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Abstract: Many recent studies show that most of the crop production systems in developing countries
are not environmentally sustainable. This study uses the life cycle assessment (LCA) to investigate
the potential impacts of corn production in Pakistan on global warming and human health damages
and also suggests mitigation strategies to reduce environmental impacts towards sustainable crop
production based on the results. Land-based, mass-based, and energy-based functional units were
used. IMPACT 2002+ methodology—a combination of IMPACT 2002, Eco-Indicator 99, CML, and
intergovernmental panel on climate change (IPCC)—is used for the impact assessment. The results
demonstrated that the global warming potential of one-ton production of corn, one-hectare corn farm,
and production of 1000 MJ energy were 354.18, 34,569.90, and 1275.13 kg CO2 equivalents, respectively.
The off-farm and on-farm emissions of nitrogen-based chemical fertilizers were the hotspots in
the most impact categories. Moreover, human health damages followed by global warming as
environmental externalities were also associated with corn production. We also highlighted the
production areas with light, medium and extreme environmental externalities with Toba Tek Singh
and Okara districts in the Punjab province of Pakistan being the most and least contributing districts
towards global warming, respectively. Results further indicated that a 5 to 100% reduction of chemical
fertilizers would mitigate the environmental impacts of corn production by 4.38 to 87.58% and 2.16 to
43.30% in terms of aquatic acidification and global warming, respectively. Modern farming systems
and conservation technologies were suggested to reduce emissions and improve the environmental
performance of corn production. Furthermore, agricultural extension and the ministry of agriculture
should pay more attention to farmers’ education on emissions from farming inputs and their impact
on climate.

Keywords: corn production; life cycle assessment; environmental impact; global warming; human
health damages

1. Introduction

Climate change caused by the increasing concentration of greenhouse gases in the
environment is a significant issue defying policymakers around the world. Major con-
tributing factors include increased utilization of non-renewable energy resources since the
industrial revolution in the eighteenth century and expanded farming activities associated
with the growing population [1]. A growth rate of 4.1% in greenhouse gas emissions (GHG)
was observed in Pakistan from 1994 to 2012, with energy and agriculture as the major
stakeholders responsible for 89% of the total emissions [2]. As the agriculture sector is
widely dispersed throughout the country and alone has contributed 44% to CO2 equivalent
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GHG emissions [3], considerable mitigation strategies are required in this sector. Mitiga-
tion practices may include crop, land, and energy management, efficiency improvement
measures, and provision of renewable energy systems [4]. Before suggesting a particular
mitigation strategy to reduce environmental impacts, it is imperative to study the life cycle
of crops [5].

The life cycle approach is considered to be the main tool for addressing the production
and consumption challenges of agricultural systems. Life cycle-based approaches support
the transition to improving the sustainability of existing production and consumption
practices, e.g., LCA (life cycle assessment), SLCDA (Social Life Cycle Assessment), LCDA
(Life Cycle Cost), and LEXA (Overall Life Cycle Sustainability Assessment). LCA is the
most commonly used method for environmental impact assessment of a product over
its life. Previous studies supported the application of LCA in agricultural production
systems [6,7].

Moreover, in the agricultural domain LCA was used on various crops such as wheat [8],
rice [9], maize [10], sugarcane [11], and cotton [12], as well as fruits and vegetables such
as apples, sweet berries, plums [13,14], peaches [15], grapes [16], tomatoes [17], and
carrots [18]. In addition to the stepwise examination of environmental burdens due to
agricultural activities/inputs [19], the LCA can also be used to develop climate change
adaptation strategies under existing production methods by scientists, managers, and
decision-makers as a decision-making tool [20].

Pakistan is one of the top 20 corn-producing countries of the world [21]; corn itself is
the third most important cereal crop in the country after rice and wheat. Due to its flexible
domain as a grain and cash crop, it is quickly becoming the main crop in Pakistan [22].
As a vital crop, the utilization of inputs has been increased as farmers presumed that
increased application would lead to increased yield and eventually increased farm profit.
Climate change and greenhouse gas emissions from crop productions are mainly due to
the excessive use of inputs especially fossil fuels, synthetic fertilizers, and pesticides [23].
Agriculture, however, has the potential to mitigate its emissions through the adoption
of appropriate measures like low carbon and resource conservation [24]. Therefore, an
in-depth understanding of the trends in emissions of greenhouse gases, drivers of these
emissions, and the linkage between them is essential to develop mitigation and adaptation
strategies. In this regard, life cycle assessment (LCA) as a standard-based methodology that
is accepted by researchers, policymakers, and industries can play a key role in a sustainable
agricultural production system [25].

Despite the importance of this particular food crop (corn) and its bulky annual global
production of 1116.41 million tons [21], studies of its environmental performance are still
rare in the literature. The lack of life cycle assessment studies of corn and knowledge
about environmental hotspots in the corn production chain is an important research gap.
There are many studies on the LCA of crops such as wheat, rice, sugarcane, and cotton.
However, due to specific crop inputs requirements and climatology, these studies could not
be used as a benchmark for other crops in different continents. Furthermore, the ecological
performance of a crop could also diverge from the economic status and industrial progress
of production farms, and therefore, it is imperative to apply the LCA in different areal
domains to establish production benchmarks for individual crops.

There have been a few studies of the LCA applications on Pakistani agriculture [26,27].
However, to the best of the authors’ knowledge, no study exists regarding the environmen-
tal externalities of corn productions in the country. Therefore, this study emphasizes the
LCA of corn production to investigate environmental impacts and improvement options.
The aggregated, normalized, and weighted impact assessment measures are established for
resource consumption and land uses. Moreover, currently, the best accessible techniques
have been selected and refined to incorporate standardizations and weighting factors for
impact categories. The current study described the LCA application on Pakistani corn with
specific emphasis on the identification of hotspots in the production chain. The objectives
of this study were to: (1) identify the LCA impacts of Pakistani corn and environmen-
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tal hotspots in corn farming; (2) quantitatively analyze the impact of corn growing on
human health, ecosystem, climate change, and resources and explore the mechanism of
climate change and human activities on the production chain; and (3) provide the available
mitigation options for corn production in Pakistan.

2. Materials and Methods

The LCA is divided into four steps [28].

• “Definition of the goal and scope”;
• “Life cycle inventory”;
• “Life cycle impact assessment”;
• “Interpretation of results”.

2.1. First Step—Definition of the Goal and Scope
2.1.1. Goal and Scope

The goal of this research is to determine the environmental LCA of corn production
in the Punjab province of Pakistan. Three functional units (FUs) namely, land-based (one
hectare), mass-based (one tonne of corn), and energy-based (1000 MJ energy generation)
units were considered.

2.1.2. Case Study

The case study was corn production system in the Punjab province of Pakistan, a key
focus of the study. Figure 1 shows the study area with coordinates of potential districts of
corn production in Punjab.

1 
 

 

 
 
 
 

 

Figure 1. The study area of Punjab province with estimated corn production of each district and sectorial GHG emissions
from Pakistan.

The data were collected from 500 corn producers through a well-structured question-
naire from 2018 to 2019. Following Elahi et al. [29,30], the questionnaire was developed
to conduct interviews with farmers of Punjab. Each producer was asked questions of the
number of inputs used from cultivation to harvesting such as diesel fuel (liters), machinery
use (h), chemical fertilizers (kgs), biocides (kgs), seed (kgs), and yield (kgs).

The selection of these farmers has been made through a five-stage sampling technique.
In the first stage, Punjab province was chosen purposively since it is the major corn-
producing province in the country. Secondly, 10 municipalities (MP) of the corn-rice
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cropping zone were selected. In the third and fourth stages, 2 union councils (UCs) and
5 villages were randomly selected. Finally, 5 farmers from each Vs were chosen for the
interview. Therefore, 50 farmers from every MP were interviewed for inputs and output of
corn productions. The questionnaire was designed to obtain per acre information (a unit of
land measurement locally used in Pakistan) converted to per hectare.

For the scope of LCA in corn productions, cradle to farm gate system boundary was
used. The emitted pollutants were divided into two groups of off-farm emissions (i.e., the
emitted pollutants from extraction, production, and transportation of raw materials), and
on-farm emissions (i.e., direct emissions which were released at the farm).

2.2. Second Step—Life Cycle Inventory

In this step, the input consumption and their emitted pollutants were investigated.
Within the system boundary of the cradle-to-farm gate, both foreground and background
emissions from corn productions were considered. Background emissions include emis-
sion from production (at industry) and transportation of material inputs (to farm), while
foreground includes the direct emission from consumption of materials inputs at the farm.
The data collected through questionnaires described in the previous section were used for
foreground emissions, while the associated background emissions were extracted from
EcoInvent 2.2 database [31]. For foreground emissions, the quantity of each input was
multiplied by its CO2 equivalent, and the LCA included its algorithms to evaluate these
equivalent CO2 emissions of any processes throughout the corn production cycle.

2.3. Third Step—Life Cycle Impact Assessment

The impact assessment (IA) methodology was used. In this methodology selection
of impact categories and characterization are mandatory, while normalization and weigh-
ing are optional elements [32]. We selected fifteen impact categories for investigation.
The characterization index was calculated by using the potential of pollutants in these
impact categories. Then, the values were normalized, the normalization indices were
calculated by dividing the characterization indices to normalization factors based on the
following equation:

NIi =
CIi
NFi

(1)

where, NI, CI, and NF are the normalization index, characterization index, and normaliza-
tion factor of impact category i, respectively [33].

For IA of LCA, IMPACT 2002+ methodology—a combination of IMPACT 2002, CML,
IPCC, and Eco-Indicator 99—was used in this study [34]. The IA methodology is strongly
based on the initial outcomes from life cycle inventory (LCA), the calculated emissions
in the LCI results were then entered into the intermediate stage, where the results with
similar impact pathways were grouped into impact categories called midpoint categories.
Later on, these results of the midpoint were then quantified to represent the quality change
in terms of four damage categories at the endpoint level. The overall framework of impact
methodology has been represented in Figure 2.

Since different studies used different methods for impact IA in crop productions, a
comparative analysis was carried out to examine the effects of different IA methods on the
final results. To do so, four different methods of IA methods of CML-IA baseline, ILCD
2011 Midpoint, EDIP 2003, and EDP (2013) were evaluated for comparison through LCA
with SimaPro 8.2.3.0 version [32].
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Figure 2. A systemic scheme of the IA methodology of corn production.

3. Results and Discussions
3.1. Step Four—Interpretation of LCA Results

This step involves the interpretation of the IA findings. The study considered 15 IA
categories. The characterization indices of these categories for corn production are pre-
sented in Table 1. Impact categories like global warming potential (GWP) are considered
as imperious concerning the ecological recitation of the crops [35]. Results showed that
field emission and nitrogen fertilizers are the primary contributors to the GWP of the corn
cropping system. Field emission is the main source of eutrophication, aquatic acidification,
and CO2. The application of nitrogen fertilizer is responsible for nitrous oxide (N2O),
which is 310 times more dangerous than CO2 due to its heat-trapping effects [36]. Mass
(one tonne), land (one hectare), and energy (1000 MJ) based GWP of corn production was
found 354.18, 34,569.90, and 1275.13 kg CO2 eq, respectively. In the literature, mass-based
GWP of canola production was reported to be 1181 kg CO2 eq [37]; traditional and semi-
mechanized potato to be 228 and 153 kg CO2 eq, respectively [38]; canola, soybean, and
sunflower to be 2132, 1549, 2283 kgCO2 eq, respectively [39]; and irrigated and dryland
wheat to be 1220 and 720, respectively [40].

Therefore, compared to these studies the GWP of corn production in Pakistan is not
high. Moreover, the amount of eutrophication and acidification indices are almost the
same as the corresponding values in different study regions. The results indicate that corn
production is inefficient in terms of fuel and fertilizer application, which contributes the
most towards global warming.

Table 2, illustrates the percentage involvement of each input towards impact cate-
gories. The results emphasized that direct emissions were the hotspot in terms of aquatic
acidification, terrestrial acid/nutria, and respiratory inorganics. Mousavi-Avval et al. [37]
reported that 70% of the environmental impact of terrestrial ecotoxicity within corn pro-
duction was related to on-farm emissions. Ghasempour and Ahmadi [41] studied a corn
production system in Iran and estimated that nitrogen-based fertilizers caused the highest
negative impacts. Heidari et al. [42] studied the LCA of pasta production and found that
foreground emissions were the major stakeholders towards environmental externalities.

Furthermore, nitrogen-based fertilizers were the flashpoint in terms of GWP, mineral
extraction, non-renewable energy, terrestrial ecotoxicity, and carcinogens. The application
of farm inputs especially fertilizers was different at different farms depending upon farmers’
specific characteristics, for example, their knowledge about precision agriculture, financial
condition, extension services, soil fertility, and crop rotation. Joy et al. [43] also reported
an imbalanced use of fertilizers in Pakistan. As the excessive use of fertilizers caused
more nitrogen emission, and thus, increased global warming, farmers should pay special
attention to the pattern of use of fertilizers. Another important non-renewable energy
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input is the diesel fuel use in different machines such as tractors for crop activities (from
land preparation to harvesting) and pumps for groundwater pumping, which also causes
on-farm emissions.

Table 1. Characterization indices of the corn production system.

Impact Categories Units

Functional Units

Land-Based Mass-Based Per 1000 MJ
Energy Generation

Carcinogens Kg C2H3Cl equivalent 87.24 13.34 48.01
Non-carcinogens Kg C2H3Cl equivalent 48.67 7.36 26.48

Respiratory inorganics Kg PM2.5 equivalent 8.56 1.31 4.71
Ionizing radiation Bq C-14 equivalent 20,111.04 3087.28 11,115.61

Ozon layer depletion Kg CFC-11 equivalent 6.40 × 10−4 9.99 × 10−5 0.00036
Respiratory organics Kg C2H4 equivalent 0.84 0.13 0.47
Aquatic ecotoxicity Kg TEG water 231,588.27 35,152.98 126,571.60

Terrestrial Ecotoxicity Kg TEG soil 29,304.28 4483.80 16,145.65
Terrestrial acid/nutria Kg SO2 equivalent 742.12 113.38 408.17

Land occupation m2org.arable 97.90 14.83 53.42
Aquatic acidification Kg SO2 equivalent 102.78 15.70 56.53

Aquatic eutrophication Kg PO4 P-lim 1.39 0.21 0.76
Global warming Kg CO2 equivalent 2295.34 354.18 1275.13

Non-renewable energy MJ primary 34,569.90 5353.04 19,272.15
Mineral extraction MJ surplus 165.01 25.05 90.18

Note: C2H3Cl Vinyl chloride; PM Particulate matter; CFC chlorofluorocarbons; TEG Triethylene glycol; C2H4 Ethylene; SO2 Sulphur
dioxide; PO4 Phosphate.

Table 2. Percentage share of inputs towards impact categories.

Impact Categories Seed Potassium
Fertilizer

Phosphate
Fertilizer

Nitrogen
Fertilizer Pesticide Diesel Fuel On-Farm

Carcinogens 0.9 0.9 14.0 64.5 16.0 3.7 0.0
Non-carcinogens 4.8 5.2 39.4 31.0 13.5 1.6 4.5

Respiratory inorganics 0.0 1.0 10.4 11.9 5.6 1.0 70.1
Ionizing radiation 1.6 1.1 34.7 23.3 22.0 17.3 0.0

Ozon layer depletion 0.5 0.0 3.2 5.4 84.4 6.5 0.0
Respiratory organics 1.0 2.0 12.4 33.4 21.0 30.2 0.0
Aquatic ecotoxicity 2.9 1.1 53.3 22.1 17.6 3.0 0.0

Terrestrial Ecotoxicity 9.0 1.0 30.0 36.0 17.7 5.0 1.3
Terrestrial acid/nutria 0.7 0.0 2.3 2.7 1.3 0.0 93.0

Land occupation 39.0 15.0 37.0 5.0 4.0 0.0 0.0
Aquatic acidification 0.0 1.0 5.0 6.0 3.0 0.0 85.0

Aquatic eutrophication 0.0 1.5 64.5 11.8 20.2 2.0 0.0
Global warming 1.1 2.5 15.0 45.0 12.0 3.4 21.0

Non-renewable energy 1.0 1.4 15.0 36.4 17.6 28.6 0.0
Mineral extraction 1.0 1.0 39.0 46.0 13.0 0.0 0.0

Table 3, further demonstrates the normalized damage assessment (NDA) of the corn
crop. Human health stands for the highest damaged category caused by direct emissions
due to the application of fertilizers. The results are in line with the study of Elahi et al. [44].
They have also found associated occupational health damages due to the application of
synthetic agrochemicals for crop production in the Punjab province of Pakistan. Further-
more, nitrogen fertilizers have also the highest negative effect on the resource depletion
damage category followed by diesel fuel consumption. Our results are in line with the
studies of Payandeh et al. [45] and Taki et al. [46].

Table 3. Normalized damage for different input consumptions.

Damage Categories Seed Potassium
Fertilizer

Phosphate
Fertilizer

Nitrogen
Fertilizer Pesticide Diesel Fuel On-Farm

Human health 0.0045 0.0054 0.0989 0.1277 0.0551 0.0115 0.5964
Eco systems 0.0046 0.0014 0.0095 0.0087 0.0039 0.0011 0.0527

Climate change 0.0025 0.0028 0.0373 0.1002 0.0316 0.0094 0.0481
Resources 0.0018 0.0018 0.0341 0.0860 0.0389 0.0660 0.0000
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Furthermore, the description of corn production indices through different impact as-
sessment methodologies is presented in Table 4. Results indicate that the land-based
GWP of corn ranges from 2295.34 kg CO2 eq to 3134.44 kg CO2 eq per hectare un-
der different IA methodologies, while OLP (ozone layer depletion) stays the same at
6.40 × 10−4 kg CFC-11 eq. for all IA methodologies. Rafiee et al. [47] also signified the
variations of LCA results among the IA methodologies in the agriculture sector.

Table 4. Description of production indices calculated by various IA methods.

IA GWP (Kg CO2 eq) OLP (Kg CFC-11 eq)

CML-IA baseline 3134.38 6.40 × 10−4

EDIP 2003 3134.44 6.40 × 10−4

EDP (2013) 3134.38 6.40 × 10−4

ILCD 2011 Midpoint 3135.25 6.40 × 10−4

IMPACT 2002+ * 2295.34 6.40 × 10−4

* This IA method was considered in this study.

Figure 3 illustrates the NDA of the corn crop. Our results show that corn production
in Pakistan causes the highest damage to the human health category. The results are in
line with the study of Paramesh et al. [32]. They have estimated human health damage
assessment as the largest environmental impact during areca nut production. The direct
emissions into the air during the agricultural production process are most responsible
for human health damages. Furthermore, climate change/global warming and resource
depletion are found the second and third most damaging categories after human health.
This is because a frequent number of irrigations and excessive input requirements for corn
production contribute to climate change and resource depletion.
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3.2. Distribution of Study Area Based on Impact Categories

Since the LCA results reveal nitrogen fertilizers as the main contributors towards
global warming evidenced by the weighted global warming index of 2295.34 kg CO2
equivalent, the utilization of nitrogen fertilizers was calculated for each district and the
entire study region (10 districts) and then the districts were categorized into light, medium
and extreme areas, shown in Figure 4. Light, medium, and extreme emission areas include
the global warming index ranges from 1698 to 2019 kg CO2 equivalent, 2020 to 2295 kg CO2
equivalent, and above 2295 kg CO2 equivalent, respectively. Okara, and Faisalabad, and
Toba Tek Singh and Jhang are found to be the light and extreme regions, respectively. More
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specifically, the farmers of Jhang and Toba Tek Singh have high use of nitrogen fertilizers.
Previous studies [48–50] also concluded that inadequate usage of synthetic fertilizers was
significantly related to emission and other related consequences. Zulfiqar and Thapa [51]
determined the imbalanced use of fertilizers was the main reason for getting lower wheat
efficiency in the Punjab province of Pakistan. Developing countries like Pakistan, where
farmers expect to have increased crop yield with increased use of chemical fertilizers are
becoming the major reasons for greenhouse gas emissions and climate change.
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3.3. Mitigation Strategies

Table 5 represents the potential of environmental impacts mitigation through the
reduction of nitrogen-based chemical fertilizers. Results indicate that a 5 to 100% reduction
in chemical fertilizers mitigates the environmental impacts of corn production in terms of
aquatic acidification by 4.38 to 87.58%. It can be concluded that nitrogen-based fertilizer is
an environmental hotspot in the corn production system. Sadeghi et al. [52] evaluated the
environmental impacts of corn production in Iran based on the application of three nitrogen-
based fertilizer levels of 300, 400, and 500 kg per hectare. The results showed that the corn
yield increased with increasing fertilizer rate from 300 to 400 kg per hectare; however, a
further increase in the fertilizer rate (500 kg ha−1) was not environmentally friendly.

Nitrogen-based fertilizer is one of the main inputs in corn production [53,54]. Chemical
fertilizer has been considered the main driver or input to increase crop production in
developing countries such as the production of groundnut-bean [55], peach [15], and
areca nut [32]. Integrating a legume into the crop rotation can contribute to the supply
of required chemical nitrogen by atmospheric nitrogen fixation [37]. Moreover, planting
winter cover crops can be considered as a strategy to increase soil organic carbon levels
and to reduce nitrogen losses from the soil and to increase soil organic carbon levels [56,57]
suggested that replacing conventional chemical fertilizers with biofertilizers could mitigate
the environmental impacts of the crop production system. Currently, there is a common
misconception among Pakistani farmers that the excessive use of fertilizers would increase
crop yield. However, E. Elahi, Weijun, Zhang et al. [50] found that only an optimal use of
NPK fertilizers could improve the crop efficiency.

Moreover, the excessive use of nitrogen-based fertilizers and fuel reduces energy
use efficiency and threatens the environment. Prabhakar and Elder [58] also reported
that most farmers in Pakistan did not use the optimal amount of farm inputs, and thus,
resulted in low resource use efficiency. Zulfiqar and Thapa [51] found a lack of access
to extension services, crop production technology, and knowledge about environmental
impacts of crop production were among the main reason for low crop efficiency and
negative environmental impacts.
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Table 5. The environmental impact mitigation through the reduction of nitrogen-based fertilizers.

Impact Categories Units

The Characterization Based on the Various Scenarios

Current 5% N-Based
Fertilizer Reduction

10% N-Based
Fertilizer Reduction

20% N-Based
Fertilizer Reduction

50% N-Based
Fertilizer Reduction

100% N-Based
Fertilizer Reduction

Carcinogens Kg C2H3Cl equivalent 87.24 84.42 81.58 75.92 58.93 30.61
Non-carcinogens Kg C2H3Cl equivalent 48.67 47.81 46.94 45.20 39.99 31.31

Respiratory inorganics Kg PM2.5 equivalent 8.56 8.24 7.91 7.26 5.31 2.06
Ionizing radiation Bq C-14 equivalent 20,111.04 19,879.33 19,647.34 19,183.56 17,792.22 15,473.33

Ozon layer depletion Kg CFC-11 equivalent 6.40 × 10−4 6.39 × 10−4 6.38 × 10−4 6.34 × 10−4 6.24 × 10−4 6.07 × 10−4

Respiratory organics Kg C2H4 equivalent 0.84 0.83 0.82 0.79 0.70 0.56
Aquatic ecotoxicity Kg TEG water 231,588.27 229,090.20 226,589.10 221,589.20 206,589.50 181,589.90

Terrestrial Ecotoxicity Kg TEG soil 29,304.28 28,749.87 0.82 27,085.20 23,756.33 18,208.22
Terrestrial acid/nutria Kg SO2 equivalent 742.12 707.41 672.70 603.28 395.02 47.92

Land occupation m2org.arable 97.90 97.64 97.36 96.82 95.18 92.45
Aquatic acidification Kg SO2 equivalent 102.78 98.28 93.77 84.77 57.77 12.76

Aquatic eutrophication Kg PO4 P-lim 1.39 1.38 1.37 1.36 1.31 1.24
Global warming Kg CO2 equivalent 2295.34 2245.79 2196.18 2097.01 1799.50 1303.66

Non-renewable energy MJ primary 34,569.90 33,920.62 33,270.57 31,971.05 28,072.47 21,574.85
Mineral extraction MJ surplus 165.01 161.24 157.46 149.9 127.23 89.45
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4. Conclusions

This study applied the life cycle assessment (LCA) to determine the damage categories
of global warming potential GWP, human health, resources depletion, and ecosystems of
corn production in Pakistan. Human health was found to be the most damaged category,
followed by climate change/global warming and resource depletion, and the direct emis-
sions into the air during the corn production intercultural process are most responsible to
the human health damages. On the other hand, frequent irrigations and excessive input
consumptions for corn production contribute to climate change and resource depletion. The
results further revealed that direct and indirect emissions of nitrogenous fertilizers were
the environmental hotspot. The results also suggested that the reduction in the excessive
use of farm inputs could be a potential sustainable crop production strategy. Therefore,
the study calls for the proper use of agrochemicals. The on-farm emissions through fuel
consumption can be minimized using conservation tillage, high-efficiency irrigation sys-
tems, and other integrated methods to control weeds and pests. Moreover, agricultural
extension and the ministry of agriculture need to pay more attention to farmers’ education
to improve energy resource use efficiency and reduction of negative environmental impacts
of crop production. Further research is required to determine life cycle assessment in
other agricultural production systems particularly focusing on climate change mitigation
potential of different technologies and management practices.
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