable social consequences, actors
within R&D must carefully manage their association with external entities throughout the
technology development process, recognizing the value systems and operational principles
of their collaborators and clients. Principles of responsible innovation are becoming a
part of the conversation of how to proceed responsibly and ethically [71]. The responsible
innovation framework consists of four principles: anticipation, inclusion, reflexivity and
responsiveness [72]. Participation in these behaviors is required if the transformational
outcomes being sought in individual businesses, the private sector and the public sector
are to be achieved [73].

4. Recommendations on Reframing the Role of R&D

The digital innovations and technologies that utilize AI systems powered by big data
constitute a new normal. When such powerful technologies are introduced into our supply
chains, management systems, organizations and societies, they are bound to have social
and economic implications. We live in a time of rapid technological change and digital
connectedness. It is important to understand how we are influenced by the possibilities of
big data and analytical tools and techniques [74]. The potentially transformative nature of
technological developments in big data calls for attention to the broader sociotechnical con-
text: “innovation is equally about people as it is about products, processes, and technical
systems” ([75], p. 2). Herein lies the crux of why the modus operandi of R&D organiza-
tions need updating: we need to acknowledge that in the new digital normal, there exist
independent value exchange networks where actors are using digital technologies in new
ways to create profit (for themselves) and mitigate business risk (for themselves and their
shareholders, as well as society). These networks are, by their nature, different from the
objectives of traditional publicly funded R&D focused on societal benefits and, at times,
creating knowledge for its own sake.

Some implications of technological innovation may be controversial, and thus public
R&D must reconcile the possible repercussions from participating in their development.
We have argued that R&D investment may, at times, contribute to public harm and a
weakening of trust in the institution of research. We came to this conclusion after con-
fronting the issues arising from multiple research disciplines, recognizing that the prism of
a single discipline is too narrow to cover the complex and multifaceted realities of digital
transformation and its effects across the data value chain. It is through interdisciplinarity
that sociotechnical issues can help identify the “temporalities of data” ([19] p. 2). Synergies
resulting from working across disciplines enable dialogue about how we might update
our ways of working within the digital realm, with one another in R&D processes, and in
partnership with industry and the private sector [74,76].

The recognition that digital transformation includes aspects of both technical and
social change is helping to promote principles of responsible innovation [76] and other
transitions towards active social learning in research [77]. R&D managers and leaders
can improve their standard operations by using support such as the Risk Mitigation
Checklists published by Ethical OS [78], the rules proposed by Zook et al. [79], and the
guidance proposed for the public sector by the Alan Turing Institute [80]. These provide
actionable ways of anticipating sources of technology mistrust, reinforce perceptions
of digital responsibility, and link to business model development and adaptation [75].
Technological advances have demonstrated the ways in which improved security measures
reduce the likelihood of privacy breaches. Engineering solutions that anonymize data
and control data access are becoming more widely available. The recognition of public
concerns in the development of National Standards [81] further reinforces that it is possible
to proactively articulate the ways in which technology risk can be identified. However,
these measures will take time to both initiate and put into practice. Basic literacy about the
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technology and these improved practices is just emerging in the public debate. Emerging
from the social and legal perspectives is the fact that the reputation associated with the ways
in which digital systems are handled requires greater transparency about data collection,
reuse, consent, and custodianship. These terms need to capture both the current state and
possible future technologies built to mine this source data.

The value propositions of big data rely on effective data sharing and reciprocity.
In order to promote the sharing of farm data for issues related to natural resources, we rec-
ommend making those propositions more tangible, and making insights related to natural
resources more accessible in order to encourage that reciprocity. Concerning the case
study—big data in agriculture—guidance is becoming available through voluntary codes
of practice such as the Farm Data Code published by Australia’s National Farmers Federa-
tion [82]. Created in consultation with industry, the code emphasizes the ways in which
both service providers and landholders can increase the mutual transparency and quality of
data (sharing). The simple act of checking a box when signing up for a service may disguise
the realities of a data agreement that is fundamentally more complex. The engagement of
Robinson and colleagues with an Indigenous population demonstrated another example
of how principles can be linked to deliberate action [83]. We consider these examples as a
starting point for the questions that future research will need to address.

The role of digital technologies as drivers and facilitators of economic exchange will
only increase, and will in turn require adaptive governance processes [84]. The danger
of developing technologies that put groups of people at a disadvantage can be better
responded to via research calling for greater attention to the social dimensions of digital
innovations in and for regions [85–88]. There is some evidence that responsible innovation
principles may encourage fairer and more equitable technology use [25,45,89,90]. Putting
principles into practice is less straightforward. In order to uphold the traditional notion of
‘research for the public good’, R&D’s role in innovation may need to include an explicit
reorientation to what digital technologies mean and afford to different groups of people and
stakeholders [17]. This includes clearly articulating a position related to data—as both a
mechanism to maintain organizational value (e.g., intellectual property rights), for research
transparency, and for the greater good [91]. Such considered transparency may help reduce
perceptions of vulnerability and violation [92]. Further responsiveness might be achieved
by data custodianship taking shape with new dedicated parties or organizations—in
agriculture, independent data brokers might be required, rather than equipment, fertilizer
and seed company representatives—in order to allow for the trustworthy collection of the
farmers’ data and to provide controlled access to aggregated datasets to all actors.

5. Conclusions

The practice of operating in a scientifically informed and neutral manner—as publicly
funded R&D has historically been perceived by many to do—needs updating in order to
manage a more equitable exchange of big data products and services if the lofty aims of in-
dustrial digital transformation are to be realized. The fabric of legal policies and procedures
that once managed reputational risk are no longer sufficient. We know that the existing
privacy measures are poorly understood and not necessarily consistent with an image of
fair and transparent business activity. The negative public backlash to these arrangements
requires public R&D and other trusted brokers to reorient their traditional role as data
custodians, technology developers and public advocates when their engagement in big
data activities can be harnessed by private interests. This balance includes responding to
the ways in which people perceive risks around data sharing and the information created
by powerful analytical tools to engender insights.

After presenting these interdisciplinary perspectives regarding digital transformation
through big data (i.e., data science, social science and design), we assert that working in
such a broad (and potentially transdisciplinary, where appropriate) manner is an opportu-
nity to better build shared, yet still ambitious, goals for public R&D. Interdisciplinarity is a
way of working where researchers are more likely to be aware of each other’s activities,
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can build and share similar ways of identifying problems, and are better able to co-develop
appropriate interventions. In an age of digital transformations, the representation of public
interests will require an integrated approach that includes interdisciplinary perspectives, re-
newed policies and standards of best practice, and socializing advancements in protections
of privacy and algorithm bias.

Big data products are becoming part of the ubiquitous fabric of our modern world.
In this paper, we sought to demystify some of the technical and social data dangers of
technology research and development in the context of natural resource management,
specifically reputational risk and issues of trust and privacy, particularly in agriculture.
Our insights into these urgent and future-oriented issues remain valid in other application
domains, particularly those that are future-focused and grand in scale.
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